Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Forest disturbances under climate change

Abstract

Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of evidence for direct, indirect and interaction effects of climate change on forest disturbance agents in the reviewed literature.
Figure 2: Interactions between forest disturbance agents.
Figure 3: Global disturbance response to changing temperature and water availability.

Similar content being viewed by others

References

  1. Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).

    Article  Google Scholar 

  2. Frelich, L. E. Forest Dynamics and Disturbance Regimes: Studies from Temperate Evergreen–Deciduous Forests (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  3. White, P. S. & Pickett, S. T. A. in The Ecology of Natural Disturbance and Patch Dynamics (eds Pickett, S. T. A. & White, P. S.) 3–13 (Academic Press, 1985).

    Google Scholar 

  4. Turner, M. G., Tinker, D. B., Romme, W. H., Kashian, D. M. & Litton, C. M. Landscape patterns of sapling density, leaf area, and aboveground net primary production in postfire lodgepole pine forests, Yellowstone National Park (USA). Ecosystems 7, 751–775 (2004).

    Article  Google Scholar 

  5. Beudert, B. et al. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 8, 272–281 (2015).

    Article  Google Scholar 

  6. Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760–781 (2016).

    Article  Google Scholar 

  7. Holling, C. S. & Gunderson, L. H. in Panarchy. Understanding the transformations in human and natural systems (eds Gunderson, L. H. & Holling, C. S.) 25–62 (Island Press, 2002).

    Google Scholar 

  8. Thom, D., Rammer, W. & Seidl, R. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Global Change Biol. 23, 269–282 (2017).

    Article  Google Scholar 

  9. Seidl, R., Schelhaas, M.-J. & Lexer, M. J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biol. 17, 2842–2852 (2011).

    Article  Google Scholar 

  10. Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. Lond. B. 371, 20150178 (2016).

    Article  Google Scholar 

  11. Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).

    Article  CAS  Google Scholar 

  12. Paritsis, J. & Veblen, T. T. Dendroecological analysis of defoliator outbreaks on Nothofagus pumilio and their relation to climate variability in the Patagonian Andes. Global Change Biol. 17, 239–253 (2011).

    Article  Google Scholar 

  13. Kautz, M., Meddens, A. J. H., Hall, R. J. & Arneth, A. Biotic disturbances in Northern Hemisphere forests — a synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Global Ecol. Biogeogr. 26, 533–552 (2017).

    Article  Google Scholar 

  14. Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).

    Article  CAS  Google Scholar 

  15. Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).

    Article  Google Scholar 

  16. Reyer, C. P. O. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).

    Article  Google Scholar 

  17. Johnstone, J. F. et al. Changing disturbance regimes, climate warming and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).

    Article  Google Scholar 

  18. Seidl, R., Spies, T. A., Peterson, D. L., Stephens, S. L. & Hicke, J. A. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. J. Appl. Ecol. 53, 120–129 (2016).

    Article  Google Scholar 

  19. Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 259, 698–709 (2010).

    Article  Google Scholar 

  20. White, P. S. Pattern, process, and natural disturbance in vegetation. Bot. Rev. 45, 229–299 (1979).

    Article  Google Scholar 

  21. Sousa, W. P. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15, 353–391 (1984).

    Article  Google Scholar 

  22. Dale, V. H. et al. Climate change and forest disturbances. Bioscience 51, 723–734 (2001).

    Article  Google Scholar 

  23. Overpeck, J. T., Rind, D. & Goldberg, R. Climate induced changes in forest disturbance and vegetation. Nature 343, 51–53 (1990).

    Article  Google Scholar 

  24. Williams, A. P. & Abatzoglou, J. T. Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Curr. Clim. Change Rep. 2, 1–14 (2016).

    Article  Google Scholar 

  25. Raffa, K. F. et al. in Climate Change and Insect Pests (eds Björkman, C. & Niemelä, P.) 173–201 (CABI, 2015).

    Book  Google Scholar 

  26. Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol. 60, 133–149 (2011).

    Article  Google Scholar 

  27. Buma, B. Disturbance interactions: characterization, prediction, and the potential for cascading effects. Ecosphere 6, art70 (2015).

    Article  Google Scholar 

  28. Foster, C. N., Sato, C. F., Lindenmayer, D. B. & Barton, P. S. Integrating theory into disturbance interaction experiments to better inform ecosystem management. Global Change Biol. 22, 1325–1335 (2016).

    Article  Google Scholar 

  29. Jactel, H. et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Global Change Biol. 18, 267–276 (2012).

    Article  Google Scholar 

  30. Peters, D. P. C. et al. Cross-system comparisons elucidate disturbance complexities and generalities. Ecosphere 2, art81 (2011).

    Article  Google Scholar 

  31. Berrang-Ford, L., Pearce, T. & Ford, J. D. Systematic review approaches for climate change adaptation research. Reg. Environ. Change 15, 755–769 (2015).

    Article  Google Scholar 

  32. Seidl, R. & Rammer, W. Climate change amplifies the interactions between wind and bark beetle disturbance in forest landscapes. Landscape Ecol. http://dx.doi.org/10.1007/s10980-016-0396-4 (2017).

  33. Temperli, C., Bugmann, H. & Elkin, C. Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol. Monogr. 83, 383–402 (2013).

    Article  Google Scholar 

  34. Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manage. 294, 54–61 (2013).

    Article  Google Scholar 

  35. Jönsson, A. M. et al. Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause. Clim. Change 109, 695–718 (2011).

    Article  Google Scholar 

  36. Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).

    Article  Google Scholar 

  37. Schröter, D. et al. Ecosystem service supply and vulnerability to global change in Europe. Science 310, 1333–1337 (2005).

    Article  CAS  Google Scholar 

  38. Naudts, K. et al. Europe's forest management did not mitigate climate warming. Science 351, 597–601 (2016).

    Article  CAS  Google Scholar 

  39. Running, S. W. Ecosystem disturbance, carbon, and climate. Science 321, 652–653 (2008).

    Article  CAS  Google Scholar 

  40. Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    Article  CAS  Google Scholar 

  41. Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Global Change Biol. 20, 1979–1991 (2014).

    Article  Google Scholar 

  42. Bentz, B. J. et al. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60, 602–613 (2010).

    Article  Google Scholar 

  43. Liu, Z. & Wimberly, M. C. Direct and indirect effects of climate change on projected future fire regimes in the western United States. Sci. Total Environ. 542, 65–75 (2016).

    Article  CAS  Google Scholar 

  44. R Development Core Team R. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  45. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    Article  CAS  Google Scholar 

  46. Nakazawa, M. fmsb: Functions for Medical Statistics Book with some Demographic Data R package v.0.5.1 (2014); http://CRAN.R-project.org/package=fmsb.

  47. Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157–163 (2010).

    Article  CAS  Google Scholar 

  48. Bender, M. A. et al. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327, 454–458 (2010).

    Article  CAS  Google Scholar 

  49. Meddens, A. J. H., Hicke, J. A. & Ferguson, C. A. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol. Appl. 22, 1876–1891 (2012).

    Article  Google Scholar 

  50. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  51. Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    Article  CAS  Google Scholar 

  52. Müller, M. M. et al. Predicting the activity of Heterobasidion parviporum on Norway spruce in warming climate from its respiration rate at different temperatures. For. Pathol. 44, 325–336 (2014).

    Article  Google Scholar 

  53. Cruickshank, M. G., Jaquish, B. & Nemec, A. F. L. Resistance of half-sib interior Douglas-fir families to Armillaria ostoyae in British Columbia following artificial inoculation. Can. J. For. Res. 40, 155–166 (2010).

    Article  Google Scholar 

  54. Panferov, O., Doering, C., Rauch, E., Sogachev, A. & Ahrends, B. Feedbacks of windthrow for Norway spruce and Scots pine stands under changing climate. Environ. Res. Lett. 4, 045019 (2009).

    Article  Google Scholar 

  55. Cowden, M. M., Hart, J. L., Schweitzer, C. J. & Dey, D. C. Effects of intermediate-scale wind disturbance on composition, structure, and succession in Quercus stands: implications for natural disturbance-based silviculture. For. Ecol. Manage. 330, 240–251 (2014).

    Article  Google Scholar 

  56. Seidl, R., Donato, D. C., Raffa, K. F. & Turner, M. G. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks. Proc. Natl Acad. Sci. USA 113, 13075–13080 (2016).

    Article  CAS  Google Scholar 

  57. Stadelmann, G., Bugmann, H., Wermelinger, B. & Bigler, C. Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. For. Ecol. Manage. 318, 167–174 (2014).

    Article  Google Scholar 

  58. Paine, R. T., Tegner, M. J. & Johnson, E. A. Compounded perturbations yield ecological surprises. Ecosystems 1, 535–545 (1998).

    Article  Google Scholar 

  59. Becknell, J. M. et al. Assessing interactions among changing climate, management, and disturbance in forests: a macrosystems approach. Bioscience 65, 263–274 (2015).

    Article  Google Scholar 

  60. Temperli, C., Veblen, T. T., Hart, S. J., Kulakowski, D. & Tepley, A. J. Interactions among spruce beetle disturbance, climate change and forest dynamics captured by a forest landscape model. Ecosphere 6, art231 (2015).

    Article  Google Scholar 

  61. Seidl, R. et al. Modelling natural disturbances in forest ecosystems: a review. Ecol. Modell. 222, 903–924 (2011).

    Article  Google Scholar 

  62. Keane, R. E. et al. Representing climate, disturbance, and vegetation interactions in landscape models. Ecol. Model. 309–310, 33–47 (2015).

    Article  Google Scholar 

  63. Valenta, V., Moser, D., Kuttner, M., Peterseil, J. & Essl, F. A high-resolution map of emerald ash borer invasion risk for southern central Europe. Forests 6, 3075–3086 (2015).

    Article  Google Scholar 

  64. Gandhi, K. J. K. & Herms, D. A. Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol. Invasions 12, 389–405 (2010).

    Article  Google Scholar 

  65. Seidl, R. The shape of ecosystem management to come: anticipating risks and fostering resilience. Bioscience 64, 1159–1169 (2014).

    Article  Google Scholar 

  66. Billmire, M., French, N. H. F., Loboda, T., Owen, R. C. & Tyner, M. Santa Ana winds and predictors of wildfire progression in southern California. Int. J. Wildland Fire 23, 1119–1129 (2014).

    Article  Google Scholar 

  67. Pausas, J. G. & Ribeiro, E. The global fire-productivity relationship. Global Ecol. Biogeogr. 22, 728–736 (2013).

    Article  Google Scholar 

  68. Bowman, D. M., Murphy, B. P., Williamson, G. J. & Cochrane, M. A. Pyrogeographic models, feedbacks and the future of global fire regimes. Global Ecol. 32, 821–824 (2014).

    Article  Google Scholar 

  69. Ryan, K. C. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fenn. 36, 13–39 (2002).

    Article  Google Scholar 

  70. Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dyn. 43, 2607–2627 (2014).

    Article  Google Scholar 

  71. Suarez, M. L. & Kitzberger, T. Recruitment patterns following a severe drought: long-term compositional shifts in Patagonian forests. Can. J. For. Res. 38, 3002–3010 (2008).

    Article  Google Scholar 

  72. Harvey, B. J., Donato, D. C. & Turner . High and dry: postfire drought and large stand-replacing burn patches reduce postfire tree regeneration in subalpine forests. Global Ecol. Biogeogr. 25, 655–669 (2016).

    Article  Google Scholar 

  73. Donat, M. G., Leckebusch, G. C., Wild, S. & Ulbrich, U. Future changes in European winter storm losses and extreme wind speeds inferred from GCM and RCM multi-model simulations. Nat. Hazards Earth Syst. Sci. 11, 1351–1370 (2011).

    Article  Google Scholar 

  74. Peltola, H. et al. Impacts of climate change on timber production and regional risks of wind-induced damage to forests in Finland. For. Ecol. Manage. 260, 833–845 (2010).

    Article  Google Scholar 

  75. Usbeck, T. et al. Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric. For. Meteorol. 150, 47–55 (2010).

    Article  Google Scholar 

  76. Moore, J. R. & Watt, M. S. Modelling the influence of predicted future climate change on the risk of wind damage within New Zealand's planted forests. Global Change Biol. Biol. 21, 3021–3035 (2015).

    Article  Google Scholar 

  77. Whitney, R. D., Fleming, R. L., Zhou, K. & Mossa, D. S. Relationship of root rot to black spruce windfall and mortality following strip clear-cutting. Can. J. For. Res. 32, 283–294 (2002).

    Article  Google Scholar 

  78. Teich, M., Marty, C., Gollut, C., Grêt-Regamey, A. & Bebi, P. Snow and weather conditions associated with avalanche releases in forests: rare situations with decreasing trends during the last 41years. Cold Regions Sci. Technol. 83, 77–88 (2012).

    Article  Google Scholar 

  79. Gregow, H., Peltola, H., Laapas, M., Saku, S. & Venäläinen, A. Combined occurrence of wind, snow loading and soil frost with implications for risks to forestry in Finland under the current and changing climatic conditions. Silva Fenn. 45, 35–54 (2011).

    Article  Google Scholar 

  80. Cheng, C. S., Auld, H., Li, G., Klaassen, J. & Li, Q. Possible impacts of climate change on freezing rain in south-central Canada using downscaled future climate scenarios. Nat. Hazards Earth Syst. Sci. 7, 71–87 (2007).

    Article  Google Scholar 

  81. Kilpeläinen, A. et al. Impacts of climate change on the risk of snow-induced forest damage in Finland. Clim. Change 99, 193–209 (2010).

    Article  CAS  Google Scholar 

  82. Bebi, P., Kulakowski, D. & Rixen, C. Snow avalanche disturbances in forest ecosystems—state of research and implications for management. For. Ecol. Manage. 257, 1883–1892 (2009).

    Article  Google Scholar 

  83. Maroschek, M., Rammer, W. & Lexer, M. J. Using a novel assessment framework to evaluate protective functions and timber production in Austrian mountain forests under climate change. Reg. Environ. Change 15, 1543–1555 (2015).

    Article  Google Scholar 

  84. Lemoine, N. P., Burkepile, D. E. & Parker, J. D. Variable effects of temperature on insect herbivory. PeerJ 2, e376 (2014).

    Article  Google Scholar 

  85. Battisti, A. et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15, 2084–2096 (2005).

    Article  Google Scholar 

  86. Evangelista, P. H., Kumar, S., Stohlgren, T. J. & Young, N. E. Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. For. Ecol. Manage. 262, 307–316 (2011).

    Article  Google Scholar 

  87. Schwartzberg, E. G. et al. Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees. Oecologia 175, 1041–1049 (2014).

    Article  Google Scholar 

  88. Gaylord, M. L. et al. Drought predisposes piñon-juniper woodlands to insect attacks and mortality. New Phytol. 198, 567–578 (2013).

    Article  CAS  Google Scholar 

  89. Aguayo, J., Elegbede, F., Husson, C., Saintonge, F.-X. & Marçais, B. Modeling climate impact on an emerging disease, the Phytophthora alni-induced alder decline. Global Change Biol. 20, 3209–3221 (2014).

    Article  Google Scholar 

  90. Vacher, C., Vile, D., Helion, E., Piou, D. & Desprez-Loustau, M.-L. Distribution of parasitic fungal species richness: influence of climate versus host species diversity. Divers. Distrib. 14, 786–798 (2008).

    Article  Google Scholar 

  91. Karnosky, D. F. et al. Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae). Global Change Biol. 8, 329–338 (2002).

    Article  Google Scholar 

  92. Garnas, J. R., Houston, D. R., Ayres, M. P. & Evans, C. Disease ontogeny overshadows effects of climate and species interactions on population dynamics in a nonnative forest disease complex. Ecography 35, 412–421 (2012).

    Article  Google Scholar 

  93. Tsui, C. K. M. et al. Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle. Mol. Ecol. 21, 71–86 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work is the result of a working group within the European Union (EU) COST Action PROFOUND (FP1304) and the IUFRO Task Force on Climate Change and Forest Health. R.S. acknowledges funding from a START grant of the Austrian Science Fund FWF (Y 895-B25). M.K. acknowledges funding from the EU FP7 project LUC4C, grant 603542. M.Peltoniemi was funded by EU Life+ (LIFE12 ENV/FI/000409). C.P.O.R. acknowledges funding from the German Federal Ministry of Education and Research (BMBF, grant no. 01LS1201A1). D.M.-B. was funded by a Marie-Curie IEF grant (EU grant 329935). J.W. was funded by the long-term research and development project RVO 67985939 (The Czech Academy of Sciences). M.S., V.T. and J.W. acknowledge support from a project of the Ministry of Education, Youth and Sports no. LD15158. M.Petr acknowledges funding support from Forestry Commission (UK) funded research on climate change impacts. J.H. acknowledges funding from the Foundation for Research of Natural Resources in Finland, grant no. 2015090. M.S. and V.T. acknowledge funding from the project GAČR 15-14840S “EXTEMIT - K”, no. CZ.02.1.01/0.0/0.0/15_003/0000433 financed by OP RDE.

Author information

Authors and Affiliations

Authors

Contributions

R.S. and C.P.O.R. initiated the research. R.S. and D.T. designed the study, with feedback from all authors during workshops in Vienna, Austria (April 2015) and Novi Sad, Serbia (November 2015). G.V., D.A., P.M., C.P.O.R. and R.S. reviewed the fire literature. D.M.-B., M.Petr and V.T. reviewed the drought literature. J.W., M.J.L., M.F. and T.N. reviewed the wind literature. D.T. and T.N. reviewed the snow and ice literature. M.K., D.T., M.J.L., M.S. and J.W. reviewed the literature on insects. M.Peltoniemi, J.H. and M.Petr reviewed the literature on pathogens. R.S. conducted the analyses. All authors contributed to writing and revising the manuscript.

Corresponding author

Correspondence to Rupert Seidl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 888 kb)

Supplementary Information

Supplementary Information (ZIP 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidl, R., Thom, D., Kautz, M. et al. Forest disturbances under climate change. Nature Clim Change 7, 395–402 (2017). https://doi.org/10.1038/nclimate3303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing