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Six-band terahertz metamaterial 
absorber based on the combination 
of multiple-order responses of 
metallic patches in a dual-layer 
stacked resonance structure
Ben-Xin Wang1, Gui-Zhen Wang2, Tian Sang1 & Ling-Ling Wang3

This paper reports on a numerical study of the six-band metamaterial absorber composed of two 
alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious 
resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, 
third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-
order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, 
respectively, and thus the absorption mechanism of six-band absorber is due to the combination of 
two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic 
layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we 
also present a six-band polarization tunable absorber through varying the sizes of the structure in two 
orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using 
a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct 
resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-
band absorbers obtained here have potential applications in many optoelectronic and engineering 
technology areas.

In recent years, metamaterial-based resonance devices have attracted considerable attention due to the fact 
that they have the ability to manipulate and control the incident electromagnetic (EM) wave at sub-wavelength 
dimensions. These devices are, but are not limited to modulators1, filters2, absorbers3, switches4, polarization con-
versions5 and electromagnetically induced transparency (or absorption)6,7. Among them, metamaterial perfect 
absorber (MPA)8–10 has garnered interest because they have many potential application prospects in optoelec-
tronic related areas, including photovoltaics and solar cells, thermal radiation and imaging, materials detection, 
and so on. Therefore, since the MPA first presentation in the year of 20083, the MPAs based on various resonance 
structures11–26 have remarkably progressed from microwave to optical. However, most of MPAs presented here 
have the common problems of narrow-band or single-band absorption, as a result of the strong EM response of 
the metamaterials. This kind of resonance characteristic greatly restricts the application prospects of the MPAs. In 
many application areas, hence, it is necessary to develop and design the multiple-band MPAs.

The multiple-band MPAs can be easily obtained by coplanar or stacked structures composed of several dif-
ferent dimensions of the metallic elements (or resonators)27–53. However, because the limitation of the number 
of the resonators or elements in the metamaterial structures, the research of the multiple-band MPAs is mainly 
concentrated in dual-band27–34, triple-band35–42 and quad-band absorption43–53. In other words, the number of 
the absorption peaks of the current MPAs is no more than four. More importantly, in these structures, we found 
that the design of these multiple-band MPAs is mainly based on the combined effect of the fundamental mode 
resonance (i.e., the 1-order response) of the metallic patterns. The investigation of the high-order responses of 
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the metallic patterns is rarely reported. In this paper, we extend the analysis of MPAs by making full use of the 
high-order responses of the metallic patterns to achieve the multiple-band (including the six-band and even the 
nine-band) absorption responses.

Moreover, for the applications of the selective thermal emitter, and thermal imaging, multiple-band MPAs, 
especially which have more than four resonance peaks (for example six-band absorption) are in urgent need of 
development. Unfortunately, these kinds of multiple-band MPAs are seldom demonstrated. However, according 
to the strategy of the multiple-band MPAs that using the aggregation effect of the fundamental responses of the 
metallic patterns in coplanar or stacked layers, the design of the six-band MPA inevitably has complex resonance 
structure and time-consuming processing steps.

This paper presents the design of the six-band MPA based on multiple-order responses of metallic patterns at 
terahertz frequency. The demonstrated six-band MPA is composed of two alternating stack of metallic-dielectric 
layers on a metallic board. Numerical studies prove that the designed MPA possesses six distinct resonance bands, 
and the average absorption coefficients of them are greater than 99.37%. Each layer of resonance structure has 
three resonance modes (1-order, 3-order and 5-order responses), and thus the mechanism of the six-band absorp-
tion is attributed to the combination of two sets of three different resonance modes (1-order, 3-order and 5-order 
responses) of the two metallic layers. The mechanism of the presented multiple-band MPA is different from those 
in most references that only utilize the superposition of the fundamental mode response (i.e., 1-order resonance) 
of metallic patterns. Besides, the resonance frequencies of the six-band MPA can be tuned by varying the sizes 
of the metallic layers and the thicknesses of the dielectric layers. Using the results, we also investigate and study 
a polarization tunable six-band MPA through adjusting the sizes of the metallic layers in two perpendicular 
(or orthogonal) polarization directions. Furthermore, the number of the resonance bands or peaks can be fur-
ther increased by stacking more metallic layers, for example, nine-band terahertz MPA is obtained by utilizing a 
three-layer stacked resonance structure. Six-band and even nine-band MPAs achieved here have many practical 
applications, such as thermal imaging and radiation, and the investigation and study of the multiple-band MPAs 
will facilitate the development of the metamaterial devices.

Figure 1.  (a) and (b) show the side- and top-view of the six-band MPA, respectively, the parameters (in μ​m) of 
the MPA are: l1 = l1x =​ l1y =​ 55, l2 = l2x =​ l2y =​ 65, t1 =​ 6, t2 =​ 4.5, P =​ Px =​ Py =​ 75; (c) is the absorption spectrum 
of the designed six-band MPA.
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Results and Discussion
Figure 1(a) and (b) show the side- and top-view of the six-band MPA, respectively. As shown in Fig. 1(a), the pre-
sented six-band MPA is a dual-layer stacked resonance structure, and the length of the top metallic square patch 
(l1) is smaller than that of the bottom square patch (l2). Detailed parameters (in μ​m) of the six-band MPA are: 
l1 = l1x =​ l1y =​ 55, l2 = l2x =​ l2y =​ 65, t1 =​ 6, t2 =​ 4.5, P =​ Px =​ Py =​ 75. The calculation results of the whole paper are 
carried out using FDTD Solutions, which is based on finite-difference time-domain method. The other geomet-
rical parameters of the presented MPA and the computational model as well as the appropriate boundary condi-
tions applied in this paper are shown in the Section of the Methods.

Figure 1(c) presents the simulated absorption spectra of the designed six-band MPA. As you can seen in 
Fig. 1(c), six obvious absorption peaks or bands at frequencies of 0.60 THz (f1), 0.80 THz (f2), 1.74 THz (f3), 
2.33 THz (f4), 2.75 THz (f5), and 3.63 THz (f6) with high absorption coefficients of 99.10%, 99.90%, 98.77%, 
98.82%, 99.99%, and 99.63% are observed, respectively. The bandwidths (full width half maximum) of the six 
resonance peaks from low- to high-frequency are 0.079 THz, 0.088 THz, 0.097 THz, 0.097 THz, 0.079 THz, and 
0.079 THz, respectively. The Q (the resonance frequency with respect to the bandwidth) values of the modes f1, 
f2, f3, f4, f5, and f6 are 7.59, 9.09, 17.94, 24.02, 34.81, and 45.95, respectively. Meanwhile, the off-resonances (for 
example at 0.70 THz, 1.32 THz, 2.10 THz, 2.50 THz, 3.20 THz, and 3.80 THz) absorption coefficients of presented 
MPA are quite low, not exceeding 30%. These resonance characteristics indicate that the six absorption bands are 
apparently discernible and the perfect absorption with quite narrow bandwidth merely appears near the operating 
frequency.

The resonance modes f1, f3, and f5 are the fundamental mode (i.e., the 1-order), 3-order, and 5-order responses 
of the metallic patch l2, respectively, while the modes f2, f4, and f6 are the 1-order, 3-order, and 5-order responses 
of the metallic patch l1, respectively. That is to say, the resonance modes of the f1, f3, f5 and f2, f4, f6 are the 
multiple-order responses of the metallic patches l2, and l1, respectively. Utilizing the classical antenna theory and 
LC resonance model, a further understand of the absorption mechanism of six-band MPA can be given54–57. This 
is a known fact that the operating frequency of the absorber satisfies the following form54–57:

Figure 2.  (a–f) are the magnetic field (|Hy|, in the plane of y =​ 0) distributions of the six-band MPA at modes f1, 
f2, f3, f4, f5, and f6, respectively.
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where c represents the light speed, n is the refractive index of the dielectric slab, l is the metallic pattern length, i, 
j =​ 0, 1, 2, …​ are integers. According to this equation, it is obvious that the operating frequency fij and the metal-
lic pattern length l are inversely related. In particular, the operating frequencies of the 5-order (i =​ 5, j =​ 0) and 
3-order (i =​ 3, j =​ 0) responses of the absorber should be about five and three times of the 1-order (i =​ 1, j =​ 0) 
response. In the six-band MPA, the frequencies of the modes f5 (2.75 THz) and f3 (1.74 THz) are about five and 
three times of the modes f1 (0.60 THz), respectively. The frequencies of modes f6 (3.63 THz) and f4 (2.33 THz) are 

Figure 3.  (a) is the dependence of the absorption spectra on the length change of the l1 (then l2 =​ 65 μ​m, 
t1 =​ 6 μ​m, and t2 =​ 4.5 μ​m); (b) shows the dependence of the absorption on the change of the l2 (then l1 =​ 55 μ​m,  
t1 =​ 6 μ​m, and t2 =​ 4.5 μ​m); (c) shows the dependence of the absorption on the thickness change of the t1 (then 
l1 =​ 55 μ​m, l2 =​ 65 μ​m, and t2 =​ 4.5 μ​m); (d) is the dependence of the absorption on the change of the t2 (then 
l1 =​ 55 μ​m, l2 =​ 65 μ​m, and t1 =​ 6 μ​m).

Figure 4.  Absorption spectra of the six-band polarization tunable MPA. 
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about five and three times of the modes f2 (0.80 THz), respectively. Consequently, we can conclude that the res-
onance modes f1 (f2), f3 (f4), and f5 (f6) are indeed the 1-order, 3-order, and 5-order responses (or multiple-order 
responses) of the metallic patch l2 (l1), respectively. The slight frequency deviations are mainly derived from the 
interactions of these two metallic layers, see the field distributions in below Fig. 2.

The absorption mechanism (or physical origin) of the six-band MPA can be better gained by analyzing and 
investigating the distributions of the magnetic (|Hy|) fields in six different resonance modes. As shown in Fig. 2, it 
is obvious that the |Hy| distributions of the resonance modes f1, f2, f3, f4, f5, and f6 are primarily gathered in the die-
lectric layers of the six-band MPA. Thus, these resonance modes are all attributed to the localized EM responses 
of the MPA. In addition, we found that the field distributions of the modes f1, f3, and f5 are mainly focused on the 
dielectric layer t2, and the field distributions of modes f2, f4, and f6 are primarily gathered in the dielectric layer t1. 
These field distribution characteristics show that the modes f1, f3, and f5 are mainly associated with the excitation 
of the second metallic layer, while the modes f2, f4, and f6 are primarily the consequence of the excitation of the 
first metallic layer. To study the resonance mechanism of each resonance mode, we analyze the field distribution 
of each resonance mode in detail. The field distribution of the frequency at 0.60 THz (mode f1) is mainly distrib-
uted in the dielectric layer t2, while its field distribution at dielectric layer t1 is neglected, see Fig. 2(a). Besides, it 
is also found that there is only a resonance region (or a strong node) in the dielectric layer t2. Thus, the resonance 
mode f1 is the fundamental mode resonance (or 1-oder response) of the metallic patch l2. For resonance mode f2, 
its field distribution is primarily focused on the dielectric layer t1, see Fig. 2(b). We also observed that the field dis-
tribution of the mode f2 in dielectric layer t1 has only a strong node. As a result, the mode f2 is the 1-order response 
of the metallic patch l1. For resonance mode f3, three strong resonance regions are found in the dielectric layer t2, 
see Fig. 2(c). Similarly, three strong nodes are also observed in the dielectric layer t1 for resonance mode f4, see 
Fig. 2(d). Therefore, the resonance modes f3, and f4 are due to the 3-order response of the metallic patches l2, and 
l1, respectively. For resonance mode f5, see Fig. 2(e), its magnetic field is mainly gathered in the dielectric layer t2, 
while only a small part of magnetic field is observed in the dielectric layer t1. Besides, for field distribution of the 
resonance mode f5, it is noted that five strong nodes are found in the dielectric layer t2. Therefore, the resonance 
mode f5 is the 5-order response of the metallic patches l2. However, the field distribution of the mode f6 is different 
from the mode f5. As shown in Fig. 2(f), not only the dielectric layer t1 but also the dielectric layer t2 has strong 
field distributions for resonance mode f6. Notably, five strong resonance regions (or nodes) are found in both of 
the dielectric layers t1 and t2. Therefore, the resonance mode f6 is attributed to the hybridization (or coupling) of 
5-order response of the metallic layers l1 and l2. Based on the combination of two sets of multiple-order responses 
(i.e., the 1-oder, 3-oder, and 5-order responses) of the two different sized metallic layers, six-band MPA is real-
ized. The absorption mechanism of six-band MPA is different from previous multiple-band MPAs that only using 
the overlapping of the single resonance mode (in particular of the 1-order response) of metallic patterns27–29,34–40.

Because the resonance modes f1, f3, f5, and f2, f4, f6 are the multiple-order responses (1-order, 3-order, and 
5-order resonances) of the metallic layer l2, and l1, respectively, the size change of the metallic layers will cause the 
shift of the frequencies in its corresponding resonance modes. As shown in Fig. 3(a), it is clear that the size change 
of l1 only affects the frequencies of the modes f2, f4, and f6, while the frequency changes of the modes f1, f3, and f5 
are neglected. For change of the l2, see Fig. 3(b), the frequencies of the modes f1, f3, and f5 gradually decrease with 
the increase of the patch length l2. In addition, we also observed that the resonance frequency of the mode f6 has 
a large dependence on the change of the length l2. The results obtained in Fig. 3(a) and (b) are in agreement with 
the theoretical predictions. The adjustment or change of the resonance frequencies can also be obtained through 
varying the thicknesses of the dielectric layers t1, and t2. It can be seen from Fig. 3(c) that the change of the thick-
ness t1 has a great influence on the resonance frequencies of the last four resonance modes (f3, f4, f5, and f6), while 
the frequency changes of the first two resonance modes are neglected. Moreover, for change of the thickness t2, 
see Fig. 3(d), it is found that its thickness change only influences the resonance frequencies of the modes f1, f3, and 
f5, while the frequencies of other resonance modes are nearly unchanged. Therefore, we can conclude that the size 

Figure 5.  Simulated absorption spectra of the presented nine-band MPA (or three-layer stacked resonance 
structure). 



www.nature.com/scientificreports/

6Scientific Reports | 7:41373 | DOI: 10.1038/srep41373

changes of the metallic layers and the thickness changes of the dielectric layers have the ability to adjust or shift 
the operating frequencies of the six-band MPA.

Due to four-fold symmetric of these two metallic square patches, the six-band MPA presented here is polari-
zation insensitive to the incident EM waves. Although the polarization insensitive six-band MPA has great appli-
cation prospects, the development of the polarization tunable six-band MPA in many areas (such as specific EM 
wave polarization detection) is necessary and useful. Based on the results obtained in Fig. 3(a) and (b), in this 
paragraph, a six-band polarization tunable MPA through varying the sizes of the metallic layers in two orthogonal 
polarization directions is demonstrated. The sizes (in μ​m) of the presented six-band polarization tunable MPA 
are: l1x =​ 60, l2x =​ 70, l1y =​ 55, l2y =​ 65. The other parameters of the polarization tunable MPA are the same as those 
in Fig. 1(a) and (b). As illustrated in Fig. 4, six clear resonance bands are achieved at frequencies of 0.53 THz, 
0.73 THz, 1.60 THz, 2.15 THz, 2.69 THz, and 3.44 THz with the average absorptivities greater than 95.29% in the 
0 degree of polarization (i.e., along the x-axis). Six different absorption peaks are also observed in the polarization 

Figure 6.  (a–i) Show the magnetic field (|Hy|) distributions of the nine-band MPA at resonance modes f1, f2, f3, 
f4, f5, f6, f7, f8 and f9, respectively.
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angle of 90 degrees (parallel to the y-axis). However, the resonance frequencies of the six-band MPA in the 90 
degrees of polarization shift to 0.60 THz, 0.79 THz, 1.74 THz, 2.32 THz, 2.75 THz, and 3.64 THz, respectively. The 
frequency changes of the six resonance modes in 0 and 90 degrees are due to the different metallic layer sizes in 
two perpendicular directions. The six-band polarization tunable MPA can be potentially used to detect the EM 
waves of specific polarization and even to control and manipulate the polarization angle of incident waves58,59.

The number of the resonance absorption peaks can be further increased by stacking more metallic layers. We 
use the three-layer stacked structure as an example to investigate its resonance absorption peaks. The optimal 
sizes (in μ​m, from top layer to bottom layer) of the presented three-layer stacked resonance structure are: l1 =​ 55, 
l2 =​ 65, l3 =​ 80, t1 =​ 7.6, t2 =​ 5.0, t3 =​ 6.1, P =​ 95. The other geometric parameters, including the refractive index 
of the dielectric layer and the metallic layer conductivity are the same as used in six-band MPA. The resonance 
absorption of the designed three-layer stacked MPA is illustrated in Fig. 5. Nine distinct absorption bands are 
obtained at frequencies of 0.47 THz (f1), 0.63 THz (f2), 0.78 THz (f3), 1.28 THz (f4), 1.79 THz (f5), 2.05 THz (f6), 
2.27 THz (f7), 2.68 THz (f8), and 2.78 THz (f9) with the absorption of 99.45%, 94.77%, 96.75%, 88.55%, 92.60%, 
95.04%, 98.68%, 92.03%, and 92.06%, respectively. The bandwidths of these peaks from low- to high-frequency 
are 0.067 THz, 0.060 THz, 0.077 THz, 0.088 THz, 0.095 THz, 0.056 THz, 0.049 THz, and 0.049 THz, respectively, 
and the Q values of nine resonance bands are 7.01, 10.50, 10.13, 14.55, 18.84, 36.61, 12.61, 54.69, and 56.73, 
respectively.

Furthermore, the distributions of the |Hy| fields are provided to reveal or gain the absorption mechanism of 
the nine-band MPA, as shown in Fig. 6. Based on the above discussions and the |Hy| field distributions of the 
different resonance modes in the nine-band MPA, we can conclude that the modes f1, f2, and f3 are the 1-order 
response of the metallic patches l3, l2, and l1, respectively, see Fig. 6(a–c). The resonance modes f4, and f7 are the 
3-order response of the patches l3, and l1, respectively, see Fig. 6(d) and (g). The other resonance modes (f5, f6, 
f8, and f9) of the nine-band MPA are due to the hybridization of multiple-order responses of the metallic layers, 
see Fig. 6(e,f,h and i). For example, the resonance mode f5 originates from the hybridization (or coupling) of the 
3-order responses of the metallic patches l2 and l3, see Fig. 6(e), and the mode f6 is derived from the coupling of the 
3-order response of the metallic patch l2 and 5-order response of the metallic structure l3, see Fig. 6(f).

Conclusion
In conclusion, a six-band polarization insensitive terahertz MPA based on a dual-layer stacked resonance struc-
ture is numerically investigated and studied. Six resonance bands with absorption average greater than 99.37% 
are achieved. Each layer of the resonance structure corresponds to three absorption peaks (1-oder, 3-order, and 
5-order responses), and thus the absorption mechanism of the six-band MPA is attributed to the combination 
of two sets of the three resonance modes (1-oder, 3-order, and 5-order responses) of the two metallic layers in 
the stacked structure. The field distributions of the six resonance bands are given to reveal or gain the absorption 
mechanism of the six-band MPA. Besides, the design also has the ability to tune or change the resonance frequen-
cies of the six-band MPA through varying the sizes of the metallic layers or the thicknesses of the dielectric layers. 
Employing this results, a six-band polarization tunable MPA is also analyzed and demonstrated. Furthermore, 
the number of the resonance bands or peaks can be further increased by stacking more metallic square patches. 
As an example, we found that three-layer stacked resonance structure can achieve nine-band near-perfect absorp-
tion. Six-band and even nine-band MPAs obtained here can find potential applications in many optoelectronic 
related areas. Once the structure is fabricated, however, the absorption performance (including the resonance 
frequency and the absorption strength) of the absorber is unable to change. Some temperature-dependent mate-
rials, bias-tunable materials, and even microfluidic systems can be used to overcome this kind of shortcoming. 
The further works are the design of the active tunable multiple-band light absorbers.

Methods
Numerical modeling and detailed parameters of the presented MPA.  The geometric parameters 
of the six-band MPA are shown in Fig. 1(a) and (b). Detailed parameters (in μ​m) of the six-band MPA are: 
l1 = l1x =​ l1y =​ 55, l2 = l2x =​ l2y =​ 65, t1 =​ 6, t2 =​ 4.5, P =​ Px =​ Py =​ 75. The metallic layers of the six-band MPA are 
made of Au, and the thickness and conductivity of them are 0.4 μ​m, and 4.09 ×​ 107 S/m, respectively. The refrac-
tive index of the dielectric layer is n =​ 3.2 +​ i0.025. In this investigation, we utilize normally incident EM waves 
with E field parallel to the x-axis as illustrated in Fig. 1(b). Periodic boundary conditions are employed along the 
direction of the wave propagating, and in the normal to the wave propagating direction, perfect matching layers 
are used. The frequency dependent absorption can be given by: A(w) =​ 1 −​ T(w) −​ R(w), where T(w) and R(w) 
are the frequency dependent transmission and reflection, respectively. T(w) is close to zero because of the pres-
ence of the metallic board. As a result, the A(w) can be obtained using A(w) =​ 1 −​ R(w). We can achieve perfect 
absorption (A(w) =​ 1) when the R(w) is completely suppressed (i.e., the impedance of the structure is equal to 
that of the air).
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