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REVIEW

The role of Toll-like receptors in non-infectious lung injury
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The role of Toll-like receptors (TLRs) in pathogen recognition has been expeditiously advanced in recent years. 
However, investigations into the function of TLRs in non-infectious tissue injury have just begun. Previously, we and 
others have demonstrated that fragmented hyaluronan (HA) accumulates during tissue injury. CD44 is required to clear 
HA during tissue injury, and impaired clearance of HA results in unremitting inflammation. Additionally, fragmented 
HA stimulates the expression of inflammatory genes by inflammatory cells at the injury site. Recently, we identified that 
HA fragments require both TLR2 and TLR4 to stimulate mouse macrophages to produce inflammatory chemokines and 
cytokines. In a non-infectious lung injury model, mice deficient in both TLR2 and TLR4 show an impaired transepithelial 
migration of inflammatory cells, increased tissue injury, elevated lung epithelial cell apoptosis, and decreased survival. 
Lung epithelial cell overexpression of high molecular mass HA protected mice against acute lung injury and apoptosis, 
in part through TLR-dependent basal activation of NF-kB. The exaggerated injury in TLR2 and TLR4 deficient mice 
appears to be due to impaired HA-TLR interactions on epithelial cells. These studies identify that host matrix component 
HA and TLR interactions provide signals that initiate inflammatory responses, maintain epithelial cell integrity, and 
promote recovery from acute lung injury.

    Cell Research (2006) 16:693-701. doi:10.1038/sj.cr.7310085; published online 8 August 2006

Keywords: Toll-like receptors, hyaluronan, lung injury, inflammation, apoptosis

Correspondence: Dianhua Jiang
Tel:+1-203-737-5404; Fax:+1-203-785-3826;
E-mail: dianhua.jiang@yale.edu, dianhua.jiang@duke.edu

Introduction

A major advancement in our understanding of the 
mechanisms of host defense against pathogen invasion is 
the identification that the innate immune system uses Toll 
family receptors to signal for the presence of microbes 
and initiate host defense (see reviews in [1, 2]). Toll-like 
receptors (TLRs) act as the pattern recognition receptors to 
detect pathogen attack and trigger host defense responses, 
as envisioned by Dr Janeway [3]. Since Janeway and Med-
zhitov cloned and identified the first human homolog of the 
Toll protein [4], more than 10 mammalian TLRs have been 
reported (see reviews in [5-7]). The merging work on genes 
in the Drosophila that control dorsal-ventral patterning and 

the long sought after gene that controls lipopolysaccharide 
(LPS) responsiveness led to the discovery of the Toll family 
proteins that mediate pathogen recognition by macrophages 
[4, 8]. The spectra of the ligands for each TLR have been 
reported extensively (see reviews in [5-7, 9]). Understand-
ing their complex role in host defense offers tremendous 
potential for developing novel therapeutic drugs for more 
effective treatment of infectious and immune diseases.

While the importance of Toll family receptors in sensing 
pathogens is well recognized, it is also plausible that they 
may function in non-infectious diseases since TLR expres-
sion is also regulated in conditions other than infection 
[10]. Studies into the function of TLRs in non-infectious 
tissue injury have just begun. This review will focus on 
our recent understanding on TLR-matrix interactions in 
non-infectious diseases [11].

TLRs in innate immunity

TLR2 was initially suggested to be involved in LPS 
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recognition and signaling [12, 13]. However, later studies 
demonstrated that TLR2 is a major receptor to recognize 
Gram-positive cell-wall components, including pepti-
doglycan and lipoteichoic acid, as well as mycobacte-
rial cell-wall components such as lipoarabinomannan and 
mycolylarabinogalactan , and yeast cell-wall zymosan [8, 
14]. In vitro, TLR2-deficient macrophages produced re-
duced tumor necrosis factor and interleukin-6 in response 
to Staphylococcus aureus when compared to wild-type 
macrophages [8, 14]. 

Tlr4 gene is the long-sought-after causative gene for the 
LPS hyporesponsiveness in C3H/HeJ and 10ScCr mice 
[15]. C3H/HeJ mice have a defective response to bacterial 
endotoxin because of a homozygosity for a codominant 
allele, Lpsd [15]. Akira’s group generated TLR4-defi-
cient mice and demonstrated that TLR4 on macrophages 
recognizes the Gram-negative bacterial wall component 
LPS [8]. Destructive mutations of TLR4 predispose to 
the development of Gram-negative sepsis, leaving most 
aspects of immune function intact [8]. LPS interacts with 
LPS-binding protein and CD14 to present LPS to TLR4, 
which activates inflammatory gene expression through 
NF-kB and MAPK signaling [16]. 

There are four TLRs that are intracellularly situated and 
can be stimulated by nucleic acids during viral infections 
to initiate antiviral immunity, including interferon produc-
tion [17]. TLR3 recognize double-stranded RNA [18] and 
West Nile virus [19], TLR7 and TLR8 can be stimulated by 
antiviral derivatives such as imidazoquinoline and ixorib-
ine, and guanosine- and uridine-rich single-stranded RNA 
oligonucleotides derived from human immunodeficiency 
virus-1 [20]. DNA from bacteria has stimulatory effects on 
mammalian immune cells, which depend on the presence 
of unmethylated CpG dinucleotides in the bacterial DNA. 
In contrast, mammalian DNA has a very low frequency of 
CpG dinucleotides, and these are mostly methylated. CpG 
DNA induces a strong Th1-like inflammatory response, 
while mammalian DNA does not have immunostimulatory 
activity. The cellular response to CpG DNA is mediated 
by TLR9 [21]. 

TLR signaling pathway
TLR family receptors share structural similarity as well 

as a similar signaling pathway with interleukin-1 receptors. 
Upon ligand binding to TLR, the adaptor molecule MyD88 
is recruited to TLR complex as a dimer [22, 23]. Binding of 
MyD88 promotes association with interleukin-1 receptor-
associated kinase 4 (IRAK4) and IRAK-1 [24-26]. Tumor 
necrosis factor-associated factor 6 (TRAF6) is recruited to 
IRAK-1 [27]. The complex IRAK-4/IRAK-1/TRAF6 dis-
sociates from the receptor and then interacts with another 
complex consisting of transforming growth factor-b-acti-

vated kinase (TAK1), TAK1-binding protein 1 (TAB1), 
and TAB2 [28, 29]. TAK1 is subsequently activated in the 
cytoplasm, leading to the activation of IkB kinase kinases 
(IKKs) [28, 30]. IKK activation leads to phosphorylation 
and degradation of IkB, and consequent release of NF-kB. 
Once translocated into the nucleus, NF-kB activates the 
expression of inflammatory chemokines and cytokines.

In addition to MyD88, other Toll/interleukin-1-receptor 
(TIR)-domain-containing adaptor proteins were identified 
and characterized. For example, TIRAP (TIR-domain-
containing adaptor protein) [31, 32], TRIF (TIR-domain-
containing adaptor protein inducing interferon-b) [33], 
and TRAM (TRIF-related adaptor molecule) [34] mediate 
MyD88-independent induction of interferon-b, which in 
turn activates the expression of interferon-inducible genes 
such as CXCL10. 

Endogenous ligands for TLRs
In addition to the array of ligands that represent various 

pathogens, one cannot ignore the increasing amount of pub-
lications reporting endogenous ligands for TLRs. There are 
about four groups of putative endogenous ligands for TLR 
reported. First, several inflammatory proteins or peptides 
were reported to signal through TLRs. For example, heat-
shock protein (Hsp)60 family chaperones were suggested as 
ligands for TLR2 and/or TLR4 in macrophages and B cells 
[35-37]. High mobility group box 1 (HMGB1) is released 
extracellularly during acute inflammatory responses. Park 
and colleagues reported that stimulation of neutrophils, 
monocytes, or macrophages by HMGB1 required both 
TLR2 and TLR4 resulting in increased nuclear transloca-
tion of NF-kB and enhanced expression of proinflamma-
tory cytokines [38]. Murine b-defensin 2 acted directly 
on immature dendritic cells as an endogenous ligand for 
TLR-4, inducing up-regulation of costimulatory molecules 
and dendritic cell maturation [39]. Second, some collectin 
molecules may signal through TLRs. For instance, the 
collectin surfactant protein-A is involved in innate host 
defense and the regulation of inflammatory processes in 
the lung. Surfactant protein-A-induced activation of the 
NF-kB signaling pathway and up-regulation of cytokine 
synthesis were reported to be critically dependent on the 
TLR4 functional complex [40]. Third, nucleic acids of 
mammalian origin may act as endogenous ligands for TLRs 
and may promote systemic lupus erythematosus [41]. In 
this study, Barrat and associates reported that mammalian 

DNA and RNA, when complexed with autoantibodies, are 
potent self-antigens for TLR9 and TLR7, respectively, and 
induce IFN-a production by plasmacytoid predendritic 
cells [41]. The last group was the breakdown species of 
glycosaminoglycans. Oligosaccharides of hyaluronan (HA) 
activated dendritic cells and endothelial cells via TLR4 [42, 
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43]. We showed that HA fragments signal through TLR2 
and TLR4 in macrophages [11]. Maturation of dendritic 
cells by soluble heparan sulfate was reported to be medi-
ated through TLR4 [44]. 

However, the view of endogenous TLR ligands faces 
some skepticism due largely to the agonist contamina-
tion issue since most “ligands” used in these studies were 
prepared in microbial systems [45-48]. Many candidate 
endogenous ligands were shown to activate through more 
than one TLR [37, 38, 49, 50]. For example, Hsps were re-
ported as endogenous ligands for TLRs [35, 49]. However, 
subsequent studies identified that LPS [48] and non-LPS 
contaminants [47] in  Hsp preparations were responsible for 
cytokine induction. Secondly, the lack of biochemical stud-
ies on endogenous ligands and their respective TLRs thus 
far impedes the acceptance of the concept of endogenous 
ligands for TLR. Although many of the studies showed 
that the candidate endogenous ligands stimulated cells to 
produce cytokines via TLRs in vitro, biochemical analysis 
demonstrating the direct binding between a TLR and its 
endogenous ligand would be the key to coin the concept. 
Recently, Schaefer and colleagues [51] demonstrated direct 
binding between TLR4 and biglycan by using gel filtration, 
coimmunoprecipitation and electrospray ionization tandem 
mass spectrometry. Paradoxically, even genuine TLR ago-
nists can be contaminated with agonists of other TLRs. For 
example, the initial mistaken assignment of TLR2 as the 
endotoxin receptor was likely because the agonist used in 
the studies was contaminated [8, 12, 52]. Care has to be 
taken to ensure that TLR activation by endogenous ligands 
is genuine and not attributable to the contamination of the 
agonist preparation by the presence of LPS [11, 51]. More 

importantly, increasing amount of evidence from in vivo 
studies [11, 51], where ligand contamination is less likely 
to contribute to TLR signaling, supports the concept of the 
endogenous ligands for TLRs. For example, Schaefer and 
associates [51] demonstrated that biglycan signals through 
TLR4 and TLR2 in a set of elegant in vivo experiments, 
and a critical question would be how these ligands function 
in various disease states. 

TLRs and lung injury
It is becoming clear that TLRs not only play a role in the 

recognition of pathogens and in the initiation of immune 
responses but also have a fundamental role in non-infec-
tious disease pathogenesis. Recent studies suggested that 
TLR may regulate and contribute to the pathogenesis of 
diseases with non-infectious tissue injury, since elevated 
expression of TLRs has been described in such diseases 
or pathological states [10, 53], and TLR polymorphisms 
have been associated with the susceptibility to certain 
diseases [54-57]. For example, inactivation of the MyD88 
pathway led to a reduction in atherosclerosis through a 
decrease in macrophage recruitment to the artery wall that 
was associated with reduced chemokine levels [58]. TLR4 
(Asp299Gly) polymorphism, which attenuates receptor 
signaling and diminishes the inflammatory response to 
Gram-negative pathogens, was associated with a decreased 
risk of atherosclerosis [59]. These studies suggested that 
the activation of TLR pathway promotes the development 
of atherosclerosis. The biological roles of TLRs in non-
infectious lung pathogenesis have been explored and can 
be classified into three areas (Table 1): (i) In host defense, 
TLR4 recognizes diesel exhaust particles [60] and pollut-

Table 1  Recent studies on the role of TLR in non-infectious lung injury and inflammation

Toll-Like Receptors
TLR4
TLR4
TLR4
TLR9

TLR4
TLR2
TLR2

TLR4
TLR2, TLR4
TLR2, TLR3, TLR4, 
TLR5, and TLR6

Functions	
Recognizes diesel exhaust particles in the airways
Genetic susceptibility to ozone-induced lung hyperpermeability
Hemorrhage-induced acute lung injury
TLR9 ligand-induced pulmonary indoleamine 2,3-dioxygenase activity inhibits Th2-
driven experimental asthma
Mediates cigarette smoke-induced cytokine production by human macrophages
Up-regulation in monocytes from patients with chronic obstructive pulmonary disease
Decreased expression on alveolar macrophages in cigarette smokers and chronic ob-
structive pulmonary disease patients
A protective role in oxidant-mediated injury
Recognizes hyaluronan fragments during bleomycin-induced lung injury
Expression in airway epithelial cells and activation by Toll-like receptor agonists 

References
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ant ozone [61], supporting that TLR4 may be one of the 
recognition receptors to sense pollutants in the airways. 
(ii) In allergic diseases, TLR9 ligand-induced pulmonary 
indoleamine 2,3-dioxygenase activity by resident lung cells 
rather than by pulmonary dendritic cells inhibits T-helper 
cell (Th)2-driven lung inflammation and airway hyper-re-
activity in the experimental asthma, providing evidence for 
the inverse relationship between microbial exposure and 
the prevalence of allergic asthma and autoimmune diseases 
in Westernized countries [62]. This study also highlights 
the notion that activation of innate immunity can impede 
adaptive Th responses [62]. (iii) In tissue injury and repair, 
several recent studies examined the expression patterns 
of TLR2 and/or TLR4 in smoke-induced lung injury and 
in patients with chronic obstructive pulmonary disease 
[63-65]. Hemorrhage-induced lung TNF-a production, 
neutrophil accumulation, and protein permeability, but not 
NF-kB activation, were dependent on a functional TLR4 
[66]. TLR4-TLR2 cross-talk activated a positive-feedback 
signal leading to alveolar macrophage priming and exagger-
ated lung inflammation in response to invading pathogens 
during hemorrhage-induced acute lung injury [67]. On the 
other hand, a recent study demonstrated that TLR4 has a 
protective role in oxidant-mediated injury, by maintaining 
appropriate levels of antiapoptotic responses in the face of 
oxidant stress [68]. This study is in accord with our study 
in a bleomycin-induced lung injury model [11]. 

HA as a signaling molecule
During tissue injury, there is increased turnover of ECM. 

A variety of lung diseases such as asthma, emphysema and 
pulmonary fibrosis are associated with abnormal ECM 
turnover. In chronic lung diseases, the ECM is modified by 
the inflammatory milieu, and degradation products gener-
ated by oxidants and other mechanisms take on unique 
properties not attributable to the precursor molecules. HA 
is a major ECM component, a non-sulfated glycosamino-
glycan composed of repeating polymeric disaccharides 
D-glucuronic acid and N-acetyl glucosamine [69]. It is 
distributed widely in nature, such as the Streptococcus 
coat. In mammals, HA is abundant in heart valves, skin, 
skeletal tissues, the vitreous of the eye, umbilical cord, 
and synovial fluid. HA has the property of a biological 
lubricant, reducing friction during movement and provid-
ing resiliency under static conditions. Under physiologic 
conditions, HA exists as a high molecular weight polymer 
(>106 Da) and undergoes dynamic regulation resulting in 
the accumulation of lower molecular weight species follow-
ing tissue injury [70, 71]. One often compares its structure 
with LPS. Although they both contain repeating di- or 
oligosaccharides, HA does not contain lipids. Saccharide 
units in HA are simple D-glucuronic acid and N-acetyl 

glucosamine. Core polysaccharide in LPS consists of a 
short chain of sugars with variations, for example, 2-keto-
3-deoxyoctonoic acid-heptose-heptose-glucose-galactose-
glucose-N-acetyl glucosamine. The O antigen chain of LPS 
consists of repeating oligosaccharide subunits made up of 
3-5 sugars. The individual chains vary in length ranging 
up to 40 repeat units [72]. 

A historical study by West and colleagues [73, 74] 
showed that oligosaccharides derived from high molecular 
weight HA stimulate angiogenesis in vivo and endothelial 
proliferation in vitro. We and others have demonstrated 
that HA degradation products generated in vitro in the 
200 000 Da range induce the expression of a variety of 
genes, including chemokines, cytokines, growth factors, 
signal transduction molecules, and adhesion molecules in 
macrophages, eosinophils, dendritic cells, kidney epithe-
lial cells, and fibroblasts, suggesting that endogenously 
generated HA fragments may be a dynamic molecule 
that influences cell behavior by regulating inflammatory 
processes [43, 75-81]. These studies support a concept 
in which the modified matrix regulates inflammation and 
repair processes during tissue injury. 

CD44 and lung injury
HA binds to numerous cell surface proteins. Among 

them, CD44 is a major cell surface receptor for HA [82]. 
CD44 is a type 1 transmembrane glycoprotein that is 
expressed on most cell types. The interaction of HA and 
CD44 has been implicated in the regulation of a variety 
of biological processes, including tumor growth and 
metastasis, wound healing, T-cell recruitment to sites of 
inflammation, macrophage activation, neutrophil migra-
tion, and endothelial cell activation (see reviews in [83, 
84]). For example, HA promotes leukocyte trafficking to the 
inflammatory sites during tissue injury [85]. A recent study 
demonstrated that gdT cells are required for HA deposition 
in the ECM and subsequent macrophage infiltration into 
wound sites [86]. HA fragments can deliver maturational 
signals to antigen-presenting dendritic cells and can pro-
vide costimulatory signals to specific T cells in regulating 
dendritic cell maturation and trafficking [43]. However, 
CD44 null mice were found to develop normally [87]. In 
order to investigate the role of HA in lung injury and repair, 
we examined the inflammatory response in CD44-deficient 
mice [71]. CD44-deficient mice and wild-type C57Bl/6 
mice were instilled intratracheally with bleomycin, a widely 
used model for pulmonary injury and fibrosis. CD44-defi-
cient mice displayed an increased mortality, and increased 
numbers of neutrophils, macrophages, and lymphocytes in 
bronchoalveolar lavage fluid [71]. In addition, there was 
overwhelming HA accumulation in the injury lungs in the 
CD44-deficient mice relative to the wild-type control mice 
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[71]. Thus, the CD44-deficient state was associated with 
both an inability to resolve lung inflammation and a fail-
ure to properly remove HA degradation products from the 
lung tissue. These data suggest that the production of HA 
following acute tissue injury may serve the very important 
function of initiating the host innate immune response by 
providing an essential signal to macrophages, which then 
produce chemokines that recruit other leukocyte subsets 
required to debride the tissue injury and begin restoring 
tissue integrity [71]. 

TLRs and HA signaling
CD44 appears to be involved in HA binding in vitro since 

the blockade with anti-CD44 antibodies partially inhibits 
HA fragment signaling in macrophages [88]. However, it 
is not sufficient to mediate HA signaling [11, 89]. Thus, 
there must be another receptor system required for HA 
signaling. Since HA is a repeating disaccharide structure 
with features of “pathogen-associated molecular patterns”, 
and since recent reports suggest that HA oligomers can 
signal through TLR4 in dendritic cells [43] and endothelial 
cells [42], we investigated the potential role of TLRs in 
non-infectious lung injury [11] where matrix turnover is 
an important regulator of the inflammatory response [43, 
86]. Both TLR2 and TLR4 signaling pathways appear to 
require MyD88. MyD88-deficient mice (and macrophages) 
are unresponsive to LPS in vitro and in vivo [22, 23, 90]. 
To investigate the potential role for TLRs in mediating HA 
signaling, we utilized elicited peritoneal macrophages from 
MyD88-deficient, TLR1-, TLR2-, TLR3-, TLR4-, TLR5-, 
and TLR9-deficient mice. Stimulation of chemokine gene 
expression by HA fragments is abolished in the MyD88-
deficient macrophages [11]. Chemokine MIP-2  expres-
sion is reduced, but remains present in both TLR2- and 
TLR4-deficient macrophages, respectively. TLR4- and 
TLR2-deficient mice were then crossed to generate TLR2- 
and TLR4-double-deficient (TLR2–/–TLR4–/–) mice. HA 
fragment-induced chemokine and cytokine expression was 
completely abolished in TLR2–/–TLR4–/– peritoneal macro-
phages [11]. These data suggest that the polymeric prop-
erties of HA may mimic cell-wall components from both 
Gram-positive and Gram-negative organisms. In contrast, 
targeted deletion of TLR1, TLR3, TLR5, and TLR9 had 
no effect on HA fragment-induced chemokine expression. 
As our data demonstrated HA induces chemokine expres-
sion through TLR2 and TLR4, the next question would 
be: do HA fragments directly bind to TLR4 and TLR2? 
Biochemical studies such as photoaffinity labeling or direct 
binding should be performed to elucidate whether and how 
HA fragments bind to TLRs and to examine whether any 
other binding partners are involved. 

To determine if these findings were relevant to acute 

lung injury in patients, we then examined circulating HA 
fragments produced in vivo and purified from the serum of 
patients with acute lung injury. The human HA degrada-
tion products were of similar molecular mass (peak 200 
kDa) to the in vitro generated HA degradation products 
and stimulated chemokine production in wild-type, but 
neither TLR2–/–TLR4–/– nor MyD88–/– peritoneal macro-
phages [11]. 

TLR deficiency and lung injury
The observation that CD44 deficiency led to unremit-

ting inflammation following lung injury clearly implicated 
an alternative signaling pathway by which macrophages 
responded to HA fragments. Our discovery that both 
TLR2 and TLR4 are required for macrophages to express 
inflammatory genes in response to HA fragments suggested 
that TLR2/TLR4 deficiency should lead to an impaired 
inflammatory response to non-infectious lung injury. To 
test this hypothesis, we challenged TLR2–/–TLR4–/– mice 
with bleomycin-induced lung injury. TLR2–/–TLR4–/– mice 
developed a reduced inflammatory response to lung injury 
with a decrease in transepithelial neutrophil migration and 
reduced expression of MIP-2 [11]. However, these mice 
displayed an increase in mortality. This surprising finding 
led us to inspect the degree of tissue injury and epithelial 
cell integrity. We found evidence to suggest increased tissue 
injury and epithelial cell apoptosis [11]. Thus, TLR2/TLR4 
deficiencies appear to protect the host from acute inflam-
mation, but may impede epithelial cell repair processes 
important in tissue injury recovery. 

HA-cell interaction in lung injury
Next, we tested whether the blockade of HA action with 

an HA-blocking peptide could produce a similar phenotype 
as in TLR2–/–TLR4–/–. An HA-blocking peptide has been 
previously shown to be effective in vivo in inhibiting HA-
cell interactions [42, 85, 91]. Inhibition of HA binding with 
the peptide in vivo recapitulated the phenotype observed in 
the TLR2–/–TLR4–/– mice after lung injury, enhanced lung 
injury and increased epithelial cell apoptosis, and decreased 
transmigration of neutrophils [11]. Increasing production 
of high molecular weight HA by overexpression of HA 
synthase-2 under the control of the lung-specific CC10 
promoter is protective against mortality, lung injury, epi-
thelial cell apoptosis following high-dose bleomycin [11]. 
Therefore, HA-cell interaction regulates the responses to 
lung injury.

 
HA-TLR interaction on epithelial cells

Previous studies in kidney injury models have demon-
strated that fragmented HA markedly stimulates chemokine 
MCP-1 production by renal tubular cells [92], triggers 
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cell adhesion molecule expression through a mechanism 
involving activation of NF-kB and activating protein-1 
[93], and promotes proximal tubule cell migration and 
re-epithelialization, through MAPK activation [94]. 
Quinn’s group has shown that low molecular weight HA 
stimulated cytokine IL-8 production by lung epithelial 
cells, via JAK2 kinase, not MEK1/2, pathway [95]. It is 
plausible that injured epithelial cells respond to HA frag-
ments by producing chemokines and cytokines to recruit 
inflammatory cells to the injury sites. To investigate the 
hypothesis that HA and TLR interactions are important in 
lung injury and repair processes, we asked if HA on the 
epithelial cell surface plays a role in lung injury. Isolated 
lung alveolar epithelial cells have increased apoptosis at 
baseline and exhibit greater total apoptosis in response 
to bleomycin. The exogenous addition of high molecular 
weight HA is protective against apoptosis [11]. We found 
that bleomycin induces both NF-kB activation and apop-
tosis in primary lung epithelial cells [11]. It is likely that 
HA regulates basal NF-kB activation in epithelial cells. 
NF-kB is known to regulate apoptosis [96, 97] and we 
have previously shown that HA fragments can activate 
NF-kB in macrophages [77]. Primary epithelial cells from 
TLR2–/–TLR4–/– mice were found to have a significant 
increase in spontaneous apoptosis relative to wild-type 
cells [11]. Intriguingly, we also found that cell surface 
HA is severely abrogated in TLR2–/–TLR4–/– epithelial 
cells [11]. The mechanism underlying the abolishment 
of cell surface HA in TLR2–/–TLR4–/– epithelial cells is 
unknown. Nevertheless, these data suggest that epithe-
lial cell-surface HA promotes basal NF-kB activation in 
a TLR-dependent manner, and that this activation has a 
protective effect against injury [98].

Conclusion

As part of inflammatory responses, HA fragments are 
generated following tissue injury in both animal models 
and patients. The removal of HA fragments requires the 
HA receptor CD44. The failure to remove HA from the 
lung following injury results in unremitting inflammation. 
The persistent HA fragment presence leads to chronic in-
flammation and tissue damage. Here we propose that the 
interactions of HA and TLRs serve two critical functions 
in host defense against non-infectious lung injury (Figure 
1). Soluble HA fragments can stimulate macrophages to 
produce chemokines and cytokines that recruit inflamma-
tory cells to the site of injury. On the other hand, native high 
molecular weight HA limits the extent of lung epithelial cell 
injury by providing a basal NF-kB activation and inhibiting 
apoptosis and promoting the repair of parenchymal cell 
injury through a TLR-dependent mechanism. Shaping the 

A

B

Figure 1  HA signals through TLR2 and TLR4 in both epithelial cells 
and macrophages. (A) High molecular weight hyaluronan (HMW-
HA) on the cell surface or surrounding epithelial cells signals through 
to TLR2 and TLR4, providing cells with basal NF-κB activation. 
In turn, the tonic NF-κB activity prevents epithelial cells from un-
dergoing apoptosis upon injury. Thus, HMW-HA on epithelial cells 
provides cells with a survival signal. On other hand, low molecular 
weight hyaluronan (LMW-HA) fragments generated during tissue 
injury stimulate chemokine/cytokine expression in macrophages, 
leading to inflammatory responses. (B) The loss of TLR2 and TLR4, 
or MyD88 on epithelial cells causes the loss of basal NF-κB acti-
vation and leads to an increased apoptosis of epithelial cells upon 
injury. In macrophages, LMW-HA cannot transduce signals due to 
TLR deficiency. This leads to a decreased NF-kB activation and 
subsequently decreases inflammatory responses.

balance of HA in favor of high molecular weight form could 
favor the host recovery from acute lung injury. 
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