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Multi-Instance Metric Transfer 
Learning for Genome-Wide Protein 
Function Prediction
Yonghui Xu1,*, Huaqing Min2,*, Qingyao Wu2,3, Hengjie Song2 & Bicui Ye4

Multi-Instance (MI) learning has been proven to be effective for the genome-wide protein function 
prediction problems where each training example is associated with multiple instances. Many studies in 
this literature attempted to find an appropriate Multi-Instance Learning (MIL) method for genome-wide 
protein function prediction under a usual assumption, the underlying distribution from testing data 
(target domain, i.e., TD) is the same as that from training data (source domain, i.e., SD). However, this 
assumption may be violated in real practice. To tackle this problem, in this paper, we propose a Multi-
Instance Metric Transfer Learning (MIMTL) approach for genome-wide protein function prediction. In 
MIMTL, we first transfer the source domain distribution to the target domain distribution by utilizing 
the bag weights. Then, we construct a distance metric learning method with the reweighted bags. At 
last, we develop an alternative optimization scheme for MIMTL. Comprehensive experimental evidence 
on seven real-world organisms verifies the effectiveness and efficiency of the proposed MIMTL approach 
over several state-of-the-art methods.

During the past decades, a variety of computational methods have been proposed to tackle the genome-wide 
protein function prediction problem1–3. Some research in this literature4,5 attempt to solve the protein function 
prediction problem as a naturally and inherently multi-instance learning problem. Multi-Instance Learning6,7 is 
a recent machine learning framework for the learning problem in which each training example is represented by 
a bag of instances. In MIL, a bag has a positive label if it contains at least one positive instance. Otherwise the bag 
is annotated with a negative label.

MIL has received considerable attention and been frequently applied in a wide range of real-world applica-
tions2,8 since it is more convenient and natural for representing complicated objects which have multiple semantic 
meanings. With the help of the MIL, some inherent patterns which are closely related to some labels may become 
explicit and clearer. Based on the advantage of MI representation, a variety of MIL methods have been proposed. 
Conventional step of MIL considers the availability of a large amount of labeled training data to learn a classifier 
in a source domain, and predicts the label of the test data in the same domain. However, in many real-world appli-
cations, labeled data are limited and expensive to obtain. This is especially true for genome data. If we can transfer 
information from a similar domain to assist MIL, it will be helpful.

Transfer learning9–15 has been developed to handle the situation in which a classification task with sufficient 
training data is considered as source domain (SD), and we have limited data in another target domain (TD) where 
the latter data may be in a different feature space or have a different distribution. If we can encode the transfer 
learning methods into MIL, we can reuse the labeled data in the source domain to the target task. Recently, a 
number of transfer learning methods16,17 have been developed. Most of these transfer learning algorithms are 
designed for single-instance learning (SIL) where training example is represented by one instance. It has been 
shown that learning performance can be significantly enhanced if the transfer learning techniques is exploited in 
SIL. However, it is difficult to directly apply these transfer learning methods to multi-instance situation. Hence, it 
is urgent to develop a MIL method under transfer learning setting.

Furthermore, most of these transfer learning methods16,17 are based on the Euclidean distance idea, i.e., an 
objective function is optimized to maintain the class information of examples by their Euclidean distances. 
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Unfortunately, objective functions based on the Euclidean distance are inappropriate to maximize the distance of 
the bags between classes, while minimizing that within each class for MI data16,18–20. This is because the Euclidean 
distance cannot exploit the intrinsic geometry among the data. To tackle this problem, it is urgent to develop a 
suitable distance metric for MIL method under transfer learning setting.

In this paper, we proposed a new multi-instance learning algorithm for transfer learning setting, called 
Multi-Instance Metric Transfer Learning (MIMTL). Compared with other state-of-the-art MIL algorithms, it is 
worthwhile to highlight the following two aspects of our proposed approach here:

•	 Different from many MIL approaches that only suitable for the traditional MIL problem, we propose a MIL 
approach under transfer learning setting. By utilizing the bag importance weights, we transfer knowledge 
from a source domain to target domain. Such that, we can reuse the SD bags to train a classifier for the target 
task in TD. By this way, our algorithm can significantly improve the prediction performance against the tra-
ditional MIL approaches.

•	 Compared to most MIL approaches which fit the data in a Euclidean space1–3, we exploit the intrinsic 
geometry of the MI data by using the Mahalanobis distance21–24. With the outstanding characteristic of the 
Mahalanobis distance (i.e., taking into account the correlations among different domains data, unit less and 
scale-invariant), our approach can be more applicable to respect the intrinsic geometric structure of the data 
from domains.

The rest of the paper is structured as follows. We briefly review the related works. We next introduce our pro-
posed algorithm MIMTL and present an optional optimization scheme for the proposed algorithm. Then, we test 
the performance of our algorithm and present the experimental results on several benchmark data sets. Finally, 
we conclude this paper and present the future work.

Related Works
Previous studies related to our work can be classified into three categories: traditional MIL, metric learning based 
MIL and transfer learning based MIL.

Traditional MIL. Multi-Instance Multi-Label k-Nearest Neighbor (MIMLkNN)25 try to utilize the popular 
k-nearest neighbor techniques into MIL. Motivated by the advantage of the citers that is used in Citation-kNN 
approach26, MIMLkNN not only considers the test instances’ neighboring examples in the training set, but also 
considers those training examples which regard the test instance as their own neighbors (i.e., the citers). Different 
from MIMLkNN, Multi-instance Multi-label Support Vector Machine (MIMLSVM)6 first degenerates MIL task 
to a simplified single-instance learning (SIL) task by utilizing a clustering-based representation transformation6,27. 
After this transformation, each training bag is transformed into a single instance. By this way, MIMLSVM maps 
the MIL problem to a SIL problem. For another traditional MIL approach, Multi-instance Multi-label Neural 
Network (MIMLNN)28 is obtained by using the two-layer neural network structure28 to replace the Multi-Label 
Support Vector Machine (MLSVM)6 used in MIMLSVM.

Symbols Definitions

SD The source domain dataset.

TD The target domain dataset.

Xi i-th bags, which represent a protein.

xj j-th instance in a bag.

xij
j-th instance in bag Xi.

X̂i The average of all the instances in bag Xi.

Yi Represent the Gene Ontology terms assigned to Xi.

Yik
k-th element in Yi.

ci The center of Xi.

D(xi, ci) The square of the Mahalanobis distance between instance xi and ci.

D(Xi, Xj) The square of the Mahalanobis distance between bags Xi and Xj.

A The learned Mahalanobis distance metric.

 0 The loss corresponding to traditional Multi-Instance Metric Learning.

exp The expected loss.

δS
A constant to limit the minimum distance between the center of the 
bag and the instance in the bag.

δD
A constant to limit the maximum distance between bags from 
different class.

ξ, ζ Two slack vectors to improve the robustness of the algorithm.

ω The weight vector of bags.

Table 1.  Important Definitions.
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Metric based MIL. Different from MIMLNN, to encode much geometry information of the bag data, the 
metric-based Ensemble Multi-Instance Multi-Label (EnMIMLNN)4 combines three different Hausdorff distances 
(i.e., average, maximal and minimal) to define the distance between two bag, and proposes two voting-based 
models (i.e., EnMIMLNNvoting1 and EnMIMLNNvoting2). Recently, Xu Ye et al. proposes a metric-based 
multi-instance learning method (MIMEL)29 by minimizing the KL divergence between two multivariate 
Gaussians with the constraints of maximizing the distance of bags between class and minimizing the distance 
of bags within class. Different from MIMEL, Jin Rong et al. proposes a metric-based learning method30 for 
multi-instance multi-label problem. Recently, MIML-DML5 attempts to find a distance metric by considering that 
the same category bag pairs should have a smaller distance than that from different categories. These metric-based 
MIL approaches are both designed for the traditional MIL problem where the bags in SD and TD are drawn from 
the same distribution.

Transfer learning based MIL. Recently, MICS31 proposed tackling the MI co-variate shift problem by con-
sidering the distribution change at both bag-level and instance-level. MICS attempts to utilize the weights of bags 
and instances to solve the covariate shift problem. Then, with the learned weights, the MI co-variate shift problem 
can be solved by traditional MIL methods. However, MICS does not present the method to utilize the learned 
weights into multi-instance metric learning.

Method
In this section, we first give some definitions corresponding to MIL for genome-wide protein function prediction. 
Then, we present the traditional multi-instance metric learning approach briefly and discuss the limitation of the 
approach under transfer learning setting. After the discussion, a bag weights estimation method is presented. At 
last, we present the proposed method based on the learned bag weights.

The genome-wide protein function prediction problem aims to find a method to annotate the biological func-
tion for a given protein. However, the structure and function of proteins are very complex. In fact, many proteins 
often include several structural domains, and each domain may appear in a number of different proteins. These 
domains can be treated as distinct functional or structural units of a protein. Multi-domain proteins are likely 
to create new functions by emerging from a selective pressure during evolution. A wide variety of proteins have 
diverged from common ancestors by combining and associating different domains. Nature often gets together 
several domains to produce multi-domain and multifunctional proteins with a large number of possibilities32. To 
describe the complex structure of proteins, we utilize the MIL into the genome-wide protein function problem. 
For instance, we represent each domain with an input instance, and represent each protein in organisms with a 
bag of instances, and treat each biological function as an output label. Thus, the protein function prediction prob-
lem is naturally and inherently MIL learning tasks.

Formally, We denote by = | = …SD X Y i n{( , ) 1, 2, , }i i bag  the training dataset, where = …X x x( , , )i i ini1
 rep-

resent the i-th protein in the training set. Xi is a bag of ni instances, and every instance ∈x Ri
d

j
 is a vector of d 

dimensions. nbag indicates the bag number in SD. ∈Y Ri
L representes the Gene Ontology terms4 assigned to Xi. Yi 

is a binary vector, and Y ik
 indicates the k-th element in Yi. =Y 1ik

 indicates that the i-th protein is associated with 
the k-th Gene Ontology term. In other words, the bag Xi is assigned to class ϑk, and =Y 0ik

 otherwise. We assume 
that bag Xi is assigned to ϑk at least one instance in Xi belongs to ϑk. Formally, MIL task aims to learn a function 

→h: X Y  from the given data set SD. Important definitions are shown in Table 1.

Genome Bags Classes Instances Dimensions
Bags in Source 

Domain
Bags in Target 

Domain

HM 304 234 950 216 152 152

PF 425 321 1317 216 213 212

AV 407 340 1251 216 204 203

GS 379 320 1214 216 190 189

CE 2512 940 8509 216 1256 1256

DM 2605 1035 9146 216 1303 1302

SC 3509 1566 6533 216 1755 1754

Table 2.  Characteristics of the seven datasets.

HM PF AV GS CE DM SC

Instances per bag 3.13 3.1 3.07 3.2 3.39 3.51 1.86

Labels per instance 3.25 4.48 4 3.14 6.07 6.02 5.89

Positives instance per classes 4.22 5.93 4.79 3.72 16.22 15.15 13.19

Positives instance/negative instance 1.41% 1.42% 1.19% 0.99% 0.65% 0.59% 0.38%

Table 3.  Details information about positive and negative instances of the seven datasets.
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Multi-Instance Metric Learning. After the definition, we briefly formulate the multi-instance metric 
learning framework which is provided by the paper5. The learning framework aims to find a distance metric 
M =  ATA, M ∈  Rd×d, A ∈  Rd×d and a hypothesis X Y→h:  from the training data SD. In general, the multi-instance 
metric learning problem can be formulated as the following optimization problem:

 ∑ ∑λ ξ β ζ

δ ξ

δ ζ

= + +

×






≤ + ∈ ≤

≥ − ≠ .

ξ ζ r A

D x c x X j n

D X X Y Y

arg min ( )

( , ) , , ,

( , ) , (1)

A j ij

i i S j i j bag

i j D ij i j

, , 0

The first constraint in equation (1) is used to minimize the instance distance in each bag5. The second constraint 
in equation (1) is used to maximize the distance between bags that corresponding to different labels. r(A) is a 
regularization term for A, λ and β are two balance parameters. Some times the training data extracted from the 
proteins may contain some noise and the noise may reduce the performance of the algorithm. To solve this prob-
lem, two slack vectors ξ and ζ are utilized into the learning framework to improve the robustness of the algorithm. 
δS and δD are two constants (δS <  δD). δS is used to limit the maximum distance between the center of the bag and 
the instance in the bag. δD is used to limit the minimum distance between bags from different class. ci is the center 
of Xi. D(xi, ci) is the square of the Mahalanobis distance between instance xi and ci and D(Xi, Xj) is the square of the 
Mahalanobis distance between bags Xi and Xj. Here, we can define D(xi, ci) =  (xi −  ci)T AT A(xi −  ci) and D(Xi, Xj)  
as,

= − −
Τ Τˆ ˆ ˆ ˆ( ) ( )D X X X X A A X X( , ) , (2)i j i j i j

where X̂i indicates the average of all the instances in bag Xi. According to this method, we can get together the 
instances from the same protein and separate the proteins with different biological function.

Loss Analysis of Multi-Instance Metric Learning. The learning framework presented in equation (1) is designed 
for the learning problem where training and test data are drawn from same distribution. However, in many real 
applications, this assumption cannot be guaranteed. For more specific analysis of the drawback of the learning 
framework, we first discuss the loss analysis of equation (1) under transfer learning setting in this section.

Before we present the loss analysis, we first use an example to more intuitively explain the different distribu-
tions between training and test data. Figure 1 gives an example in which the distributions of the source domain 
and target domain are different. In such case, the distance metric learned by equation (1) can not help to min-
imize the distance in each bag and maximize the distance between bags from different classes due to the fact 
that, the expected loss of equation (1) on SD is inconsistent with that on TD. Herein, we define the expected loss 
corresponding to equation (1) on SD as following,

L J J∫=
∼

P X P X d d( ) ( ) ( ) , (3)exp X P X i j X X0 ( ) 0 i j

where P(X) indicates the density of bag X in SD. Equation (3) can be refined as,

∫ ∫∑ ∑λ ξ β ζ= + + .
∼

r A P X d P X P X d d( ) ( ) ( ) ( ) ( ) (4)exp X P X j j X ij i j X X0 ( ) j i j
L J

Similarly, the expected loss corresponding to equation (1) on TD can be written as,

∫= ′ ′
∼ ′

P X P X d d( ) ( ) ( ) , (5)exp X P X i j X X0 ( ) 0 i j
L J J

P′ (X) represents the density of bag X in TD. From equations (3) and (5), we can find that if ≠ ′P X P X( ) ( ), the 
expected loss on SD is not equal to that on TD,

L J L J≠ .
∼ ∼ ′

( ) ( ) (6)exp X P X exp X P X0 ( ) 0 ( )

Figure 1. An example to show the different distributions of source domain and target domain. 
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In other words, if the training bags number of SD is as large as possible (i.e., to be the infinity), equation (1) 
still can not generate an optimal solution for the multi-instance prediction problem in TD.

Bag Weights Estimation. After the loss analysis of Multi-Instance Metric Learning, we find that the tradi-
tional learning framework in equation (1) is not suitable for the learning problem under transfer learning setting. 
The main reason for this situation is the divergence between the expected loss of equation (1) on SD and TD. In 
this section, we propose learning a suitable bag weights to solve this problem.

From equations (3), (5) and (6), it is obvious that, if there exist a suitable bag weight for each bag X in SD to 
satisfy the following equation,

ω = ′X P X P X( ) ( ) ( ), (7)

we can balance the difference between 
∼

( )exp X P X0 ( )
L J  and L J

∼ ′
( )exp X P X0 ( )

. To estimate the bag weights ω(X), 

we set ω(X) =  P′ (X)/P(X) and adopt the approach proposed by MICS31 where the bag weights is considered as a 
function that can be approximated by a linear combination of some basic functions, i.e., ω α φ= ∑ =ˆ X X( ) ( )j

b
j j i1 , 

where {φj}’s indicate a set of pre-defined basis functions and {αj}’s represent the corresponding nonnegative 
parameters to be learned. The weights of source-domain bags, ω(X), can be obtained by minimizing the least 
square loss ω  between ω and ω̂, i.e.,

 ∫ ω ω= − ′ .ω ˆ X X P X d1
2

( ( ) ( )) ( ) (8)X
2

As shown in MICS31, equation (8) can be converted to the following optimization problem,

α α α ρα α= − +
α

ω
Τ Τ ΤB barg min 1

2 2
, (9)

where B is a p ×  p matrix and b is a p ×  1 vector,

∑

∑

φ φ

φ

=

= .

∼

∼ ′

B
n

X X

b
n

X

1 ( ) ( ),

1 ( )

jk
sd X P X

j i k i

k
td X P X

k i

( )

( )

i

i

The basis functions ψ(X) can be selected as a series of kernels. Followed by the work of MICS31, we use the 
MI-Kernel33 to measure the similar or dissimilar between multi-instance bags,

∑∑ γ= − −
= =

‖ ‖Kernel X X x x( , ) exp( ),MI i j
w

n

v

n

iw jv
1 1

i j

where γ is the kernel width.
Since the optimization problem equation (9) is convex, gradient ascent approaches can be applied to obtain 

the global solution. By this way, we can learn a weight for each bag. According to the learned bags we can balance 
the differnece between L J

∼
( )exp X P X0 ( )

 and L J
∼ ′

( )exp X P X0 ( )
.

Multi-Instance Metric Transfer Learning. We have balanced the divergence between the expected loss 
of equation (1) on SD and TD by reweighting the training bags. However, we still do not know how to obtain a 
Mahalanobis distance under the transfer learning setting. In this section, we will utilize the learned bag weight 
vector into our learning framework to obtain a Mahalanobis distance metric under transfer learning setting.

Based on the loss analysis of multi-instance metric learning and the learned bag weights, we can reformulate 
equation (1) as follows,

 ∑ ∑λ ω ξ β ω ζ

δ ξ

δ ζ

= + +

×






≤ + ∈ ≤

≥ − ≠ .

ξ ζ r A

D x c x X j n

D X X Y Y

arg min ( )

( , ) , , ,

( , ) , (10)

A j j ij ij

i i S j i j bag

i j D ij i j

, ,

Note that a preprocessing step to centralize the input data is performed in MIMTL,

∑← −
=

x x
n

x1 ,
(11)

i i
all j

n

j
1

all

where nall indicates all the instances number in SD, then D(xi, ci) can be represented as,

δ ξ≤ + .Ax (12)i S j
2

In the following, without special declaration the data are supposed to be centralized.
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For some situations, in addition to the bags from SD, we can obtain few labeled bags from TD. Hence, we can 
learn the distance metric A based on the labeled bags both in SD and TD by setting the weights of bags from TD 
to be 1. Then we obtain the optimization problem,

 ∑ ∑λ ω ξ β ω ζ

δ ξ

δ ζ

= + +

×






≤ + ∈ ≤ +

≥ − ∈ Γ ≠ .

ξ ζ

‖ ‖

A

Ax x X j n n

Av v Y Y

arg min

, , ,

, , (13)

A F j j ij ij

i S j i j bag td

ij D ij i i j

, ,
2

2

2

where Γ = − | ≤ + ≠ˆ ˆX X i j n n Y Y{( ) , , }i i bag td i i , ntd is the labeled bag’s number in TD. Note that, if we cannot 
obtain any labeled bags from TD, we can delete the constraints in equation (13) corresponding to TD, and formu-
late the following method to learn the distance metric A,

∑ ∑λ ω ξ β ω ζ

δ ξ

δ ζ

= + +

×






≤ + ∈ ≤

≥ − ∈ Γ ≠ .

ξ ζ

‖ ‖

A

Ax x X j n

Av v Y Y

arg min

, , ,

, , (14)

A F j j ij ij

i S j i j bag

ij D ij i i j

, ,
2

2

2



Since we have reweighted the bags to balance the expected loss of learning framework on SD and TD, equa-
tion (14) can also generate an optimal solution for the multi-instance prediction problem, even without labeled 
bags in TD. In other words, labeled bags from TD are not required to guarantee a consistent expected loss of 
equation (13) on SD and TD.

Loss Analysis of Multi-Instance Metric Transfer Learning. We have provided a new learning framework in equa-
tions (13) and (14) to learn Mahalanobis distance metric under transfer learning setting. For a more detailed 
understanding of the new learning framework, we analyze the expected loss of this framework on both SD and 
TD in this section.

Figure 2. Comparison results with MIMTLkNN and MIMTLSVM on seven real-world organisms. 
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We use ( )expL J  to represent the expected loss of equation (13). Then ′ ( )expL J  can be written as,

L J ∫ ∫∑ ∑λ ω ξ β ω ω ζ= + + .
∼

r A P X d P X P X d d( ) ( ) ( ) ( ) ( ) (15)exp X P X j j j X i j ij i j X X( ) j i j

Because ω(X) =  P′ (X)/P(X), equation (15) can be rewritten as,

∫ ∫∑ ∑λ ξ β ζ= + ′ + ′ ′ .
∼

r A P X d P X P X d d( ) ( ) ( ) ( ) ( ) (16)exp X P X j j X ij i j X X( ) j i j
L J

From equation (16), we can see that the expected loss of equation (13) on SD is consistent with that on TD,

L J L J= ′
∼ ∼ ′

( ) ( ) , (17)exp X P X exp X P X( ) ( )

where ′
∼ ′

( )exp X P X( )
L J  indicates the expected loss of equation (13) on TD. This means that we can balance the 

difference between the expected loss of equation (13) on SD and TD with the help of the learned bag weights. 
Such that, equation (13) can guarantee the ability of generalizing the predicted model of TD data. Hence, distance 
metric A learned by MIMTL can more effectively measure the distance between bags.

Prediction by Using the Learned Metric. After we obtain the Mahalanobis distance metric by solving the 
optimization problem in equation (13), we can predict the label for test bags in TD. In this section, we will present 
how to predict by using the learned distance metric.

After we obtain the distance metric A, a base multi-instance learner (i.e., the citation-kNN algorithm26 and 
the multi-instacne multi-label support vector machine6) can be used cooperating with the distance metric A for 
bag label predicting. Considering the fact that, most of the genome-wide protein function prediction problem 
are associated with multiple class labels4,34, we train an independent distance metric A and a base multi-instance 
learner for each class. We present two methods to cooperate the distance metric A with basic multi-instance 
learner as following.

The First Method for Prediction. For the first method, we use MIMTLkNN to represent the MIMTL which use the 
citation-kNN algorithm as the base learner. For a given test bag Xi and the distance metric A, MIMTLkNN compute 
the distance between Xi and each training bag. Then, we find both the references and citers of Xi. The class labels 
of Xi is determined by a majority vote of the r nearest reference bags and the c nearest citing bags corresponding 
to Xi.

Algorithm 1 MIMTL

Required: Labeled data in SD and TD, step size’s γ1, γ2 and γ3, balance parameters (λ, β), a penalty coefficient σ, and a threshold ε.

1: Initialize A0, ξ0 and ζ0.

2: Centralize the input data: ← − ∑ =x x xi i n j
nall

j
1

1 .

3: Estimating bag weights ω by solving the optimization problem in equation (9).

4: procedure MIMTL(A, ξ, ζ)

5:   while true do

6:     Update A by

 

γ= −+ ∂
∂

A At t
A At

1
1
 .

7:     Update each ξi ∈  ξ by
 

ξ ξ γ= −
ξ

ξ

+ ∂
∂i

t
i
t

i
i
t

1
2 .

8:     Update each ζij ∈  ζ by
 
ζ ζ γ= −

ζ
ζ

+ ∂
∂ij

t
ij
t

ij
ij
t

1
3


.

9:     if ξ ζ ξ ζ ε− <+ + +A A( , , ) ( , , )t t t t t t1 1 1   then

10:       A =  At+1, ξ =  ξt+1, ζ =  ζt+1, break.

11:     end if

12:   end while

13: end procedure

Ensure: ξ ζ =A( , , ) arg min  .

The Second Method for Prediction. For the second method, we use MIMTLSVM to represent the MIMTL which 
utilize the MIMLSVM algorithm as the base learner. To predict the label of a given test bag Xi, we first cluster all 
of the instances in training data into k-medoids with the learned distance metric A. We denote the cluster number 

+r n n( )bag ta
l , where r represents the ratio parameter and nta

l  is the labeled bags number in TD (
n nta

l
bag). Then, 

we generate a k-dimensional numerical vector for each bag in SD and TD = …z z z z[ , , , ]j j j j k
T

,1 ,2 , , 
≤ ≤ +j n n1 ( )bag ta

l , in which zj,i denotes the distance between the j-th bag and the i-th medoid. Then we can 
transfer the bag data set into a single-instance data set Z,
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= … .+Z z z z[ , , , ]n n
T

1 2 bag ta
l

With derived data set Z, we learn a binary classifier by support vector machine35. For the given test bag Xi, we 
first transform Xi into a k-dimensional numerical vector = …f f f f[ , , , ]i i i i k

T
,1 ,2 ,  by computing the Mahalanobis 

distance between bag Xi and all the medoids. Then, we can predict the label of Xi by predicting the label of fi with 
the learned binary classifier.

Optimization. In this section, we derive approaches to solve the optimization problem constructed in equa-
tion (13). We first convert the constrained problem to an unconstrained problem by adding penalty functions. 
The resulting optimization problem becomes,
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∑
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Genome MIMLNN MIMLSVM EnMIMLmetric MIMTL

Ranking Loss ↓ 

 HM 0.3411 ±  0.0229 (4) 0.3315 ±  0.0161 (3) 0.3248 ±  0.0092 (2) 0.2904 ±  0.0348 (1)

 PF 0.3153 ±  0.0172 (3) 0.3443 ±  0.0149 (4) 0.3136 ±  0.0132 (2) 0.2784 ±  0.0197 (1)

 AV 0.3887 ±  0.0167 (4) 0.3629 ±  0.0139 (2) 0.3882 ±  0.0049 (3) 0.3340 ±  0.0136 (1)

 GS 0.4338 ±  0.0116 (4) 0.3979 ±  0.0153 (2) 0.4197 ±  0.0084 (3) 0.3376 ±  0.0224 (1)

 CE 0.3929 ±  0.0138 (4) 0.2759 ±  0.0056 (1) 0.3643 ±  0.0103 (3) 0.3139 ±  0.0176 (2)

 DM 0.3440 ±  0.0077 (3) 0.2797 ±  0.0056 (1) 0.3548 ±  0.0091 (4) 0.3002 ±  0.0145 (2)

 SC 0.4081 ±  0.0071 (2) 0.2884 ±  0.0022 (1) 0.4083 ±  0.0067 (3) 0.4238 ±  0.0174 (4)

 Average Rank 3.4286 2 2.8571 1.7143

Coverage ↓ 

 HM 104.9102 ±  6.1158 (4) 96.5986 ±  4.5074 (2) 99.1306 ±  3.6104 (3) 82.9551 ±  8.3830 (1)

 PF 147.5855 ±  6.2129 (4) 147.3493 ±  7.0038 (3) 142.1638 ±  5.3214 (2) 124.2589 ±  7.3765 (1)

 AV 168.0298 ±  5.7280 (4) 147.0354 ±  5.5012 (2) 160.9854 ±  2.6453 (3) 139.0677 ±  5.6253 (1)

 GS 159.9543 ±  4.0170 (4) 139.6457 ±  4.5796 (2) 151.9766 ±  3.9327 (3) 120.0859 ±  8.4693 (1)

 CE 453.8295 ±  13.6709 (4) 315.3995 ±  6.1653 (1) 421.4290 ±  9.1993 (3) 360.8714 ±  17.8819 (2)

 DM 479.2888 ±  8.2933 (3) 376.5261 ±  7.0924 (1) 480.6691 ±  8.4298 (4) 407.3001 ±  18.8377 (2)

 SC 834.1562 ±  11.0925 (3) 568.0499 ±  4.9514 (1) 834.9128 ±  9.2612 (4) 820.2915 ±  21.4581 (2)

 Average Rank 3.7143 1.7143 3.1429 1.4286

Average-Recall ↑ 

 HM 0.0020 ±  0.0028 (4) 0.0951 ±  0.0185 (3) 0.1451 ±  0.0191 (2) 0.2840 ±  0.0377 (1)

 PF 0.0039 ±  0.0031 (4) 0.0748 ±  0.0312 (3) 0.0859 ±  0.0086 (2) 0.2910 ±  0.0379 (1)

 AV 0.0074 ±  0.0084 (4) 0.0548 ±  0.0132 (2) 0.0470 ±  0.0063 (3) 0.1819 ±  0.0221 (1)

 GS 0.0055 ±  0.0053 (4) 0.0830 ±  0.0204 (3) 0.1405 ±  0.0343 (2) 0.2244 ±  0.0266 (1)

 CE 0.0756 ±  0.0042 (4) 0.1022 ±  0.0045 (3) 0.1310 ±  0.0055 (2) 0.1779 ±  0.0163 (1)

 DM 0.0499 ±  0.0058 (4) 0.0713 ±  0.0050 (3) 0.1104 ±  0.0067 (2) 0.1808 ±  0.0124 (1)

 SC 0.0062 ±  0.0023 (4) 0.0289 ±  0.0010 (2) 0.0269 ±  0.0026 (3) 0.0455 ±  0.0235 (1)

 Average Rank 4 2.7143 2.2857 1

Average-F1 ↑ 

 HM 0.0040 ±  0.0054 (4) 0.1315 ±  0.0220 (3) 0.2042 ±  0.0191 (2) 0.2459 ±  0.0433 (1)

 PF 0.0076 ±  0.0060 (4) 0.1072 ±  0.0374 (3) 0.1342 ±  0.0103 (2) 0.2496 ±  0.0411 (1)

 AV 0.0136 ±  0.0151 (4) 0.0800 ±  0.0173 (2) 0.0777 ±  0.0092 (3) 0.1659 ±  0.0245 (1)

 GS 0.0107 ±  0.0099 (4) 0.1130 ±  0.0242 (3) 0.1775 ±  0.0325 (2) 0.1910 ±  0.0304 (1)

 CE 0.1086 ±  0.0047 (4) 0.1418 ±  0.0046 (3) 0.1695 ±  0.0052 (2) 0.1698 ±  0.0129 (1)

 DM 0.0781 ±  0.0076 (4) 0.1076 ±  0.0062 (3) 0.1458 ±  0.0064 (2) 0.1698 ±  0.0096 (1)

 SC 0.0116 ±  0.0042 (4) 0.0473 ±  0.0014 (2) 0.0427 ±  0.0033 (3) 0.0502 ±  0.0194 (1)

 Average Rank 4 2.7143 2.2857 1

Table 4.  Comparison results using the data setting of MICS31. ↓  (↑ ) indicates the smaller (larger), the better 
of the performance.
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where σ is the penalty coefficient.
Then we use the gradient-projection method36 to solve the optimization problem in equation (18). To be pre-

cise, in the first step, we initialize A0, ξ0 and ζ0, and centralize the input data by equation (11). In the second step, 
we update the value of A, ξ and ζ using gradient descent based on the following rules,
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The derivatives of the objective f with respect to A, ξ and ζ in equations (19–21) are,
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Figure 3. Comparison results with MIMTL and MICS on seven real-world organisms.
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We repeat the second step until the change of the objective function   is less than a threshold ε. A detailed 
procedure is given in Algorithm 1.

Results
In this section, we verify the effectiveness of the proposed MIMTL approach, by conducting extensive experi-
ments on seven real-world organisms which cover the biological three-domain system37–39 (i.e., archaea, bac-
teria, and eukaryote). We compare the performance of MIMTL (The source code of MIMTL will be open upon 
the publication of papers.) with several sate-of-the-arts multi-instance learning methods including MIMLSVM6, 
MIMLNN6, EnMIMLNN4 and MICS31. And the results of the comparison show that the proposed algorithm 
MIMTL outperforms other algorithms.

Data setting. The seven real-world organisms datasets (http://lamda.nju.edu.cn/files/MIMLprotein.zip) have 
been used by many prior researchers on genome-wide protein function prediction4 problem. The datasets come 
from the biological three-domain system (i.e., archaea, bacteria, eukaryote).

•	 The Archaea Genomes: Haloarcula marismortui (HM) and Pyrococcus furiosus (PF).
•	 The Bacteria Genomes: Azotobacter vinelandii (AV) and Geobacter sulfurreducens (GS).
•	 The Eukaryote Genomes: Caenorhabditis elegans (CE), Drosophila melanogaster (DM) and Saccharomyces 

cerevisiae (SC).

Details information of the datasets is shown in Tables 2 and 3. For each dataset, each bag containing several 
instances represents the protein in organisms, and each instance is described by a 216-dimensions vector where 
each dimension is the frequency of a triad type40. And a group of GO molecular function terms41 is associated 
with each instance. For example, the Haloarcula marismortui dataset contains 304 proteins (bags) and includ-
ing a number of 234 gene ontology terms (class) on molecular function (Table 2). The total instance number of 
Haloarcula marismortui dataset is 950. The average number of instances per bag (protein) is 3.13 ±  1.09, and the 
average number of labels (GO terms) per instance is 3.25 ±  3.02.

For each dataset, we separate the bags into the source and target domain by a sampling procedure following 
MICS. For instance, we put the bag into source domain if η∑ ≤ = .xPr( ) 0 1u v u v, ,  and η∑ > = .xPr( ) 0 9u v u v, ,  
where η represents the median of ∑ xu v u v, , ’s of all the bags in each dataset. The rest bags are put into the target 
domain. With this setting, the source domain has a higher density of bags with large feature values than that of the 
target domain.

Considering the fact that the segmentation methods of the source and target domains provided by MICS are 
artificially set. The data setting may be different from the real application. In order to give fair comparisons, we 
also test the performance of our algorithm in a more general setting. In this setting, the original bag data were 
randomly clustered into two clusters according to the center of the bag. Then, we randomly select one cluster as 

Figure 4. The average ranks diagrams45 for the ranking-based measures: Ranking Loss (a), Coverage (b), 
Average Recall (c), and Average-F1 (d). The data setting used in this figure is under the protocol of MICS31.

http://lamda.nju.edu.cn/files/MIMLprotein.zip
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the source domain, and set the rest as the target domain. By this way, the original bag data is naturally split into 
two domains. Hence, the comparison will be more fair.

Evaluation Measure. In our experiments, we use four popular evaluation criteria to evaluate the perfor-
mance the multi-instance learning approaches, i.e., Ranking Loss (RankLoss)6, Coverage (Coverage)42, 
Average-Recall (avgRecall)6 and Average-F1 (avgF1)6. To explain each measure, for a given test set 
= …S X Y X Y X Y( , ), ( , ), , ( , )N N1 1 2 2 , we denote h(Xi) the returned labels for Xi; h(Xi, y) is the returned confi-

dence (real-value) for Xi; rankh(Xi, y) is the rank of y which is derived from h(Xi, y); Y i is the complementary set 
of Yi. Then, the criteria Ranking Loss is used to measure the average fraction of misordered label pairs generated 
by each algorithm. The little the ranking loss, the better the performance of the algorithm.

∑= ≤ ∈ ×
=

Ranking loss h
N Y Y

y y h X y h X y y y Y Y( ) 1 1 {( , ) , ( , ) ( , ), ( , ) } ,
i

N

i i
i i i i

1
1 2 1 2 1 2

The criteria Coverage is utilized to evaluate the average fraction of how far it is needed to go down the list of 
labels to cover all of the proper labels in the test bag. The little the coverage, the better the performance of the 
algorithm.

Genome MIMLNN MIMLSVM EnMIMLNNmetric MIMTL

Ranking Loss ↓ 

 HM 0.3146 ±  0.0218 (3) 0.3461 ±  0.0132 (4) 0.3096 ±  0.0236 (2) 0.2666 ±  0.0177 (1)

 PF 0.3168 ±  0.0178 (2) 0.3557 ±  0.0138 (4) 0.3230 ±  0.0170 (3) 0.2859 ±  0.0159 (1)

 AV 0.3721 ±  0.0159 (3) 0.3804 ±  0.0189 (4) 0.3707 ±  0.0127 (2) 0.3212 ±  0.0155 (1)

 GS 0.3693 ±  0.0199 (2) 0.3813 ±  0.0250 (3) 0.3928 ±  0.0136 (4) 0.3194 ±  0.0192 (1)

 CE 0.2307 ±  0.0033 (4) 0.1931 ±  0.0098 (1) 0.2097 ±  0.0061 (2) 0.2157 ±  0.0065 (3)

 DM 0.2317 ±  0.0083 (4) 0.1893 ±  0.0049 (1) 0.2143 ±  0.0081 (3) 0.2126 ±  0.0098 (2)

 SC 0.3090 ±  0.0066 (3) 0.2496 ±  0.0057 (1) 0.3352 ±  0.0073 (4) 0.2872 ±  0.0171 (2)

 Average Rank 3 2.5714 2.8571 1.5714

Coverage ↓ 

 HM 102.5066 ±  5.1192 (3) 106.1454 ±  4.2328 (4) 99.5941 ±  4.6906 (2) 84.3914 ±  5.1049 (1)

 PF 153.5061 ±  6.7742 (2) 158.7094 ±  5.0619 (4) 156.6540 ±  7.1480 (3) 137.2249 ±  7.1226 (1)

 AV 168.5917 ±  6.1400 (4) 157.8088 ±  5.8091 (2) 157.9515 ±  5.5142 (3) 137.6652 ±  4.8167 (1)

 GS 161.7774 ±  7.1352 (4) 149.8095 ±  7.5255 (2) 160.1811 ±  4.5556 (3) 127.2642 ±  6.4359 (1)

 CE 317.1824 ±  4.2358 (4) 265.7309 ±  12.6447 (1) 287.8608 ±  6.8164 (3) 277.9165 ±  7.5019 (2)

 DM 371.9936 ±  15.5735 (4) 307.6074 ±  8.2128 (1) 348.6276 ±  13.8078 (3) 318.3221 ±  19.4774 (2)

 SC 726.7027 ±  13.0010 (3) 564.7905 ±  7.7727 (1) 754.1319 ±  11.8070 (4) 625.5630 ±  35.9015 (2)

 Average Rank 3.4286 2.1429 3 1.4286

Average-Recall ↑ 

 HM 0.0633 ±  0.0081 (4) 0.1678 ±  0.0094 (3) 0.1803 ±  0.0174 (2) 0.3934 ±  0.0156 (1)

 PF 0.0533 ±  0.0100 (4) 0.1264 ±  0.0136 (3) 0.1416 ±  0.0150 (2) 0.3632 ±  0.0259 (1)

 AV 0.0546 ±  0.0116 (4) 0.1150 ±  0.0088 (3) 0.1279 ±  0.0134 (2) 0.2739 ±  0.0240 (1)

 GS 0.0511 ±  0.0117 (4) 0.1286 ±  0.0129 (2) 0.1272 ±  0.0181 (3) 0.3092 ±  0.0180 (1)

 CE 0.1671 ±  0.0079 (4) 0.2184 ±  0.0076 (3) 0.3170 ±  0.0132 (2) 0.5681 ±  0.0327 (1)

 DM 0.1562 ±  0.0102 (4) 0.1926 ±  0.0088 (3) 0.2998 ±  0.0080 (2) 0.5710 ±  0.0289 (1)

 SC 0.0350 ±  0.0028 (4) 0.0613 ±  0.0045 (3) 0.0739 ±  0.0055 (2) 0.4590 ±  0.0515 (1)

 Average Rank 4 2.8571 2.1429 1

Average-F1 ↑ 

 HM 0.1073 ±  0.0114 (4) 0.2160 ±  0.0111 (3) 0.2465 ±  0.0166 (2) 0.3269 ±  0.0192 (1)

 PF 0.0902 ±  0.0146 (4) 0.1684 ±  0.0138 (3) 0.1991 ±  0.0154 (2) 0.2965 ±  0.0212 (1)

 AV 0.0898 ±  0.0151 (4) 0.1514 ±  0.0100 (3) 0.1770 ±  0.0159 (2) 0.2373 ±  0.0174 (1)

 GS 0.0860 ±  0.0166 (4) 0.1647 ±  0.0151 (3) 0.1760 ±  0.0197 (2) 0.2549 ±  0.0130 (1)

 CE 0.2306 ±  0.0083 (3) 0.2842 ±  0.0085 (2) 0.3808 ±  0.0113 (1) 0.1710 ±  0.0278 (4)

 DM 0.2186 ±  0.0116 (3) 0.2577 ±  0.0098 (2) 0.3608 ±  0.0079 (1) 0.2013 ±  0.0255 (4)

 SC 0.0587 ±  0.0040 (4) 0.0927 ±  0.0055 (3) 0.1065 ±  0.0061 (1) 0.1049 ±  0.0069 (2)

 Average Rank 3.7143 2.7143 1.5714 2

Table 5.  Comparison results using the evaluation protocol of EnMIMLNN4 (the source domain and 
target domain are drawn from the same distribution). ↓  (↑ ) indicates the smaller (larger), the better of the 
performance.
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The criteria Average-Recall is included to measure the average fraction of correctly predicted labels. The larger 
the Average-Recall, the better the performance of the algorithm.
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The criteria Average-F1 is a tradeoff of the average precision6 and the average recall. The larger Average-F1, the 
better the performance of the algorithm.

=
× ×

+
avgF h avgPrec h avgRecall h

avgPrec h avgRecall h
1( ) 2 ( ) ( )

( ) ( )
,

in which avgPrec(h) represents the average precision6.
Note that, in this paper, we do not use average precision to measure the performance of each algorithm. This 

is because, the positive and negative bags of these seven datasets are very unbalanced. The ratio between the 
number of positive instance and negative instance has been shown in Table 3. In this situation, if we set all the test 

Genome MIMLNN MIMLSVM EnMIMLmetric MIMTL

Ranking Loss ↓ 

 HM 0.3281 ±  0.0279 (2) 0.3494 ±  0.0119 (4) 0.3333 ±  0.0276 (3) 0.3033 ±  0.0162 (1)

 PF 0.3279 ±  0.0103 (2) 0.3524 ±  0.0039 (4) 0.3316 ±  0.0195 (3) 0.3035 ±  0.0231 (1)

 AV 0.3786 ±  0.0110 (3) 0.3912 ±  0.0134 (4) 0.3772 ±  0.0155 (2) 0.3511 ±  0.0162 (1)

 GS 0.3628 ±  0.0190 (2) 0.3722 ±  0.0098 (3) 0.3833 ±  0.0078 (4) 0.3353 ±  0.0226 (1)

 CE 0.2304 ±  0.0029 (4) 0.1910 ±  0.0076 (1) 0.2099 ±  0.0044 (2) 0.2221 ±  0.0037 (3)

 DM 0.2344 ±  0.0012 (4) 0.1892 ±  0.0012 (1) 0.2144 ±  0.0016 (3) 0.2057 ±  0.0082 (2)

 SC 0.3062 ±  0.0056 (3) 0.2502 ±  0.0018 (1) 0.3371 ±  0.0071 (4) 0.2829 ±  0.0152 (2)

 Average Rank 2.8571 2.5714 3 1.5714

Coverage ↓ 

 HM 105.4079 ±  2.7543 (4) 105.1294 ±  5.2652 (3) 103.8311 ±  5.4997 (2) 92.6952 ±  4.3571 (1)

 PF 156.9030 ±  4.5401 (2) 157.1299 ±  3.8358 (3) 160.0532 ±  9.8530 (4) 135.1252 ±  10.3370 (1)

 AV 167.2059 ±  9.4550 (4) 160.3971 ±  8.4329 (3) 156.1176 ±  6.9683 (2) 144.0719 ±  7.0694 (1)

 GS 161.1491 ±  4.3131 (4) 147.8368 ±  5.6174 (2) 158.7298 ±  8.2310 (3) 134.2649 ±  10.7539 (1)

 CE 316.9668 ±  6.1003 (4) 262.3989 ±  4.3975 (1) 286.4719 ±  2.7980 (3) 285.3007 ±  11.3299 (2)

 DM 378.4963 ±  3.4863 (4) 311.0507 ±  7.4777 (1) 350.9775 ±  7.2447 (3) 312.6278 ±  12.7775 (2)

 SC 718.7297 ±  8.7041 (3) 565.9772 ±  4.0773 (1) 754.0876 ±  17.5188 (4) 616.2332 ±  37.8974 (2)

 Average Rank 3.5714 2 3 1.4286

Average-Recall ↑ 

 HM 0.0664 ±  0.0080 (4) 0.1713 ±  0.0102 (3) 0.1751 ±  0.0070 (2) 0.5435 ±  0.0456 (1)

 PF 0.0525 ±  0.0054 (4) 0.1187 ±  0.0190 (3) 0.1423 ±  0.0124 (2) 0.6026 ±  0.0284 (1)

 AV 0.0533 ±  0.0056 (4) 0.1088 ±  0.0072 (3) 0.1237 ±  0.0057 (2) 0.4727 ±  0.0176 (1)

 GS 0.0455 ±  0.0060 (4) 0.1313 ±  0.0077 (2) 0.1158 ±  0.0192 (3) 0.4979 ±  0.0074 (1)

 CE 0.1647 ±  0.0050 (4) 0.2205 ±  0.0094 (3) 0.3090 ±  0.0092 (2) 0.6066 ±  0.0186 (1)

 DM 0.1590 ±  0.0119 (4) 0.1920 ±  0.0085 (3) 0.3036 ±  0.0081 (2) 0.5785 ±  0.0279 (1)

 SC 0.0319 ±  0.0020 (4) 0.0610 ±  0.0038 (3) 0.0769 ±  0.0043 (2) 0.4752 ±  0.0483 (1)

 Average Rank 4 2.8571 2.1429 1

Average-F1 ↑ 

 HM 0.1121 ±  0.0116 (4) 0.2209 ±  0.0125 (3) 0.2387 ±  0.0060 (2) 0.2814 ±  0.0528 (1)

 PF 0.0895 ±  0.0079 (4) 0.1600 ±  0.0202 (2) 0.1994 ±  0.0146 (1) 0.1595 ±  0.0137 (3)

 AV 0.0877 ±  0.0074 (4) 0.1414 ±  0.0069 (3) 0.1699 ±  0.0037 (1) 0.1599 ±  0.0111 (2)

 GS 0.0786 ±  0.0089 (4) 0.1700 ±  0.0092 (2) 0.1660 ±  0.0226 (3) 0.1846 ±  0.0481 (1)

 CE 0.2280 ±  0.0046 (3) 0.2871 ±  0.0102 (2) 0.3739 ±  0.0057 (1) 0.1584 ±  0.0150 (4)

 DM 0.2226 ±  0.0124 (3) 0.2570 ±  0.0095 (2) 0.3629 ±  0.0075 (1) 0.2037 ±  0.0320 (4)

 SC 0.0543 ±  0.0031 (4) 0.0922 ±  0.0047 (3) 0.1097 ±  0.0054 (1) 0.1001 ±  0.0142 (2)

 Average Rank 3.7143 2.4286 1.4286 2.4286

Table 6.  Comparison results on the dataset where the source and target domains are drawn from different 
clusters. ↓  (↑ ) indicates the smaller (larger), the better of the performance.
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bags to be negative, we can get a very high average precision. Hence, the average precision cannot measure the 
performance of each algorithm in the fair.

To make a fair comparison, we conduct all the experiments in this paper with 20 random permutations for 
each dataset. We report the comparison results for each evaluation metric-based on the averaging results over 
those 20 runs.

Comparing Algorithms. In this section, we briefly introduce the comparison methods (MIMLNN, 
MIMLSVM, EnMIMLNN, MICS) (The codes of these four MIL algorithms have been shared by their authors: 
http://lamda.nju.edu.cn/CH.Data.ashx) used in our experiments. On one hand, considering the fact that MIMTL 
is used to tackle the multi-instance learning problem, we compare MIMTL with MIMLNN, MIMLSVM which are 
two classical multi-instance learning algorithms. On the other hand, since MIMTL is also a kind of metric-based 
MIL, we include EnMIMLNN as a comparison method. Considering the fact that, MIMTL and MICS are both 
designed for Multi-Instance learning under transfer learning setting. The difference between MIMTL and MICS 
is that these two methods use different distance to measure the bags’ distance. For instance, MIMTL use the 
Mahalanobis distance to measure the bags’ distance while MICS use the Euclidean distance. To verify the contri-
bution of the Mahalanobis distance to MIMTL, we include MICS as a comparison method.

We have introduced two methods to predict bag label for the test bags. To research which method is better 
for MIMTL, we also compare MIMTLkNN with MIMTLSVM on all dataset. MIMTLkNN is a variant of MIMTL by 
setting the base learner to be citation-kNN. And MIMTLkNN is also a variant of MIMTL by setting the base learner 
to be SVM.

Parameter Configurations. In this section, we present the detail parameter configurations of each algo-
rithm used in our experiments. To make the comparison more fair, we use the best parameters reported in the 
papers for the baseline methods. We select the best parameters for MIMTL by cross-validation.

•	 MIMLNN: The regularization parameter used to compute the matrix inverse is set to 1 and the number of 
clusters is set to 40 percent of the training bags.

•	 MIMLSVM: The number of clusters is set to 20 percent of the training bags and the SVM used in MIMLSVM 
is implemented by LIBSVM35 package with radial basis function whose parameter “− c” is set to 1 and “− g” 
is set to 0.2.

•	 EnMIMLNN: The fraction parameter and the scaling factor are set to 0.1 and 0.8, respectively.
•	 MICS: The number of clusters is set to 80 percent of the training bags and the SVM used in MICS is imple-

mented by LIBSVM35 package with radial basis function whose parameter “− c” is set to 1 and “− g” is set to 
0.2.

•	 MIMTL: We set the balance parameters λ =  1, β =  1 and set the number of clusters to be 40 percent of the 
training bags. We select the radial basis function with “− c =  1” and “− g =  0.2” for the base learner SVM.

Performance Comparison. We have presented two versions of MIMTL, MIMTLkNN and MIMTLSVM in 
details. Before we compare MIMTL with other state-of-the-art MIL methods, we actually want to select a better 
base learner for MIMTL. To this end, we compare the performances of MIMTLkNN and MIMTLSVM on the seven 
datasets. Figure 2 reports the experimental results. From the figure, we can observe that the ranking loss and 
coverage of MIMTLSVM on all the seven datasets is dramaticly lower than that of MIMTLkNN. We also note that the 
avgF1 and avgRecall of MIMTLSVM on most datasets are much higher than that of MIMTLkNN. These experimen-
tal results in Fig. 2 suggest that SVM is more suitable for MIMTL as the base learner than citation-kNN.

In the second experiment, we verify the performance of MIMTL by comparing MIMTL with the other 
three traditional state-of-the-art MIL methods (MIMLNN, MIMLSVM, EnMIMLNN). The comparison results 
with four state-of-the-art MIL methods on seven real-world organisms are shown in Tables 4 and 5. From the 
table, we find that the performance of MIMTL is particularly significant than the other MIL methods. This is 
because, MIMLNN, MIMLSVM and EnMIMLNN are designed for the traditional MIL problem where the train-
ing and test bags are drawn from the same distribution. And the multi-instance classifier trained by MIMLNN, 
MIMLSVM and EnMIMLNN on SD cannot well suit to TD task. Different from MIMLNN, MIMLSVM and 
EnMIMLNN, MIMTL takes into account the distribution different problem between SD and TD and utilizes bag 
weights trick to handle this problem. Such that MIMTL can keep a better performance than other methods under 
transfer learning setting.

In the third experiment, we compare the performance of MIMTL with MICS since MIMTL is designed for 
multi-instance transfer learning problem, in this paragraph. The performance results for each algorithm on the 
seven datasets are shown in Fig. 3. From the figures, we find that the ranking loss and coverage of MIMTL on six 
of the seven datasets are lower than that of MICS. The avgRecall and avgF1 of MIMTL on all the seven datasets 
are higher than that of MICS. Though MIMTL and MICS are both designed for multi-instance transfer learning 
problem, the performance of MIMTL is much better than that of MICS. This may be because MICS only use the 
Euclidean distance to measure the distance bags. Compared to MICS, MIMTL utilize Mahalanobis distance into 
the multi-instance transfer learning. With the advantage of Mahalanobis distance, MIMTL can preserve much 
intrinsic geometric information of the bags than MICS. Hence, MIMTL can more effectively enhance the perfor-
mance for multi-instance prediction for genome-wide protein function prediction.

In the fourth experiment, we also test the performance of MIMTL on the seven datasets with more general 
settings. In this experiment, we first randomly clustered each dataset in to two clusters. Then we set one cluster as 
the source domain and the rest as the target domain. Table 6 shows the experimental results. From the table, we 
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can find that compared with four other baselines on the several genomic datasets, our algorithm is more excel-
lent. Combining the experimental results from Tables 4 and 6, we found that our algorithm maintains excellent 
performance in both data settings (the data setting according to MICS, and the data setting according to random 
clustering). This may indicate that the performance of our algorithm is not affected by data settings. And this 
result also validates the robustness of our algorithm.

In the fifth experiment, we further verify compare MIMTL with the other state-of-the-art methods based on 
a robust non-parametric test (This non-parametric test provides us a method for comparing more algorithms 
across multiple data sets. The test procedure includes three steps: First, we rank the algorithms on each data 
set. Then, compute the average rank (in the descending order) of each algorithm on all the data set. At last, the 
Nemenyi post-hoc test is utilized to detect if a algorithm is significantly different from the others according to 
the average rank. The performances of two algorithms are significantly different if their corresponding average 
ranks differ by at least a critical distance (CD), vice versa. The algorithms that do not differ significantly than 
each other are usually connected with a bold horizontal line. The value of the critical distance is depended on 
the number of comparing algorithms, data sets number and a significance level p (i.e., p =  0.05). (The Friedman 
test43 with the corresponding Nemenyi post-hoc tests44) as recommended by Demšar, Janez45. The data setting 
used in this figure is following the protocol of MICS31. The test results of MIMLNN, MIMLSVM, EnMIMLNN, 
MICS and MIMTL are presented with several diagrams as shown in Fig. 4. Each subgraph in Fig. 4 is corre-
sponding to a ranking-based measure. From the test results, we observe that the performance of MIMTL is 
similar as MIMLSVM on ranking loss and Coverage. And, the performance of MIMTL is significantly better 
than MIMLNN, EnMIMLNN, MICS on all the evaluation measures which verify the excellent performance of 
MIMTL.

Note that, the performance reported in Table 4 are different from that reported by EnMIMLNN and 
MIMLDML. This is because, we select the training and test data from different domains while EnMIMLNN select 
the training and test data from the same domain. To make the comparison more comprehensive, we compare 
MIMTL with the baselines following the evaluation protocol of EnMIMLNN, and randomly select the training 
and test data from the same domain.
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