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Heme: a versatile signaling molecule controlling the activities of 
diverse regulators ranging from transcription factors to MAP kinases
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Heme (iron protoporphyrin IX) is an essential molecule for numerous living organisms. Not only does it serve as a 
prosthetic group in enzymes, it also acts as a signaling molecule that controls diverse molecular and cellular processes 
ranging from signal transduction to protein complex assembly. Deficient heme synthesis or function impacts the hema-
topoietic, hepatic and nervous systems in humans. Recent studies have revealed a series of heme-regulated transcription 
factors and signal transducers including Hap1, a heme-activated transcription factor that mediates the effects of oxygen 
on gene transcription in the yeast Saccharomyces cerevisiae; Bach1, a transcriptional repressor that is negatively regu-
lated by heme in mammalian cells; IRR, an iron regulatory protein that mediates the iron-dependant regulation of heme 
synthesis in the bacterium Bradyrhizobium japonicum; and heme-regulated inhibitor, an eucaryotic initiation factor 2a 
kinase that coordinates protein synthesis with heme availability in reticulocytes. In this review, we summarize the current 
knowledge about how heme controls the activity of these transcriptional regulators and signal transducers, and discuss 
diseases associated with defective heme synthesis, degradation and function. 

    Cell Research (2006) 16:681-692. doi:10.1038/sj.cr.7310086; published online 8 August 2006

Keywords: heme signaling, oxygen sensing, Hap1, Bach1, HRI, IRR

Correspondence: Li Zhang
Tel/Fax: +1-212-781-1038;
E-mail: lz2115@columbia.edu

Cell Research (2006): 681-692
© 2006 IBCB, SIBS, CAS    All rights reserved 1001-0602/06  $ 30.00 
www.nature.com/cr

npg

Introduction

Heme (iron protoporphyrin IX) is a tetrapyrrole contain-
ing a central iron ion [1]. Many living organisms ranging 
from bacteria to humans synthesize and use heme [1-4]. 
Heme biosynthesis in yeast and humans requires eight 
enzymes [3]. The first of these enzymes is located in the mi-
tochondria as are the last three (Figure 1, Table 1) [1, 3, 4]. 
The remaining four enzymes involved in heme synthesis are 
localized in the cytosol [1, 3, 4]. The control of heme bio-
synthesis is complex and is dependent on multiple factors, 
including cell type and the availability of substrates [5-7]. 
Heme synthesis requires the key precursor 5-aminolevu-
linic acid (ALA) and two substrates, oxygen and ferrous 
iron (Fe2+) (Figure 1, Table 1) [1, 3, 7]. The availability of 

each of these molecules may be limiting and may dictate 
the rate of heme synthesis, under certain circumstances [7]. 
For example, in yeast, heme synthesis is under the control 
of oxygen level [3, 5, 8]. Oxygen is not only required for 
the two steps that use it as a substrate, but its level also 
determines the activity of ferrochelatase, the last enzyme 
involved in heme synthesis (Figure 1) [8]. In mammalian 
erythroid cells, the availability of Fe2+ may be limiting [1, 
9, 10], and ferrochelatase activity likely dictates the rate 
of heme synthesis. In non-erythroid cells, particularly in 
hepatic cells, however, the availability of ALA is limiting 
[1]. Thus, the synthesis of ALA, catalyzed by ALA synthase 
(ALAS, Figure 1), is the rate-limiting and rate-determining 
step in heme synthesis [1, 10]. Endogenously synthesized 
heme, as well as internalized exogenous heme, can serve 
diverse intracellular functions, e.g., as a prosthetic group in 
enzymes and protein complexes or as a signaling molecule 
for diverse regulatory processes (Figure 1) [11-13].

Heme plays critical roles in oxygen sensing and uti-
lization in aerobic organisms and is indispensable for 
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many fundamental biological processes [11-14]. Heme is 
essential for the transport and storage of oxygen, the gen-
eration of cellular energy by respiration, the synthesis and 

degradation of sterols, lipids and neurotransmitters and for 
controlling oxidative damage. Heme serves as a prosthetic 
group in proteins and enzymes that sense, transport or use 

Figure 1  Heme directly regulates numerous cellular and molecular processes. In humans, heme is synthesized by eight enzymes and 
heme synthesis requires the key precursor ALA, oxygen and ferrous iron (Fe2+). Heme carries out diverse functions. Heme regulates 
the Ras-MAPK signaling pathway. Heme also interacts with transcription factors in the nucleus to regulate the expression of vari-
ous genes. In yeast, the transcription factor Hap1, in a multi-chaperone complex containing Hsp90 and Hsp70 and cochaperones, 
regulates the expression of CYC1, CYC2, CYT1, CTT1, YHB1 and ROX1. In mammalian cells, Bach1 regulates the transcription 
of genes that contain MAREs in their regulatory sequences such as those that encode the HOs and b-globins. Heme regulates the 
activity of HRI, which interacts with Hsp90 and Hsc70. Under heme-sufficient conditions, HRI is inactivated and globin synthesis is 
permitted to continue. In the bacterium B. japonicum, heme interacts with IRR, and under heme-sufficient conditions, IRR is rapidly 
degraded, preventing it from inhibiting heme synthesis. Note that in B. japonicum, no compartmentalization of nucleus, cytosol and 
mitochondrion exist. In mammals, the HO enzymes break down heme into biliverdin, CO and Fe2+. Biliverdin is then converted to 
bilirubin by biliverdin reductase. 

Table 1  A list of heme-regulated signal transducers and transcriptional regulators
Name 	 Function 	 Heme effect	 Heme binding	 Interacting partners	 Role of partners 	
Hap1 	 Transcriptional activator	 Postitive 	 HRMs	 Hsp90	 Activation by heme
				    Hsp70, Ydj1, Sro9	 Repression during heme deficiency
HRI	 EIF2 kinase	 Negative 	 HRMs 	 Hsp90, Hsc70 	 Maturation and activation during 
					     heme deficiency 	
Bach1 	 Transcriptional repressor	 Negative	 HRMs	 Maf proteins	 Partner for MARE binding	
IRR	 Translation inhibitor 	 Negative	 HRM	 Ferrochelatase	 Inhibition 
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oxygen. For example, heme is essential for the formation 
of hemoglobin, myoglobin and cytochrome complexes [12, 
15]. Heme is critical for the proper functioning of various 
enzyme systems including catalases, cyclooxygenases and 
nitric oxide synthases [15, 16]. 

Remarkably, heme directly regulates various molecular 
and cellular processes involved in oxygen sensing and 
utilization, including transcription, translation, protein 
translocation and protein assembly [11-14]. Heme directly 
controls many biological processes such as erythropoiesis, 
neurogenesis, cell growth and cell differentiation [11-14, 
17-20]. In mammals, heme is required for the proper func-
tioning and differentiation of many types of cells, including 
erythroid, hepatic and nerve cells [11-14]. As such, heme 
has been shown to control the activities of a variety of signal 
transducers and transcriptional regulators [17-20]. These 
include the iron regulatory protein (IRR) in the bacterium 
Bradyrhizobium japonicum [21], the yeast Saccharomyces 
cerevisiae transcriptional regulator, the heme activator 
protein Hap1 [14], the mammalian transcriptional repres-
sor Bach1 [22], the heme-regulated inhibitor (HRI) kinase 
[23] and components of the Ras-MAPK signaling pathway 
(Figure 1, Table 1) [17]. In this review, we aim to summa-
rize the current knowledge of the molecular mechanisms by 
which heme controls the activities of these diverse signal 
transducers and regulators. We also outline the diseases 
associated with the dysregulation of heme level. 

The yeast transcriptional activator Hap1 acts as a key 
mediator of heme signaling

Yeasts such as S. cerevisiae are facultative aerobes. 
When adequate oxygen is available this type of yeast 
respires; however, under oxygen-deficient conditions, it 
supports its energy needs by fermentation. S. cerevisiae 
cells sense and respond to changing oxygen levels by dif-
ferentially expressing numerous genes [6, 24-27]. In S. 
cerevisiae, heme directly mediates the effects of oxygen 
on gene transcription through the heme activator protein 
Hap1 [6, 14, 25, 27]. Yeast cells grown under aerobic con-
ditions synthesize heme in their mitochondria, and heme 
mediates oxygen regulation of many genes. Hap1 is a key 
regulator of heme signaling in yeast, and activation of Hap1 
is stringently controlled by heme [14]. Hap1 activation 
increases with heme concentration, and maximum Hap1 
activation is reached at micromolar heme concentrations. 
Heme activates Hap1 in the nucleus, allowing Hap1 to 
bind the upstream activation sequences  and promote the 
transcription of many genes encoding functions important 
for respiration and for the control of oxidative damage [14, 
25, 27]. Hap1-activated genes include those for cytochrome 
c-iso-1 (CYC1), cytochrome c-iso-2 (CYC2), cytochrome 
c1 (CYT1), catalase (CTT1) and flavohemoglobin (YHB1) 

(Figure 1) [6, 14, 24, 25, 27]. The transcription of ROX1, a 
repressor of genes required for anaerobic growth, is regu-
lated by Hap1 as well (Figure 1) [6, 14, 25, 27]. 

Studies have revealed that Hap1 contains several impor-
tant functional elements and that heme regulation of Hap1 
involves the regulation of DNA-binding and transcription-
activating activities of Hap1 (Figure 2A) [14, 28-31]. The 
C6 zinc cluster motif, which is located near the N-terminus, 
and the dimerization domain mediate Hap1 DNA binding, 
while the seven heme-responsive motifs (HRMs) and three 
repression modules (RPMs) are responsible for coupling 
heme regulation with Hap1 activation (Figure 2, Table 1) 
[14, 29, 31-34]. Hap1 transcriptional activation is conferred 
via the acidic activation domain near the C-terminus of 
Hap1 [35]. Hap1 activity is strictly controlled by a two-
tiered regulatory mechanism [14, 31, 34, 36, 37]. The 
repression of Hap1 in the absence of heme is mediated by 
the three RPMs, which promote the formation of a higher 
order Hap1 complex, containing the molecular chaperones 
and co-chaperones Hsp90, Hsp70, Sro9 and Ydj1 [28, 31, 
36]. This Hap1 multichaperone complex acts to control 
transcription in response to heme [14, 29, 30, 34]. Hap1 
has seven HRMs that can bind heme and mediate heme 
activation of Hap1 [29]. HRMs are short sequence motifs 
that contain Cys residues [14, 21, 29, 38, 39] (Figure 2B). 
Not all of the seven HRMs are equally important for the ac-
tivation of Hap1 [40, 41]. Experimental evidence suggests 
that HRM7 is critical for heme activation of Hap1, while 
HRMs 1-6 appear to play auxiliary roles and are dispens-
able for Hap1 activation by heme [40, 41]. Heme promotes 
Hap1 transcriptional activity by enhancing the association 
of Hsp90 to the Hap1-Hsp70-Ydj1-Sro9 multichaperone 
complex, causing conformational changes in the complex 
[14, 29, 31, 34, 36, 37, 40, 41]. Subsequently, the complex 
transforms into a conformationally different complex that 
has a high affinity for DNA binding and is transcriptionally 
active [14, 29, 31, 34, 36, 37, 40, 41].

IRR coordinates heme synthesis under iron limitation in 
B. japonicum

Iron is an essential element for most living organisms 
and is required for numerous cellular processes, including 
electron transfer, oxygen metabolism and signal transduc-
tion. Iron is directly involved in the heme biosynthetic 
pathway; the last step of heme synthesis requires the inser-
tion of ferrous iron into protoporphyrin IX by the enzyme 
ferrochelatase (Figure 1). In aerobic environments, iron is 
present in the insoluble ferric form, and its availability may 
be limiting [21, 42, 43]. 

In the bacterium B. japonicum, IRR meditates the iron-
dependent regulation of heme synthesis [21, 42, 43]. In B. 
japonicum, iron is often the limiting nutrient in the heme 
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synthesis pathway, and under iron-deficient conditions, all 
steps of the heme synthesis pathway cannot be completed 
[43]. As a result, heme precursors such as protoporphyrin 
and other porphyrins accumulate in the cell, and when 
aggregated, these porphyrins are toxic [44]. In order to 
prevent the accumulation of toxic porphyrins in the cell 
during iron deficiency, iron regulatory proteins link iron 
availability to heme synthesis [21, 42, 45]. IRR modulates 
heme synthesis by controlling the expression level of hemB, 

the gene that encodes the heme biosynthetic enzyme ALA 
dehydratase [44, 46-48]. Loss of function mutations in the 
IRR gene are sufficient to uncouple heme synthesis from 
iron availability, resulting in porphyrin accumulation and 
cytotoxicity [21, 42, 45]. Notably, recent findings indi-
cate that in B. japonicum, IRR allows the sensing of iron 
level via heme synthesis to regulate iron homeostasis and 
metabolism [49]. In addition, it was also shown that IRR 
plays a role in mediating the control of heme synthesis in 
response to oxidative stress [50]. 

IRR is a conditionally stable protein, whose stability 
depends on iron status (Figure 2) [21, 42]. In iron-defi-
cient conditions, IRR accumulates, while in iron-replete 
conditions, IRR is rapidly degraded [21, 42]. IRR responds 
to iron availability via the status of protoporphyrin and 
heme at the site of heme synthesis [21, 43]. During iron 
sufficiency, IRR is inactivated by ferrochelatase and then 
subjected to heme-dependent degradation [45]. When iron 
is limited, protoporphyrin relieves the inhibition of IRR by 
ferrochelatase by promoting protein dissociation [42, 43]. 
The addition of exogenous heme is sufficient to produce 
IRR destabilization, while in heme synthesis mutant strains, 
IRR persists even under iron-sufficient conditions [21, 42, 
45]. IRR proteins harboring mutations in the heme-binding 
region are stable even in the presence of iron, suggesting 
that the destabilization of IRR by iron involves the bind-
ing of heme to an HRM within the IRR protein (Figure 2) 
[42]. Ferric and ferrous heme bind different regions within 
IRR, and both are needed to induce IRR degradation [42]. 
Experimental evidence indicates that both ferric and ferrous 
iron participate in a single process leading to the degrada-
tion of IRR [42].

The HRI kinase inhibits eucaryotic initiation factor 2a 
during heme deficiency in mammalian reticulocytes

During mammalian erythropoiesis, late-stage eryth-
roblasts enucleate and become reticulocytes [51]. These 
immature erythroid cells, reticulocytes, mature over the 
course of a few days and during this process they complete 
the synthesis of hemoglobin, and other erythroid-specific 
proteins [51, 52]. Given their enhanced need to synthesize 
hemoglobin, reticulocytes have an increased requirement 
for iron so that they are able to support their very high 
capacity to synthesize heme [52, 53].

Heme is required for the synthesis of β- and α-globin 
chains into hemoglobin by reticulocytes, and the aggrega-
tion of unassembled globin chains is toxic to the cell [54]. 
HRI coordinates protein synthesis in reticulocytes to heme 
availability [23, 55-57]. It is a member of a family of protein 
kinases that regulate the initiation of protein synthesis in 
eucaryotic cells. Under heme-deficient conditions, HRI 
inhibits protein synthesis at the level of translational initia-

Figure 2  (A) Domain structures of the heme-regulated proteins 
Hap1, HRI, IRR and Bach1. Hap1 contains a DNA-binding domain 
(DNA) that mediates DNA-binding and an activation domain (ACT) 
that confers transcriptional activation. The three RPMs and seven 
HRMs of Hap1 couple heme regulation with Hap1 activation. Bach1 
contains six HRMs responsible for heme binding and two functional 
domains, BTB/POZ (BTB) and bZip, which regulate protein interac-
tion and DNA binding, respectively. HRI contains the NTD, a K-I, a 
KI with one HRM, a K-II, and the CTD with one HRM. IRR contains 
a single HRM. (B) Sequences of HRMs from Hap1, HRI, IRR and 
Bach1. The indicated HRMs are from the S. cerevisiae heme activator 
protein Hap1, human eucaryotic translation initiation factor 2-alpha 
kinase 1 (HRI), the B. japonicum iron response regulator (IRR) and 
the human basic leucine zipper transcription factor (Bach1). The 
cysteine-proline dipeptide in each of the HRMs is bold.
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tion, thereby preventing the accumulation of unassembled 
globin chains and their toxic effects [52, 54]. During heme 
deficiency, HRI is activated, permitting it to phosphorylate 
serine 51 of the α-subunit of the eIF2 [52, 54, 58]. Phos-
phorylation of eIF2a prevents it from being recycled for 
protein translation and results in the inhibition of protein 
synthesis [52, 54]. 

HRI is a multidomain protein composed of five structural 
domains (Figure 2), namely, the N-terminal domain (NTD), 
the kinase I domain (K-I), the kinase insertion domain (KI), 
the kinase II domain (K-II) and the C-terminal domain 
(CTD) [56, 59-61]. The catalytic domain of HRI is divided 
in two halves, one on each side of the KI domain, and ac-
tivation of HRI is thought to involve bringing residues on 
each of these two halves of the catalytic domain into close 
proximity [23, 56, 59-61]. Two HRMs are present in HRI, 
one in the KI domain and the other in the CTD [23, 56, 
59-61]. The heme binding site in the KI domain is thought 
to reversibly bind heme and to play a role in the coordina-
tion of HRI activity with changes in heme concentration 
[61]. The second heme binding site, contained in the NTD 
without an HRM, consists of a stably bound heme that 
co-purifies with HRI [59, 62]. This heme-binding domain 
appears to be the active center for nitric acid- and carbon 
monoxide-induced activity of HRI; NO enhances HRI 
activation, while CO suppresses HRI activation [63]. The 
isolated NTD stably binds heme but does not display any 
kinase activity. The CTD domain does not bind to heme, 
although it contains an HRM motif [61]. 

The molecular chaperones Hsp90 and Hsc70 are criti-
cal for HRI maturation and heme regulation (Table 1) [54, 
64-68]. Nascent HRI is not active during heme deficiency 
or heme sufficiency in reticulocytes [69]. Immature HRI 
interacts with Hsp90 and Hsc70, and after a maturation 
phase, a population of heme deficiency-activatable mature 
HRI appears [54, 70]. However, this mature competent HRI 
continues to interact with the chaperones [54, 69, 71]. The 
interaction between HRI and the chaperones is thought to 
be important for maintaining HRI in a mature state that is 
capable of activation under heme deficiency [67, 69]. Upon 
activation in heme-deficient conditions, HRI gains auto-
kinase activity and eIF2α kinase activity [54, 69, 71]. The 
transition from inactive to active HRI requires the actions 
of the Hsp90 and Hsc70 chaperone machinery [71]. Once 
the transformation is complete, HRI no longer associates 
with the chaperones [69].

The transcriptional repression activity of Bach1 is nega-
tively regulated by heme in mammals

Bach1, a basic leucine zipper protein, is a heme-regu-
lated transcriptional repressor found in mammals [72, 73]. 
The activity of Bach1 is modulated by heme [72, 73]. Bach1 

forms heterodimers with proteins in the Maf-related onco-
protein family (MafK, MafF, MafG) (Figure 1, Table 1). 
The Bach1-Maf heterodimers bind to the Maf recognition 
element (MARE) in the regulatory region of its target genes 
[72, 74-77]. MAREs are found in the regulatory regions 
of genes involved in heme metabolism, such as oxidative 
stress response genes, globin genes, heme oxygenase-1 
and erythroid-specific ALAS [72, 78-81]. It has been sug-
gested that the transcription of genes possessing MAREs is 
regulated via a balance between transcriptional activation 
and repression [22, 80]. Under normal conditions, when 
expressed with small Maf proteins, Bach1 is located in the 
nucleus [77]. However, under conditions with increased 
heme levels, Bach1 is exported from the nucleus and is 
localized in the cytoplasm [77]. 

Bach1 has two functional domains: BTB/POZ and bZip, 
which regulate protein interaction and DNA binding, re-
spectively (Figure 2) [22, 73]. Studies have revealed that 
Bach1 possesses six HRM (CP) motifs (see Figure 2A and 
2B) that are essential for heme-mediated regulation [22, 
82]. Two HRM (CP) motifs are downstream of the BTB/
POZ domain, three are upstream of the bZip domain and 
one is downstream of the bZip domain [22, 77]. Heme bind-
ing by Bach1 is dependent on the HRM (CP) motifs, and 
there is evidence suggesting that heme binding to the HRM 
(CP) motifs of Bach1 is cooperative [22]. No single HRM 
(CP) motif is indispensable for heme regulation of Bach1, 
indicating that there is functional redundancy among the 
HRM (CP) motifs [22]. The three heme binding motifs of 
Bach1 function as heme-activated nuclear export signals, 
suggesting that Bach1-mediated gene expression is at least 
partially mediated by the regulation of Bach1 subcellular 
localization [77, 83, 84].

Heme negatively regulates the transcriptional repressor 
function of Bach1 by inhibiting the DNA-binding ability 
of the Bach1-MafK heterodimer [22, 80]. Concentrations 
of heme as low as 0.03 µM result in a slight but reproduc-
ible inhibition of Bach1-MafK DNA binding, while 1 µM 
heme concentrations cause almost complete inhibition 
of Bach1-MafK DNA-binding activity [22]. Nrf2 is dis-
tantly related to Bach1 and binds similar DNA sequences 
as Bach1 when in a heterodimer with Maf proteins [73, 
80]. However, Nrf2 activates transcription in genes with 
MAREs in their regulatory regions, and the DNA-binding 
ability of Nrf2 is not inhibited by heme [22]. The switch 
of the Maf dimerization partner from Bach1 to Nrf2 is a 
key event in the transition from gene repression to gene 
activation [73, 77]. 

Heme regulates the Ras-MAPK signaling pathway
Heme is critical for neuronal differentiation in rat pheo-

chromocytoma (PC12) cells, a model system for studying 
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neuronal differentiation [17, 85]. Heme deficiency induced 
by succinyl acetone, a potent inhibitor of ALA dehydratase, 
the second enzyme involved in heme synthesis, greatly re-
duces the number and length of NGF-induced neurites [17, 
86]. The effect of succinyl acetone on neurite outgrowth 
is reversed by the addition of heme, suggesting that heme 
deficiency is responsible for the effect of succinyl acetone 
on neurite outgrowth [17]. At the molecular level, heme 
deficiency inactivates the Ras-ERK1/2 signaling pathway 
induced by NGF [17]. Moreover, heme deficiency selec-
tively causes NGF-differentiated PC12 cells to undergo 
caspase activation and apoptosis [20]. Differentiated PC12 
cells are more vulnerable to heme deficiency than undif-
ferentiated PC12 cells, suggesting a role for NGF signaling 
in producing the observed effects [20]. 

Heme shortage interferes with neuronal gene expression 
[17, 20]. Under normal heme concentrations, NGF induces 
the expression of neuron-specific genes in PC12 cells, many 
of which encode signal transducers and important structural 
functions [87, 88]. Heme deficiency alters the expression 
of important signaling components of the NGF signaling 
pathway such as Ras, MEKK1, p38 MAPK, p53 and c-myc 
[17, 20]. Upon inhibition of heme synthesis, the induction 
of these genes is abolished, which may explain why heme 
deficiency interferes with neuronal differentiation [17, 
20]. Genes with important structural functions in neurons 
whose expression is modulated by heme include survival 
motor neuron protein, synaptic vesicle protein (SVOP), 
nicotinic acetylcholine receptor, dopa decarboxylase, 
neural cell adhesion molecule, neuropeptide Y precursor 
and neurofilament protein [17, 20]. In addition, inhibition 
of heme synthesis suppresses the activation of the Ras-
ERK1/2 signaling pathway but activates JNK in the late 
stages of NGF induction [17, 20]. CREB, a downstream 
target of the Ras-ERK1/2 signaling pathway that controls 
the expression of many neuronal genes [89], is inactivated 
by heme deficiency as well [17, 20]. 

The effects of heme are cell-type specific. Studies in-
dicate that while heme promotes differentiation in PC12 
neurons and K562 erythroid cells, it promotes cell growth 
and cell cycle progression in HeLa cells [17, 18, 20, 90, 91]. 
In K562 cells, heme initiates changes in the expression of 
various genes that control numerous processes, such as cell 
cycle, Ras signaling, chromatin structure, protein folding 
and splicing [19]. Heme may promote erythroid differentia-
tion by promoting the expression of p18 and p21, negative 
regulators of the cell cycle and suppressing the expression 
of cyclin D1 [19]. In HeLa cells, the induction of negative 
regulators of the cell cycle, such as p53 and p21, and the 
inhibition of positive regulators, such as Cdc2 and Cdk4, 
caused by heme deficiency ultimately leads to cell cycle 
arrest and apoptosis [90]. 

Dysregulation of heme levels can cause serious diseases
Given that heme is essential to numerous fundamental 

biological processes, it is not surprising that dysregulation 
of heme levels results in various diseases [4]. In humans 
defective heme synthesis has been implicated in diseases 
including anemia and porphyrias [1, 4, 92-100]. Partially 
defective ALAS results in sideroblastic anemia, while 
defects in any of the other enzymes involved in heme 
biosynthesis results in porphyria [1, 92-100]. Porphyrias 
may be inherited or caused by the intake of chemicals 
that inhibit the enzymes involved in heme synthesis [92-
95]. For example, lead inhibits ALA dehydratase and 
ferrochelatase activity [101]. The effect of lead on heme 
synthesis may be related to the encephalopathy caused by 
lead poisoning [101]. Porphyrias are associated with skin 
lesions, neuropathy and hepatic dysfunction [1, 92-100]. 
Neurological manifestations of porphyrias include those 
associated with disturbances of the CNS, such as anxiety, 
confusion and depression, and of the autonomic nervous 
system, such as abdominal pain, vomiting, hypertension 
and tachycardia [1, 92-100]. 

Heme deficiency may be a factor in the mitochondrial 
and neuronal decay observed in aging and Alzheimer’s 
disease [102-107]. Heme shortage prevents the assembly of 
complex IV, the terminal complex of the electron transport 
chain [108]. The four complexes of the electron transport 
chain are essential for ATP production by oxidative phos-
phorylation and are the main source of free radicals that con-
tribute to mitochondrial damage associated with aging and 
various diseases [109-113]. In heme-deficient conditions, the 
activity and protein content of complex IV decreases by more 
than 95% [7]. Complex II and cytochrome c are affected by 
heme deficiency to a lesser extent, while complexes I and 
III remain intact during heme shortage [7]. The activity of 
complex IV undergoes a 30% to 50% reduction with ag-
ing and in Alzheimer’s patients; however, the reason for 
this decline remains unclear [102, 114, 115]. It is possible 
that the amount of heme-a decreases with age, and since 
complex IV relies on heme-a, its activity declines as well 
[102, 108]. Studies of heme-a in Alzheimer’s patients found 
that heme-a decreased 22%, while heme-b and heme-c 
remained unchanged compared to healthy controls of the 
same age [7]. 

The amount of heme-a present in the cell determines the 
rate of complex IV assembly [102, 108, 116]. Three main 
conditions inhibit the production of heme-a: hypoxia, low 
heme production and pantothenate deficiency [117, 118]. 
The vulnerability of complex IV to heme deficiency may be 
due to its use of heme-a [7, 102, 108]. Complex I contains 
only Fe-S clusters, complex II and catalase contain only 
heme-b and complex III contains both heme-b and heme-c 
[7, 102, 108]. One explanation for the loss of complex IV 
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in heme deficiency is that maturation of proto-heme to 
heme-a is more complex than the maturation of proto-heme 
to heme-b or c [7]. The maturation of heme-a is rate limit-
ing, and during heme shortage, less heme-a is formed due 
to the heme-a pathway’s low affinity for heme relative to 
the heme-b and heme-c pathways [7]. Another possibility 
is that oxidative stress associated with heme deficiency 
damages the heme-a maturation pathway [7]. 

Just as heme deficiency has detrimental consequences, 
excess free heme is associated with separate problems. 
Excess free heme can bring about severe cell and tissue 
damage [10, 15, 119, 120]. Hemin, the oxidized form of 
heme, causes hemolysis by inducing potassium loss and 
swelling of red cell membranes, destroying the ability of 
erythrocytes to maintain cation gradients [15]. There are 
two phases of the heme-induced hemolytic process: mas-
sive K+ loss followed by depletion of glutathione and ATP, 
and massive hemoglobin loss [121]. In addition, hemin 
changes the conformation of cytoskeletal proteins and 
causes altered membrane stability and red cell lesions [15, 
122]. Hemolysis during sickle cell anemia and b-thalas-
semia is most likely a result of a greater interaction of free 
heme with red cell membranes and subsequent oxidative 
membrane damage [15]. In support of this idea is the finding 
that the amount of hemin incorporated into the cell mem-
branes of cells of sickle cell anemia and b-thalassemia is 
higher than the amount of hemin incorporated into normal 
cell membranes [15]. Heme is also thought to play a role 
in the removal of aged red cells from the circulation via 
hemolysis. The level of hemin in the membrane is age-de-
pendant such that old cells accumulate more hemin than 
do young red cells [15]. 

Another mechanism of heme toxicity is via heme-in-
duced oxidative stress [123]. Heme catalyzes the formation 
of reactive oxygen species (ROS), and heme released from 
intracellular hemoproteins is an important source of redox 
active iron [15]. ROS created in the presence of heme are 
capable of damaging proteins, lipids and DNA [119, 124-
127]. Heme is a lipophilic molecule that can easily cross 
cell membranes and gain entry to cells [15]. In vitro and 
in vivo, cells accumulate exogenous heme. This results in 
the synergistic amplification of damage and cytotoxicity 
of oxidants present in the cell [128, 129].

Heme’s pro-oxidant activities toward DNA, carbohy-
drates, proteins and lipids have been demonstrated in vitro, 
but the pro-oxidant roles of heme in vivo remain unclear. 
Hemin aggregates in cell membranes where it promotes 
oxidation, leading to membrane damage and cell death [10, 
130, 131]. Heme oxidizes membrane-bound, while hemin 
catalyzes the degradation of proteins to small peptide frag-
ments [132, 133]. In the presence of oxygen and b-MSH he-
min creates nicks in isolated plasmid DNA [10, 134]. Heme 

propagates the peroxidation of groups in membrane, serum 
or cytosolic proteins. Protein oxidation by heme depends 
on the nature of protein binding and heme’s affinity for the 
particular protein, and may result in non-reducible covalent 
cross-linking or protein fragmentation [120, 131]. 

Heme-mediated inflammation has been implicated in the 
pathogenesis of several diseases, including arteriosclerosis, 
renal failure and heart transplant failure [15, 119, 123, 
135]. Release of heme can bring about local inflamma-
tory reactions that may result in renal failure [136]. In a 
model of kidney failure, heme proteins get trapped in the 
glomeruli and subsequently accumulate in the kidney [136, 
137]. Elevated heme levels are capable of acting in the 
pro-inflammatory manner. Exposure of endothelial cells 
to heme promotes the expression of intercellular adhesion 
molecule 1, vascular adhesion molecule 1 and endothelial 
leukocyte adhesion molecules (E-selectin) [138, 139]. Once 
activated, these endothelial adhesion molecules recruit leu-
kocytes [15]. Heme is thought to stimulate the expression 
of pro-inflammatory molecules via heme-mediated ROS 
production. These ROS activate redox-reactive transcrip-
tion factors and signaling pathways such as NF-kB, AP-1 
and SP-1 [138-140]. 

The oxidant potential of heme is neutralized by multiple 
heme-binding proteins 

Heme-binding proteins counteract the oxidizing effects 
of heme by forming complexes with heme or by scaveng-
ing free redox-active iron released after heme catabolism 
[15]. Hemopexin, albumin, α-1-microglobulin, and reduced 
glutathione are the most well-known heme-binding mol-
ecules [15, 141]. Hemopexin is an intravascular protein 
that binds free heme with a very high affinity and protects 
against heme toxicity in vitro [141-143]. This protein pro-
tects cells without hemopexin receptors by binding heme 
and preventing the destructive effects of non-specific heme 
uptake. Hemopexin-heme complexes bind hemopexin 
receptors, which are taken up by the cell via an endocy-
totic mechanism [142, 144]. Heme is then released from 
hemopexin into the cell and degraded. Hemopexin stays 
inside the endocytotic vesicle and is released outside the 
cell [145, 146]. Albumin is another heme-binding protein 
present in the blood that can bind free heme from hem-
orrhage or dying cells. Albumin has a lower affinity for 
binding heme than does hemopexin [147]. Interestingly, 
a 23 kDa heme-binding protein, termed HBP23, is shown 
to be expressed in the cytosol of the liver, kidney, spleen, 
small intestine and heart cells [148, 149]. Another 21 kDa 
heme-binding protein, termed p22 HBP, is shown to be 
induced by heme in mouse erythroleukemia cells [148, 
150]. These proteins may play important roles in heme 
metabolism in diverse cells. 
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Ultimately, heme is degraded. In mammals, two heme 
oxygenase (HO) enzymes, HO-1 and HO-2, have been 
identified, confirmed and characterized [123, 151, 152]. 
A third gene, HO-3, appears to be a pseudogene derived 
from HO-2 [153]. HOs are the rate-limiting enzymes in 
heme degradation. HO degrades heme to generate ferrous 
iron, CO and biliverdin [154-156] (Figure 1). Biliverdin is 
subsequently converted to bilirubin by biliverdin reductase 
[154]. The HO system is no longer considered only in the 
context of heme catabolism since heme metabolites are 
biologically active molecules. Traditionally, bilirubin was 
viewed as a neurotoxin and of clinical significance only 
in relation to neonatal jaundice. Now, bilirubin is seen as 
a potent antioxidant that is able to protect neurons against 
free radical damage [10, 157-161]. 

HO-1 expression is inducible, while HO-2 expression 
is constitutive [162]. The expression of each gene dif-
fers by cell type, tissue distribution and regulation [163]. 
The regulation of HO-1 expression in mammalian cells 
is very complex. HO-1 is induced by many factors, such 
as hypoxia, hydrogen peroxide, heavy metals, heme and 
depletion of cellular glutathione [162, 164]. The regula-
tion of HO-1 expression by these factors is not only cell 
type-dependent but also species-dependent [162, 164]. 
For example, hypoxia induces HO-1 expression in rodent, 
bovine and monkey cells, but represses HO-1 expression 
in several human cell lines, including lung cancer A549 
cells, umbilical vein endothelial cells and glioblastoma 
cells [72, 165-170]. A detailed discussion of HO-1 regula-
tion can be found in an excellent review written by Sikorki 
et al. [162]. 

Perspective

It is increasingly clear that heme regulates the actions 
of numerous transcription factors and signal transducers 
in addition to its structural roles in proteins. Here we have 
reviewed recent findings about several heme-regulated 
transcription factors and signal transducers, including 
Hap1, Bach1, IRR and HRI. In mammals, heme controls 
many processes critical for important systems such as the 
hematopoietic, hepatic and nervous systems. It is highly 
likely that many more heme-regulated transcription factors 
and signal transducers operate in various mammalian cells. 
It is also likely that heme is associated with more diseases 
in humans than those currently known, such as porphyrias 
and anemias. Heme is essential for the survival and proper 
functioning of most, if not all, cells, so that mutants with 
greatly defective heme synthesis or function do not exist. 
However, moderate changes in heme level or function may 
be found to be associated with many diseases, including 
neurological diseases such as Alzheimer’s disease. 
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