Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin

Abstract

Here we describe development of transgenic elite rice lines expressing a Bt fusion gene derived from cryIA(b) and cryIA(c) under the control of rice actinI promoter. The lines used in the study were indica CMS restorer line of Minghui 63 and its derived hybrid rice Shanyou 63. The level of Bt fusion protein CryIA(b)/CryIA(c) detected in Minghui 63 (T51-1) plants was 20 ng/mg soluble protein. The Bt Shanyou 63 was field-tested in natural and repeated heavy manual infestation of two lepidopteran insects, leaffolder and yellow stem borer. The transgenic hybrid plants showed high protection against both insect pests without reduced yield.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Western blot analysis of stem protein extracts from T2 progenies homozygous for the transgenes analyzed by SDS–PAGE.
Figure 3: Pest reactions and phenotype of the transgenic indica CMS restorer line T51-1 and its hybrid plants expressing the Bt fusion protein derived from CryIA(b) and CryIA(c).

Similar content being viewed by others

References

  1. Yuan, L.P. Hybrid rice in China. In Hybrid rice technology (eds Ahmed, M.I., Viraktamath, B.C. & Vijaya, C.H.M.) 51–54 (Directorate of Rice Research, Rajendranagar, Hyderabad, India; 1996).

    Google Scholar 

  2. Virmani, S. S. Hybrid rice. Adv. Agron. 57, 328–462 (1996).

    Google Scholar 

  3. Duvick, D.N. Heterosis: feeding people and protecting natural resources. In The genetics and exploitation of heterosis in crops (eds James, G. & Shivaji Pandey) 19–29 (ASA-CSSA-SSSA, Madison, WI; 1999)

    Google Scholar 

  4. Mew, T.W., Wand, F.M., Wu, J.T., Lin, K.R. & Khush, G.S. Disease and insect resistance in hybrid rice. In Hybrid rice 189–200 (IRRI, Manila, Philippines; 1988).

    Google Scholar 

  5. Tian, L.R. & Li, X.K. Managing disease and insect pests of hybrid rice in China. In Hybrid technology: new developments and future prospects—selected papers from the International Rice Research Conference (ed. Virmani, S.S.) 115–122 (IRRI, Los Baños, Manila, Philippines; 1994).

    Google Scholar 

  6. Teng, P.S. & Revilla, I.M. Technical issues in using crop-loss for research prioritization. In Rice research in Asia: progress and priorities (eds Evenson, R.E., Herdt. R.W. & Hossain, M.) 261–275 (CAB International in association with International Rice Research Institute, Wallingford, UK; 1996).

    Google Scholar 

  7. Frutos, R., Rang, C. & Royer, M. Managing insect resistance to plants producing Bacillus thuringiensis toxins. Crit. Rev. Biotechnol. 19, 227–276 (1999).

    Article  CAS  Google Scholar 

  8. MacIntosh, S.C. et al. Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. J. Invert. Pathol. 56, 258–266 (1998).

    Article  Google Scholar 

  9. Adang, M.J. et al. Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis ssp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36, 289–300 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Perlak, F.J. et al. Insect-resistance cotton plants. Bio/Technology 8, 939–943 (1990).

    CAS  PubMed  Google Scholar 

  11. Potrykus, I. Gene transfer to cereals: an assessment. Bio/Technology 8, 535–542 (1990).

    CAS  Google Scholar 

  12. Datta, S.K., Datta, K., Soltanifer, N., Donn, G. & Potrykus, I. Genetically engineered fertile indica rice recovered from protoplasts. Bio/Technology 8, 736–740 (1990).

    CAS  Google Scholar 

  13. Christou, P., Ford, T.M. & Kofton, M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9, 957–962 (1991).

    Article  Google Scholar 

  14. Pinto, Y.M., Kok, R.A. & Baulcombe, D.C. Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties contains RYMV transgenes. Bio/Technology 17, 702–707 (1999).

    CAS  Google Scholar 

  15. Li, L., Gu, R., Kochko, A.D., Fauquet, C. & Beachy, R.N. An improved rice transformation system using the biolistic method. Plant Cell Rep. 12, 250–255 (1993).

    Article  PubMed  Google Scholar 

  16. Vasil, I.K. Molecular improvement of cereals. Plant Mol. Biol. 25, 925–937 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Höfte, H. & Whiteley, H.R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242–255 (1989).

    PubMed  PubMed Central  Google Scholar 

  18. Schnepf, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. Sept. 775–806 (1998).

  19. Vaeck, M. et al. Transgenic plants protected from insect attack. Nature 327, 239–247 (1987).

    Article  Google Scholar 

  20. Delannay, X. et al. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Bio/Technology 7, 1265–1269 (1989).

    Google Scholar 

  21. Barton, K.A., Whiteley, H.R. & Yang, N.-S. Bacillus thuringiensis expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85, 1103–1109 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stewart, C.N. Jr. et al. Insect control and dosage effect in transgenic canola containing a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol. 112, 115–120 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Fujimoto, H., Itoh, K., Yamamoto, M., Kyozuka, J. & Shimamoto, K. Insect-resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Bio/Technology 11, 1151–1155 (1993).

    CAS  PubMed  Google Scholar 

  24. Wünn, J. et al. Transgenic indica rice breeding line IR58 expressing a synthetic cryIA(b) gene from Bacillus thuringiensis provides effective insect pest control. Bio/Technology 14, 171–176 (1996).

    PubMed  Google Scholar 

  25. Nayak, P. et al. Transgenic elite indica plants expressing cryIAc δ-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc. Natl. Acad. Sci. USA 94, 2111–2116 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Alam, M.F. et al. Transgenic insect-resistant maintainer line (IR68899B) for improvement of hybrid rice. Plant Cell Rep. 18, 572–575 (1999).

    Article  CAS  Google Scholar 

  27. Cheng, X.Y., Sardana, R., Kaplan, H. & Altosaar, I. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. USA 95, 2767–2772 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. James, C. Global status of commercialized transgenic crops: 1999. ISAAA Briefs No. 12, Preview (ISAAA: Ithaca, NY; 1999).

    Google Scholar 

  29. Perlak, F.J. et al. Genetically improved potatoes, protection from damage by Colorado potato beetle. Plant Mol. Biol. 22, 313–321 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Tu, J. et al. Expression and function of a hybrid Bt toxin gene in transgenic rice conferring resistance to insect pests. Plant Biotechnol. 15, 195–203 (1998).

    Article  CAS  Google Scholar 

  31. Tu, J. et al. Transgenic rice variety ‘IR72’ with Xa21 is resistant to bacterial blight. Theor. Appl. Genet. 97, 31–36 (1998).

    Article  CAS  Google Scholar 

  32. Datta, K. et al. Constitutive and tissue-specific differential expression of the cryIA(b) gene in transgenic rice plants conferring resistance to rice insect pests. Theor. Appl. Genet. 97, 20–30 (1998).

    Article  CAS  Google Scholar 

  33. Lynch, P.T. et al. The phenotypic characterization of R2 generation transgenic rice plants under field and glasshouse conditions. Euphytica 85, 395–401 (1996).

    Article  Google Scholar 

  34. Oard, J.H. et al. Development, field evaluation, & agronomic performance of transgenic herbicide resistance rice. Mol. Breed. 2, 359–368 (1996).

    Article  CAS  Google Scholar 

  35. Koziel, M.G. et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11, 194–200 (1993).

    CAS  Google Scholar 

  36. Attathom, T., Chanpaisang, J. & Chongrattanameteekul, W. Bacillus thuringiensis isolation, identification, and bioassay. In Bacillus thuringiensis biotechnology and environmental benefits (eds Feng, T.Y. et al.) 68–86 (Hua Shiang Yuan Publishing Co., Taipei, Taiwan; 1994)

    Google Scholar 

  37. McElroy, D., Zhang, W., Cao, J. & Wu R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2, 163–171 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support of BMZ/GTZ (Germany), the Rockefeller Foundation (USA), and China National ‘863’ High Technology Program is gratefully acknowledged. We also thank Prof. Yunliu Fan for providing the Bt construct. Thanks go to colleagues Mike Cohen, Lina Torrizo, Norman Oliva, Michelle Viray, and Niranjan Baisakh for their research and technical assistance and to Bill Hardy for editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan Kumar Datta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, J., Zhang, G., Datta, K. et al. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol 18, 1101–1104 (2000). https://doi.org/10.1038/80310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing