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Rich structure in the correlation 
matrix spectra in non-equilibrium 
steady states
Soham Biswas1, Francois Leyvraz1,2, Paulino Monroy Castillero1 & Thomas H. Seligman1,2

It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time 
correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The 
purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-
lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law 
correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the 
correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in 
fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally 
Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady 
state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.

The analysis of correlation matrices has attracted considerable attention almost for a hundred years starting with 
multivariate analysis in finance1. In two pioneering papers Laloux et al. and Plerou et al. analysed a complex time 
signal—a time series of stock prices—and successfully disentangled the part due to chance and the systematic 
part via an analysis of the eigenvalues of the correlation matrix2–4. The same tools of correlation matrix analysis 
have recently gained attention from physicists in the discussion of critical phenomena and phase transitions: If we 
consider an extended system undergoing some kind of dynamics, the equal time correlations between the various 
components of the system yield a correlation matrix, the eigenvalues of which can be analysed. In this context, it 
has recently been shown5, that a power-law decay of correlations in space leads to a power-law behaviour for the 
large eigenvalues of the correlation matrix. We are thus led to ask whether the opposite is true. That is, does the 
observation of such power-law behaviour in the eigenvalues imply a power-law in spatial correlations? In a trivial 
sense, it is possible to find systems for which no correlations are apparent, and yet the power-law behaviour of the 
eigenvalues remains: We simply take a system which does display spatial power-law correlations, and “scramble” 
all of its components by subjecting them to an arbitrary permutation. Since this is a similarity transformation on 
the correlation matrix, this operation leaves the eigenvalues invariant, so that their power-law behaviour testifies 
to the existence of the spatial correlations, even though the latter have been masked by the random permutation. 
As an example, it is well-known that the correlations between the returns on different stocks are made far more 
apparent when these are ordered according to so called industry sectors. This can be seen, for example, in ref. 6.

However, we may ask whether there exist less trivial counterexamples. In the following, we shall suggest that 
there probably are: we shall analyse the so-called Totally Asymmetric Simple Exclusion Process, (TASEP) which 
shows little or no apparent spatial correlation, which additionally surely does not have a power-law decay. Yet in a 
given part of its phase diagram, which we shall describe shortly, this model displays a marked power-law feature 
in the spectra of its correlation matrix.

TASEP is a model consisting of a many-particle hopping system where particles are located on a discrete 
lattice that evolves in continuous time. Particles can hop to the next lattice site, in only one direction (say to the 
right-hand side), on a one-dimensional lattice at a random time, with rate one, provided that the target site is 
empty. We here consider the problem with open boundary conditions where both sides of the lattice are coupled 
with particle reservoirs. If the first site of the lattice is empty then a particle can hop from the reservoir into the 
system with a transition rate α and the particles leave the system from the last site of the lattice with a transition 
rate β. TASEP has been used to describe directed transport in 1D, such as arises, for instance, in unidirectionally 
moving vehicular traffic along roads7,8.
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There are several reasons to choose TASEP for the present study: The equal-time correlation functions for this 
stationary non-equilibrium system are known exactly9,10 and the phase diagram (see Fig. 1) of the exact and the 
mean field solutions coincide.

The phase diagram is shown in Fig. 1: in phase H, there is a high density of occupied sites which fluctuates 
little in time, in phase L there is a corresponding low-density phase, in which the density is also approximately 
time-independent, whereas in phase MC the density is equal to 1/2, independent of α and β. Finally, in the tran-
sition line between H and L, a phase exists in which the density oscillates between a high value corresponding to 
a nearby point of phase H, and a low value corresponding to a nearby point of phase L.

We are interested in the density-density two point correlation Ci,j on the lattice. This is defined as the proba-
bility to find a particle in a lattice site j, given there is a particle at lattice site i. The analytical expression for this 
correlation function C(r) (average correlation between any two points at distance r) is given in ref. 10. This corre-
lation function is everywhere found to be negligible, except on the line α =  β <  0.5, where both the high density 
and low density phase coexist: there the two point correlation function decays more rapidly than exponential, yet 
ranges over distances of the order of the system size. This anomalous behaviour is illustrated in Fig. 2.

The results we report are then as follows: we observe that the eigenvalues of the correlation matrix Ci,j display 
a behaviour very different from that expected for a random series. The latter is the so-called Marčenko–Pastur 
(MP) law for the density of eigenvalues, which predicts that the eigenvalues are continuously distributed within a 
finite interval and with a given density. The kind of deviations we observe are of two kinds: first, the existence of 

Figure 1. Phase diagram of TASEP with open boundary conditions at the thermodynamic limit, consisting 
of the high-density phase (phase H), the low-density phase (phase L) and the maximum-current phase 
(phase MC). Inside each phase J denotes the current in the stationary state, which must be independent of 
position.

Figure 2. The two-point correlation function for the TASEP on the H/L coexistence line, specifically for 
α = β = 0.25 and for N = 5 · 103. The main figure shows a log-log plot, which clearly shows that there are 
no power-law correlations, whereas the inset shows a log-linear plot, indicating that the decay is faster than 
exponential. The scale of the x axis indicates that the correlations range over the whole system size.
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relatively few eigenvalues that are much larger than what is expected from MP, and which are distributed accord-
ing to a power-law. Second, we observe a far larger number of eigenvalues which are significantly lower than what 
would be expected from MP, and their number grows as N , where N is the length of the model. We proceed to 
describe these phenomena in greater detail.

Results
Let us start by comparing the eigenvalue density of the correlation matrix of the TASEP model we study, with the 
null-hypothesis, that is, the eigenvalue spectrum of the correlation matrix of a completely uncorrelated signal. 
These correlations remain different from zero if they are taken on the scale of the fluctuations, that is, on the scale 
of the square root of the duration of the signal. The eigenvalue distribution may be calculated exactly in this case, 
and the eigenvalue density was determined analytically by Marčenko and Pastur11. This eigenvalue density has the 
remarkable feature that it vanishes outside a finite interval. We may thus meaningfully speak of deviations from 
the Marčenko–Pastur (MP) result whenever eigenvalues appear significantly outside this interval.

In the following we analyse the system’s behaviour in the various regions of the phase diagram. We thus com-
pare our eigenvalue spectra with the MP distribution in order to see to what extent our eigenvalues differ from an 
uncorrelated signal. This is very much in the line of refs 2,3. Our key result can now be stated as follows: we find 
agreement in the high and low density regions, that is, in the interior of regions H and L, so that these are indeed 
well described by a random process. On the other hand, in all other parts of the phase diagram, characteristic 
differences are observed.

There are three pure phases (see Fig. 1) and three coexistence lines. However, since the system has a symmetry 
between holes and particles, the High density phase (phase H) is equivalent to the Low density phase (phase L), 
and the coexistence line of high density–maximal current (H/MC) line is equivalent to low density–maximal 
current (L/MC) line. Looking at phase H, we numerically confirm full agreement (picture not shown) between 
the eigenvalues of the correlation matrix and MP. Further, the H/MC coexistence curve behaves (apart from some 
minor issues, to which we shall return) similarly to the maximum current phase; we are therefore left with two 
regions to consider: (1) the high density–low density coexistence line (H/L coexistence line), (2) the maximum 
current phase (MC). We present the results for each case separately.

The H/L coexistence line. We shall analyse the eigenvalues using the so called Zipf plot, also known as 
“scree diagram” or ranking-of-eigenvalues plot, in which the eigenvalues in decreasing order λn are plotted against 
their rank n, typically on a doubly logarithmic plot. Such a plot makes an initial power-law very prominent.

For α =  β <  0.5 we find such a power-law (Fig. 3) in the Zipf plot (see below) and thus an example, where we 
find in the eigenvalues a behaviour that is not found in the two-point function in space. The power we find 
(λ ∼ θ−nn  with θ ≈  2) obtained is same for any value of α and β, as long as α =  β <  0.5 [Fig. 3].

There are other differences between the observed distribution on the H/L separation line and the MP dis-
tribution: first, the range over which the power-law is observed, varies with the parameter value. It is higher for 
the lower values of α =  β. As a result, the density of high-lying eigenvalues differ for different values of α and β 
on this line. Second, we observe a shift of the bulk to lower eigenvalues in compared with the MP distribution  
[Fig. 4]. This shift actually compensates the contribution from the higher eigenvalues, since the sum of the eigen-
values remains constant and equal to the dimension of the matrix. However for lower values of α, the density 
profile for the eigenvalues are deformed and the deformation becomes more prominent as the value of α =  β 
decreases [Fig. 4]. Finally, when α ≲  0.25, a side peak in the eigenvalue density appears at small eigenvalues, in 
sharp contrast to the case in which 0.25 ≲  α =  β, in which only one peak (main peak) appears.

This phenomenon may perhaps be explained as follows: the density of particles inside the lattice, in the low 
density region is lower for the lower values of α. Similarly it is higher for the lower values of β, in the high density 
region. Hence for α =  β <  0.5, that is on the H/L coexistence line, for the lower values of α and β there will be 
larger strings of particles in the lattice followed by a string of empty lattice sites of similar length. As a result cor-
relation length inside the lattice increases as α decreases (for α =  β <  0.5). This correlation length is not enough 
to show a power law decay in case of two point correlation function, but it may well be related to the presence of 

Figure 3. The Zipf plot for the ranked eigenvalues for different values of α and β on the low density-high 
density coexistence line (α =  β line).
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a larger number eigenvalues above the MP threshold. These then display the power law behaviour observed in 
the Zipf plot. Note that the number of these large eigenvalues is quite insensitive to the system size, growing from 
approximately 20 for N =  500 to about 40 for N =  10000, meaning that we cannot, with present computational 
power, reliably determine the N-dependence of this number.

Apart from the eigenvalue density, there exists another set of quantities referring to the fine scale of the eigen-
value spectrum, namely the correlations between two eigenvalues. It has been shown in a broad variety of cases, 
see for example12, that for random matrix ensembles of the type considered here, these properties are universal, 
that is, they are the same for an very broad class of random matrix models. Since the side peak in the distribution 
is quite unexpected, we now look at these features, to see whether it is different from the main peak in some essen-
tial manner. We thus consider the side peak in the eigenvalue density that appears for α =  β ≲  0.25. In particular, 
it is natural to ask whether, inside the two peaks of eigenvalue density which arise for lower values of α and β, the 
correlations of the unfolded eigenvalues (say ξ)12, are identical. We test two independent statistical properties of 
unfolded eigenvalues ξ: the distribution of nearest-neighbour spacing s =  ξi+1 −  ξi and the statistics of number 
variance Σ x( )2 .

The distributions of nearest-neighbour spacing of unfolded eigenvalues, which are obtained from the first 
and the side peak of the eigenvalue density [Fig. 4] appear to be universal. That means the behaviour of the 
nearest-neighbour (nn) spacing distributions are not distinguishable from that of the Wishart ensemble for both 
the peaks.

Number variance, the variance of the number of unfolded eigenvalues in the intervals of length x, is defined as 
Σ = 〈 − 〉ξ ξ

x n x x( ) [ ( ) ]2 2 , where ξn x( ) is the number of unfolded eigenvalues in the interval [ξ −  x/2, ξ +  x/2]. The 
average is made along ξ. If the eigenvalues are uncorrelated, Σ =x x( )2 ; whereas if all unfolded eigenvalues are 
equidistant, Σ =x( ) 02 .

The eigenvalues manifestly belonging to the peak were first unfolded (in other words, reduced to constant 
density by an appropriate smoothing transformation) then the central 60% of the eigenvalues were kept, leading 
to 400 eigenvalues for the side peak at α =  β =  0.1 and 1600 for the main peak. In the case of α =  β =  0.05 we were 
left with 150 eigenvalues for the side peak and again 1600 for the main peak. This means that finite size effects are 
significantly stronger in the latter case than in the former. This might then explain the discrepancy between Σ x( )2  
for the two peaks, but there could be a deeper reason for it. It is in any case a remarkable fact that the deviation in 
the case α =  β =  0.05 is quite similar to the deviation observed in quantum spectra of classical chaotic systems13, 
which is known to be caused by the existence of a shortest periodic orbit14.

We found the unfolded eigenvalues obtained from the side peak of the distribution does not follow the univer-
sal behavior for the number variance statistics, while for the main peak it appears to be universal [Fig. 5].

The maximum current phase. In the maximal or constant current region, we also find significant devia-
tions from MP in the probability distribution of eigenvalues [see inset of Fig. 6 as well as Fig. 7]. This consists in 
the appearance of eigenvalues below the lower threshold of MP, and is quite pronounced.

One or two high eigenvalues (outside the limits of MP) are also observed. The plots for the eigenvalue density 
for the maximal current and for the triple point are shown in Fig. 6. Transition from the MC phase to the triple 
point is continuous, as the number of lower eigenvalues decreases slowly as the triple point is approached. We 
have also observed that the total number of lower eigenvalues (kl(λ)), below the lower threshold of MP distribu-
tion increases as a function of system size. λ ∼k N( )l  for large N, where N is the size of the system [see Fig. 8].

The deviation of the probability distribution of eigenvalues of the correlation matrix is also present on the 
transition lines of H/MC and L/MC. But there the number of below-threshold eigenvalues distribution is smaller 
than in the constant current phase.

In this part of the phase diagram, namely the MC phase proper, the H/MC coexistence line, as well as the 
triple point, the probability densities of the eigenvalues have a deviation from the Marčenko–Pastur but also the 

Figure 4. The plot of bulk for the distribution of eigenvalues for different values of α and β on the low 
density-high density coexistence line (α = β < 0.5 line). The MP distribution is shown by the black double 
dashed line.
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distribution of the lowest eigenvalues, over the configuration space is significantly different from that of the low 
density or high density regions [Fig. 7].

Discussion
Summarising, we have found that the eigenvalues of the TASEP correlation matrices display remarkable prop-
erties that differ from those characteristic of random signals, even though the TASEP correlations are small, and 
surely not power-law. We observe in particular a relatively small number of large eigenvalues, distributed accord-
ing to a power-law, on the H/L coexistence line. Additionally, we observe deviations from the MP eigenvalue 
density, which are particularly pronounced when α =  β ≲  0.25, where two peaks are observed. In the MC phase, 
on the other hand, we observe good agreement between MP and the observed eigenvalue density, apart from a 
set of eigenvalues lying below the lower limit of MP, the number of which is found to grow as the square root of 
the system size.

We have also checked whether the observations can be partly accounted for by edge effects: we did not notice 
any significant such effect for any value of α and β for the entire phase diagram. This is also true for the higher 
eigenvalues when α =  β <  0.5. If there is any indication of such behaviour at all in the spectrum of eigenvalues, it 
is not detectable with the present computational accuracy.

On the H/L phase coexistence line, we have taken different parts of the lattice and repeated the correlation 
matrix analysis. We indeed observed the power law in the Zipf plot (with the same value of θ) for all the parts of 
the lattice which will be discussed in detail at ref. 15. On this coexistence line the motion of the domain wall is 
non-localised over the lattice16. Whether or not the motion of the domain wall is responsible for the observed 

Figure 5. The number variance ∑2(x), is plotted against the interval length x, calculated separately from 
the side peak (red points) and the main peak (blue stars) of their eigenvalue density for points α = β = 0.1. 
For α =  β =  0.4 (black squares) ∑ 2(x) is calculated from the single bulk of its eigenvalue density. The latter fits 
well to the continuous line, which is a Wishart ensemble of 2000 configurations, plotted for comparison. The 
inset shows ∑ 2(x) for both peaks at α =  β =  0.05 as well as the Wishart ensemble for comparison.

Figure 6. The probability distribution of eigenvalues at the maximal current (upper panel) regime and for 
the triple point (lower panel). The MP distribution is shown by the blue dotted line. Inset shows the number 
distribution of below threshold eigenvalues. In MC region, the number of eigenvalues below the lower threshold 
of MP is significantly more than that of the Triple point. Both of these results were obtained with 60 samples of 
size 5000.
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power law will be studied in future15. We will also attempt to connect the formula of two point function given in 
ref. 10 to the exact solutions derived recently for arbitrary correlations at least in an approximate fashion.

In conclusion, we have shown that the analysis of the density of eigenvalues of the correlation matrix of a sig-
nal is sensitive to non-trivial correlations, which cannot otherwise be reliably characterised by direct numerical 
observation. Such is the case of TASEP, in which two-body correlations are weak, though they extend over the 
whole system at the phase coexistence line. Comparison of the correlation matrix spectrum with those generated 
by a random signal provide clear evidence that the signal produced by TASEP has significant correlation in some 
parts of the phase diagram. In particular at the α =  β <  1/2 line long-range weak correlations in space induce a 
power law in the spectrum.

Methods
To construct the correlation matrices, we have generated the times series by Monte-Carlo simulation. The random 
update rule was been used to generate the time series. The lattice size is N, with 5 ×  102≤  N ≤  104. For each param-
eter value we have considered the length of the time series as T =  20 ×  N. Obviously the correlation matrix C is an 
N ×  N dimensional matrix. The results are averaged over an ensemble of 100 configurations.
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