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Mitigate Cascading Failures 
on Networks using a Memetic 
Algorithm
Xianglong Tang, Jing Liu & Xingxing Hao

Research concerning cascading failures in complex networks has become a hot topic. However, most of 
the existing studies have focused on modelling the cascading phenomenon on networks and analysing 
network robustness from a theoretical point of view, which considers only the damage incurred by the 
failure of one or several nodes. However, such a theoretical approach may not be useful in practical 
situation. Thus, we first design a much more practical measure to evaluate the robustness of networks 
against cascading failures, termed Rcf. Then, adopting Rcf as the objective function, we propose a new 
memetic algorithm (MA) named MA-Rcf to enhance network the robustness against cascading failures. 
Moreover, we design a new local search operator that considers the characteristics of cascading failures 
and operates by connecting nodes with a high probability of having similar loads. In experiments, both 
synthetic scale-free networks and real-world networks are used to test the efficiency and effectiveness 
of the MA-Rcf. We systematically investigate the effects of parameters on the performance of the MA-
Rcf and validate the performance of the newly designed local search operator. The results show that 
the local search operator is effective, that MA-Rcf can enhance network robustness against cascading 
failures efficiently, and that it outperforms existing algorithms.

Many man-made infrastructures such as the Internet, transportation networks, and electric power grids can 
be represented as complex networks1. Because these complex networks play an important role in society, their 
robustness is pivotal2–4. However, most of these infrastructures have been found to be heterogeneous and to have 
a power-law degree distribution1,5,6. With their “heavy-tailed” properties, these complex networks have been 
found to be robust against random attacks; however, they are rather fragile under malicious attacks, especially 
cascade-based attacks7,8.

Cascading failures are common in modern social networks. For example, in electrical power grids, when a 
power transmission station or a power line goes down, its power will be shifted to the nearby stations (lines). In 
most cases, neighbouring stations can manage the extra load. However, in some extreme circumstances, these 
neighbouring stations may become overloaded and fail, resulting in a redistribution of their loads to their neigh-
bours. Ultimately, the redistribution effort may lead to a cascading failure in which a large number of power trans-
mission stations (lines) are overloaded and, consequently, malfunction9. Cascading failures may also take place on 
the Internet. The load on an Internet router represents data packets that must be transmitted per unit of time, and 
overloading corresponds to congestion10. Rerouting data packets from a congested router to another might spread 
the congestion to a large fraction of subnetworks. Some Internet collapses have been caused by congestion11. 
Another example is a power grid, in which each component is designed to deal with a specific load of power. On 
August 14, 2003 in Canada and the northeastern United States, a massive power blackout occurred that led to a 
cascading failure12. A similar breakdown occurred in southern Oregon on August 10, 1996 13,14.

Cascading failures in complex networks have been widely studied over the past few decades15–24. Different 
cascading failure models have been proposed to reproduce cascading phenomena. Motter et al. first proposed 
the “C-L” model in ref. 18, performing experiments on both random and scale-free networks that focused on 
cascading triggered by the failure of a single node. The “C-L” model obtained good results that were consistent 
with experts’ intuition about how cascading failures occur. Crucitti et al.19 introduced a dynamical model that 
considered the dynamical redistribution of flow in networks, in which overloaded nodes obstruct network traf-
fic rather than removed. Zhao et al.20 provided a mathematical proof of the “C-L” model in scale-free networks 
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that analysed the cascading breakdown in scale-free networks in terms of phase transitions. Feng et al.23 pro-
posed an approach of simple, self-consistent probability equations to study cascading behaviours in interdepend-
ent networks and showed that this approach can greatly simplify the mathematical analysis of systems ranging 
from single-layer networks to various types of interdependent networks. Hu et al.24 used a percolation approach 
to study more realistic coupled networks system in which both interdependent and interconnected links exist 
and found rich and unusual phase-transition phenomena—including mixed first- and second-order hybrid 
transitions.

Based on different cascading failure models, various strategies have been proposed to enhance network 
robustness against cascading failures. Koç et al.25 proposed a robust metric for cascading failures on power grid 
networks; an entropy-based metric was introduced in ref. 26. Wang et al.27 studied cascading failures on the 
Internet. Based on a new cascading edge model, they proposed some methods to protect the Internet from cas-
cading failures. However, all the above methods focused only on cascades triggered by removing one or two 
nodes, and such methods cannot evaluate the overall robustness of networks against cascading failures and may 
not be useful in many practical applications. Additionally, these methods rarely take the cost involved in updating 
the real-world systems into account.

Considering only the cascading failure resulting from removing individual nodes in networks is insufficient 
because many of the remaining nodes are still connected; therefore, the network still maintains its integrity to a 
certain extent. In contrast, in this paper, we first design a new robustness measure to evaluate the overall robust-
ness of networks against cascading failures. In this robustness measuring scheme, the network is attacked through 
cascading failures repeatedly until the entire network collapses. During this process, after each cascade attack, the 
remaining large network components are calculated.

Based on this measure, we propose a memetic algorithm (MA) called MA-Rcf that enhances network robust-
ness against cascading failures. Memetic algorithms form a popular branch of evolutionary algorithms (EAs) 
that successfully combine global and local searches and have been shown to be more efficient and more effective 
than traditional EAs for many problems28–30. In a previous study, we designed a new memetic algorithm named 
MA-RSFMA, which improves the robustness of scale-free networks against malicious attacks that achieved a good 
performance31. Thus, the algorithm proposed here, MA-Rcf, is based on the framework developed for MA-RSFMA 
and makes use of the properties of cascading failures to design new operators; that is, a new local search operator 
that considers the characteristic of cascading failures is designed for MA-Rcf. In MA-Rcf, the degree distribution 
of networks is also kept unchanged to minimize the costs of updating real-world systems. Both synthetic and 
real-world networks are used to validate the performance of the MA-Rcf. The experimental results show that the 
MA-Rcf can enhance the network robustness against cascading failures efficiently. Moreover, some properties of 
robust networks are also analysed.

Methods
Robustness Measure for Cascading Failures.  A network can be modelled as a graph, G =​ (V, E), where 
V =​ {1, 2, …​, N} is a set of N nodes and E =​ {ejk| j, k∈​V and j ≠​ k} is a set of M links. In ref. 18, Motter et al. pro-
posed the “C-L” model for cascading failures in which, for a given network, at each time step, one unit of the 
relevant quantity (such as energy or goods) is exchanged between each pair of nodes and transmitted along the 
shortest connecting path. The “load” at a node consists of the total number of shortest paths passing through 
it32,33. Each node carries the maximum load that it can handle, and in man-made networks, node capacity is lim-
ited by economic costs. The capacity Ci of node i and its initial load Li have the following proportional relation:

α= + = …C L i N(1 ) , 1, 2, , , (1)i i
0

where the constant α is a tolerance parameter, and Li
0 is the initial load of the ith node. Initially, the network 

operates in a free-flow state insofar as α ≥​ 0. However, the failure of a node for any reason triggers the dynamics 
of the redistribution of loads. When the load at a node becomes larger than the node’s capacity, the node fails. This 
forces the load previously carried by that node to shift to its neighboring nodes, which in turn, can cause them to 
fail. Consequently, subsequent failures can occur, and this step-by-step process is a cascading failure18.

In ref. 34, Schneider et al. proposed an effective robustness measure, R, to evaluate networks’ ability to resist 
targeted attacks on individual nodes. The R measure is based on the “giant component,” namely, the largest con-
nected component left in the network after each node removal. To calculate R, the network must be attacked until 
only separated nodes are left. Thus, R can evaluate the robustness of entire networks. Therefore, we combine the 
“C-L” model with R to design a new measure, Rcf, which can evaluate the overall robustness of networks against 
cascading failures. With the original property of “C-L” model in mind, the process for calculating Rcf is described 
below.

	 Step 1. �Ssum ←​ 0 and t ←​ 1, where Ssum is the accumulated size of the giant components and t is the index of 
cascaded attack rounds;

	 Step 2. Calculate the initial load Li
0 and Ci of each node;

	 Step 3. Remove the node with the maximum load and all the edges connected to it;
	 Step 4. If the number of remaining nodes is equal to 1, go to Step 6;
	 Step 5. Recalculate the Li

t of each remaining node:
�If a remaining node i is overloaded, namely, Li >​ Ci, then remove node i and the edges connected to it, 
then, go to Step 4;
�If no remaining node is overloaded, calculate the relative size of the giant component St, Ssum ← Ssum+St, 
t ← t + 1, then, go to Step 3;

	 Step 6. Calculate the robustness measure Rcf against cascading failures as follows,
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where T is the total number of rounds that a cascading failure-based attack needs to destroy the entire network, 
reducing it to only one node. Obviously, T may vary even for networks of the same size; therefore, the normaliza-
tion factor 1/N ensures comparability for the robustness of networks with different sizes.

Memetic Algorithm to Enhance Rcf.  Memetic algorithms have been shown to be highly capable of search-
ing for the optimal solution in optimization problems28–30. In ref. 31, we designed a new memetic algorithm 
named MA-RSFMA to improve the robustness of scale-free networks against malicious attacks, and it achieved 
a good performance31. Thus, based on the framework of MA-RSFMA, in this paper, we propose a new memetic 
algorithm, MA-Rcf, to enhance the overall robustness of networks against cascading failures. By considering the 
intrinsic property of cascading failures, we design a new local search operator for MA-Rcf that takes Rcf as its 
objective function while keeping the degree of each node unchanged. Next, we introduce the representation of 
chromosomes and the initialization process. Then, we describe the evolutionary operators, including the newly 
designed local search operator. Finally, we summarize the entire framework of the MA-Rcf algorithm.

Representation and initialization.  In the MA-Rcf algorithm, each chromosome represents a network. Initially, 
MA-Rcf has a population with W chromosomes. The initialization process for MA-Rcf is the same as that used for 
MA-RSFMA

31. During the initialization, because we need to preserve the number of links and the degree of each 
node, each chromosome is generated by randomly adjusting a fraction of the edges in the initial network, G0—
that is, the connections of two randomly chosen edges that have no common nodes are swapped in the network. 
During the initialization, the goal is to generate different networks with the same degree distribution; there-
fore, any edge-swapping operations that can keep the network connected are accepted without checking whether 
the swap improves the robustness of the network. The details of this initialization process are summarized in 
Algorithm 1 (also refer to ref. 31 for more information).

Algorithm 1 Population Initialization

Input:

    W: Population size;

    G0: Initial network;

Output:

    = ...P G G G{ , , , }W
1

1
1

2
1 1 : Population for the 1st generation;

for i =​ 1 to W do

    Gi
1←G0;

    for j =​ 1 to M do /*M is the number of nodes in the network; */

      Randomly select two edges ekl and emn from Gi
1, where m, n are different than k, l and ekm and eln do not exist in Gi

1;

      Remove ekl and emn from Gi
1, and add ekm and eln to Gi

1;

    if (Gi
1 is not connected)

      Remove ekm and eln from Gi
1, and add ekl and emn back to Gi

1;

    end if;

  end for;

end for;

Evolutionary operators.  In evolutionary algorithms, crossover operators are often performed to exchange 
genetic information among the individuals in the population. In ref. 31, a new crossover operator that operates 
on complex networks is designed that exchanges the structures of two networks effectively without changing their 
degree distributions. We also employ this crossover operator in this paper. This crossover operator (whose details 
are summarized in Algorithm 2) acts on two randomly selected parent chromosomes and generates a pair of child 
chromosomes. Please refer to ref. 31 for more information about this crossover operator.

Algorithm 2 Crossover Operator

Input:

    Gp1 and Gp2: Two parent chromosomes;

    pc: Crossover rate;

Output:

    Gc1 and Gc2: Two child chromosomes;

Gc1←Gp1, Gc1←Gp1;

Continued
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for i =​ 1 to N do/*N is the number of edges in the network; */

    if (U(0, 1) <​ pc)/*U(0, 1) is a uniformly distributed random real number in [0, 1];*/

      Determine Vi
Gc1 and Vi

Gc2, which are the sets of neighbours of node i in Gc1 and Gc2, ;respectively,

      ← −V V V V( I )i
Gc

i
Gc

i
Gc

i
Gc1 1 1 2  and ← −V V V V( I )i

Gc
i
Gc

i
Gc

i
Gc2 2 1 2 ;

      for each node ∈j Vi
Gc1 do

        Randomly select a node ∈k Vi
Gc2;

        Remove eij from Gc1 and eik from Gc2;

        Add eik to Gc1 and eij to Gc2;

        Randomly select another edge ekl that connects to node k in Gc1 but where ejl does not exist in Gc1;

        Remove ekl and add ejl in Gc1;

        Randomly select another edge ejm that connects to node j in Gc2 but where ekm does not exist in Gc2;

        Remove ejm and add ekm in Gc2;

        = −V V k{ }i
Gc

i
Gc2 2 ;

      end for;

    end if;

end for;

The local search operator is another important operator in MAs. In ref. 35, Tanizawa et al. found that net-
works with an “onion-like” structure, where nodes with almost the same degree are connected to each other, are 
more robust under targeted attacks than those without such onion-like structures. Inspired by this, to search 
for networks that are the most robust against cascading failures, we design a new local search operator that lets 
nodes with similar loads connect to each other. The principle of this operator is simple: if a node with small load 
connects to a node with a very large load, the small-load node will crash immediately if the large-load node 
fails, because the small-load node has insufficient capacity to handle the extra load. Therefore, connecting nodes 
with similar loads to each other have a high probability of avoiding such situations. Suppose edges eij and epq are 
selected and are swapped to eip and ejq. This swap is accepted only if

β− + − < × − + −( )L L L L L L L L , (3)i p j q i j p q

where Li, Lj, Lp and Lq are the loads of the corresponding nodes, and β is a parameter in the range of [0, 1] that 
controls the acceptance level for the difference in loads between nodes. The smaller the value of β is, the stronger 
the constraint is and, thus, the larger the reduction in load differences is. Consequently, this operator can effec-
tively guarantee that nodes with similar loads will be connected to each other, which enhances the search for 
load-balanced networks. The details of this local search operator are given in Algorithm 3.

Algorithm 3 Local Search Operator

Input:

    G: One chromosome;

    pl: Local search probability;

    β: Predefined parameter;

Output:

    G: Chromosome after performing the local search operator;

for (each edge eij in G) do

  if (U(0, 1) <​ pl)/*U(0, 1) is a uniformly distributed random real number in [0, 1];*/

      Randomly select another existing edge epq in G;

      if (equation (3) is satisfied)

        G* ←​ G;

        Remove eij and epq from G*;

        Add eip and ejq to G*;

        if (Rcf(G*) >​ Rcf (G))

          G ←​ G*;

        end if;

      end if;

    end if;

end for;

MA-Rcf uses binary tournament selection in each generation to select the chromosomes for the next popula-
tion. Binary tournament selection involves a “tournament” between two chromosomes chosen randomly from 
the population in which the winner is the chromosome whose fitness is better. Binary tournament selection is a 
popular method for selecting better chromosomes from a population in an evolutionary algorithm.
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Algorithm 4 MA-Rcf

Input:

    W: Population size;

    G0: Initial network;

    pc: Crossover probability;

    pl: Local search probability;

Output:

    G*: Chromosome with the highest robustness (Rcf);

P1← Population_Initialization (W, G0) and t ← 1;

while (terminal criteria are not satisfied) do

← ∅Pc
t  //Pc

t  is the child population of Pt

Repeat

    Randomly choose two chromosomes Gi
t and Gj

t from Pt that have not been selected;

    ( )G G,ci
t

cj
t  ←​ Crossover_Operator ( )G G p, ,i

t
j
t

c
;

    ∪← { }G GP P ,c
t

c
t

ci
t

cj
t ;

Until (all chromosomes in Pt have been selected);

Calculate the robustness of each chromosome in Pc
t ;

for i  =​  1 to W do

    Select a chromosome Gt from Pt and Pc
t  using roulette wheel selection based on the robustness of all chromosomes;

    Conduct the local search operator on Gt with probability pl;

end for;

Pt+1 ←​ 2-Tournament_Selection(Pt, Pc
t);

t ←​ t +​ 1;

end while.

Implementation of MA-Rcf.  In MA-Rcf, the initialization operator is first used to generate an initial population 
with W chromosomes. In each generation, the crossover operator is applied to the population first, and then, the 
local search operation is conducted. After performing the crossover operator, a new child population is obtained. 

Figure 1.  The effect of parameter β on the performance of MA-Rcf. 

N Initial
Without (Average ± Standard 

Deviation)
With (Average ± Standard 

Deviation)

100 0.0751 0.1617 ±​ 0.0135 0.1669 ±​ 0.0128

200 0.0521 0.1202 ±​ 0.0127 0.1309 ±​ 0.0119

300 0.0395 0.0924 ±​ 0.0097 0.1072 ±​ 0.0085

500 0.0263 0.0783 ±​ 0.0074 0.0874 ±​ 0.0067

Table 1.  The Rcf values of BA networks obtained by MA-Rcf with and without the local search operator. The 
results are averaged over 10 independent runs.
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Then, the local search operator and the binary tournament selection operator are applied to both the parent and 
child populations to generate the child population for the next generation. Finally, the best chromosome in the 
last population is the most robust network found. The framework of MA-Rcf is summarized in Algorithm 4.

Results
In this section, because scale-free networks have become an important type of network, experiments are con-
ducted on both synthetic scale-free networks and real-world networks to validate the performance of MA-Rcf. We 
also study some of the network properties of the robust networks obtained by MA-Rcf. The synthetic scale-free 
networks were generated using the BA model5, and their average degree was set to 4. In ref. 31, Zhou et al. showed 
that MA-RSFMA can improve the robustness of scale-free networks against malicious attacks effectively; conse-
quently, we also compare networks optimized by MA-Rcf with those optimized by MA-RSFMA to investigate the 
different properties of both optimized networks.

The parameter α in (1) reflects the capacity of a node to handle its load. A larger α indicates a stronger node. 
The value of α is always assumed to be in the range [0, 1]: a α >​ 1 is unrealistically large18,19. In this work, we 
assume that ability of a node to handle its loads is average (neither very strong nor very weak). Thus, in the follow-
ing experiments, α is set to a median value, 0.5.

In the local search operator, the tolerance parameter β controls the percentage by which loads can differ 
between connected nodes. Therefore, we first conducted an experiment to find an appropriate value for β. This 
experiment used BA networks with 100 nodes. The robustness obtained by MA-Rcf under different values of β 
is plotted in Fig. 1. The results are averaged over ten independent runs on each sampled point. As Fig. 1 shows, 
MA-Rcf achieves the highest robustness when β equals 0.8. Thus, β is set to 0.8 in the following experiments.

The other parameters of MA-Rcf were set as follows: the population size W was set to 10, the crossover prob-
ability pc and the local search probability pl were set to 0.8 and 0.5, respectively, and the maximum number of 
objective function evaluations was set to 5 ×​ 104.

N Algorithms Best Worst Average ± Standard deviation

100

Hill Climbing 0.1231 0.0912 0.1035 ±​ 0.0113

Simulated Annealing 0.1356 0.1037 0.1187 ±​ 0.0109

MA-Rcf 0.1797 0.1476 0.1669 ±​ 0.0128

200

Hill Climbing 0.0926 0.0747 0.0813 ±​ 0.0066

Simulated Annealing 0.1021 0.0893 0.0922 ±​ 0.0053

MA-Rcf 0.1427 0.0891 0.1309 ±​ 0.0119

300

Hill Climbing 0.0821 0.0668 0.0729 ±​ 0.0059

Simulated Annealing 0.0932 0.0720 0.0864 ±​ 0.0066

MA-Rcf 0.1157 0.0892 0.1072 ±​ 0.0085

500

Hill Climbing 0.0782 0.0595 0.0651 ±​ 0.0054

Simulated Annealing 0.0883 0.0692 0.0793 ±​ 0.0059

MA-Rcf 0.1021 0.0722 0.0874 ±​ 0.0067

Table 2.  The Rcf of BA networks of different sizes obtained by the three tested algorithms. The results are 
averaged over 10 independent runs.

Figure 2.  A comparison between MA-Rcf and existing algorithms on BA networks of different sizes.  
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Experiments on Synthetic Networks.  In this experiment, scale-free networks with different scales were 
used to test the performance of MA-Rcf. First, an experiment was carried out to test the effectiveness of the local 
search operator. In this experiment, versions of MA-Rcf both with and without the local search operator were 

Figure 3.  The network topology before and after optimization by MA-Rcf. The size of each node is 
proportional to its degree.

Figure 4.  The change in the relative size of the giant component St over a series of cascaded attack circles t. 
The BA network has 200 nodes. The Rcf values of the initial BA network, the optimized network obtained by MA-
RSFMA and the optimized network obtained by MA-Rcf were 0.0521, 0.0558 and 0.1319, respectively.
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tested on BA networks with 100, 200, 300, and 500 nodes. The obtained robustness values are listed in Table 1, 
which shows that the MA-Rcf version with the local search operator always performs better than the version with-
out the local search operator. Therefore, the local search operator in MA-Rcf is effective.

Next, some experiments were conducted to test the ability of MA-Rcf to search for the most robust networks. 
Network structure optimization is a hard optimization problem. In existing works, the hill climbing algorithm34 
and the simulated annealing algorithm36,37 are widely used to address this problem. Thus, we compared the per-
formance of MA-Rcf with that of the hill climbing algorithm34 and the simulated annealing algorithm36,37. The 
maximum number of objective function evaluations for these two algorithms was also set to 5 ×​ 104 to obtain the 
results of these three algorithms at the same computational cost.

We tested BA networks with 100, 200, 300, and 500 nodes. The best, worst and average values of Rcf of the 
three algorithms over 10 independent runs are reported in Table 2. In addition, the corresponding curves of the 
average robustness obtained by the different algorithms are plotted in Fig. 2. As shown, MA-Rcf obtains the high-
est robustness values among these algorithms on all test networks. That is, MA-Rcf always finds more network 
structures more robust to cascading failures than do the other algorithms.

It is useful to study the robustness of the network structures obtained MA-Rcf. Thus, the network topologies 
of BA networks before and after optimized by MA-Rcf are plotted in Fig. 3, where the size of each node is pro-
portional to its degree. As shown, before optimization, low degree nodes are often connected to nodes with high 
degrees; consequently, the entire network is composed of numerous star networks with hub nodes. However, 
the optimized networks which have higher Rcf, the low degree nodes are more likely to be connected to other 
low degree nodes and the high degree nodes are more likely to be connected to other high degree nodes. The 
entire network is a hub-node-connected structure. Considering the property of cascading failures, it is easy to 

Figure 5.  The change in the relative size of the giant component St under high node degree attack circles t. 
The BA network has 200 nodes. The Rcf values of the initial BA network, the optimized network obtained by MA-
RSFMA and the optimized network obtained by MA-Rcf were 0.0521, 0.0558 and 0.1319, respectively.

N
A (Average ± Standard 

Deviation)
L (Average ± Standard 

Deviation)
C (Average ± Standard 

Deviation)

100

Before Optimization −​0.1489 ±​ 0.0000 3.1681 ±​ 0.0000 0.3563 ±​ 0.0000

MA-RSFMA 0.6206 ±​ 0.0242 8.1168 ±​ 0.2203 0.2186 ±​ 0.0093

MA-Rcf 0.3956 ±​ 0.0132 3.8307 ±​ 0.1841 0.3139 ±​ 0.0125

200

Before Optimization −​0.2194 ±​ 0.0000 3.5645 ±​ 0.0000 0.3124 ±​ 0.0000

MA-RSFMA 0.3951 ±​ 0.0176 7.9266 ±​ 0.2312 0.2057 ±​ 0.096

MA-Rcf 0.1734 ±​ 0.0118 3.5726 ±​ 0.1873 0.3115 ±​ 0.0103

300

Before Optimization −​0.2344 ±​ 0.0000 3.6327 ±​ 0.0000 0.3001 ±​ 0.0000

MA-RSFMA 0.3480 ±​ 0.0198 8.2787 ±​ 0.2241 0.1801 ±​ 0.0102

MA-Rcf 0.1470 ±​ 0.0093 3.7308 ±​ 0.1254 0.2943 ±​ 0.0089

500

Before Optimization −​0.2507 ±​ 0.0000 3.8264 ±​ 0.0000 0.2836 ±​ 0.0000

MA-RSFMA 0.3651 ±​ 0.0142 8.1968 ±​ 0.2101 0.1869 ±​ 0.0114

MA-Rcf 0.1033 ±​ 0.0076 3.8304 ±​ 0.1219 0.2814 ±​ 0.0081

Table 3.  The changes in important network properties of BA networks with different sizes before and after 
optimization by MA-Rcf and MA-RSFMA, including the assortative coefficients (A), the average shortest 
path length (L) and the global communication efficiency (C). The values of the optimized networks were 
averaged over 10 independent runs.
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understand why hub-node-connected networks have a stronger ability to resist cascade failures: when a hub 
node fails, the neighbouring hub nodes can withstand the additional loads effectively, preventing the spread of 
cascading failures.

Next, we carried out an experiment to test how well the networks obtained by MA-Rcf resist cascading failures. 
We simulated the process of cascaded failures on BA networks with 200 nodes until the size of the giant compo-
nent decreased to 1. The decreasing progress of the size of the giant component St is plotted in Fig. 4. As shown, 
along with the increasing cascade attack circle t, the MA-Rcf optimized network, which has a higher Rcf value, 
protects the giant component more effectively. The area between the curve of the “Initial BA network” and the 
curve of the “MA-Rcf optimized network” in Fig. 4 represents the amount of cascade failure mitigation, which cor-
responds to improving network robustness against cascade failures by 153%. These results show that the networks 
obtained by MA-Rcf can resist cascading failures effectively.

In ref. 31, Zhou et al. found that the onion-like network in which nodes with similar degree connect to each 
other can contribute to resisting high node degree attacks, we plotted the decreasing process of the size of St of 
networks optimized by MA-RSFMA under cascading failures in Fig. 4, which has 200 nodes. In Fig. 5, we sepa-
rately plotted the decreasing process of St of networks optimized by both MA-Rcf and MA-RSFMA under high node 
degree attacks. In each attack circle, the node with largest degree and all the edges connected to it are removed. 
To perform a fair comparison, the parameters for MA-RSFMA were set to the same as those for MA-Rcf, namely, 
the population size was set to 10, the crossover probability and the local search probability were set to 0.8 and 
0.5, respectively, and the maximum number of objective function evaluations was set to 5 ×​ 104. In Fig. 4, under 
cascaded attack circles, the size of the St of the MA-RSFMA optimized networks decreases as fast as that of the 
initial BA network—even more sharply after the first several attack rounds. Moreover, under high node degree 
attack circles, the size of the St of the MA-Rcf optimized network decreases as fast as initial BA networks (see Fig. 5 
for more details). In other words, the MA-Rcf algorithm cannot contribute to resisting high node degree attacks. 
These two experiments show that although the network structures optimized by these two algorithms have some 
similarity, their ability to resist cascading failures is significantly different.

We are also interested in whether other important network properties might have changed because of the 
optimization. Therefore, in Table 3 shows the results of assessing the assortativity coefficient38, the average short-
est path length and the global communication efficiency39 of networks both before and after being optimized by 
MA-Rcf. As shown, before the optimization, the BA networks have negative assortativity coefficient values that 
become positive after the optimization. In other words, the correlation degree of the networks changes from dis-
assortativeness to assortativeness after the optimization. This occurs because the optimization process promotes 
the connection of high degree nodes with other high degree nodes. After the optimization, the average shortest 
path length of BA networks is slightly increased while the global communication efficiency has a slight decrease, 
which means that the optimization process has no significant effect on network communication efficiency.

Because the networks obtained by MA-RSFMA are also assortative, it is interesting to study the difference in 
terms of the network properties of networks obtained by both MA-Rcf and MA-RSFMA; these properties are listed 
in Table 3. We can see that when both algorithms optimize the same network, the network obtained by MA-Rcf is 
far less assortative than that obtained by MA-RSFMA. In addition, the average shortest path length of the MA-Rcf 
is only half that of MA-RSFMA. Moreover, the networks obtained by MA-Rcf have higher global communication 
efficiency.

Experiments on Real World Networks.  In this section, MA-Rcf is applied to two real-world networks. 
One is an electrical power grid in Western Europe (mainly Portugal and Spain)40, labelled the WE Power grid 
network. It has 217 nodes and 320 edges. The average degree of the WE Power grid network is 2.95. The other net-
work is the US air network—the US air transportation system41—consisting of 332 airports and 2126 air routes, 
in which the nodes represent airports and the edges present flights. The average degree of the US air network is 
12.81. These two real networks are well connected and without any separate component.

The hill climbing algorithm, simulated annealing algorithm and MA-Rcf are used to independently optimize 
the above two networks. The obtained robustness values are reported in Table 4. As we can see, MA-Rcf always 
performs better than the two other algorithms. The network topologies of these two real networks before and after 
optimized by MA-Rcf are shown in Fig. 6. Comparing the network structure before and after optimization, we can 
see that, in the optimized networks, nodes with similar degrees are more likely to connect with each other, and 
the hub nodes are more closely connected to each other than before. Consequently, even for an existing network, 
MA-Rcf can find a structure more robust against cascading failure. By comparing the robust structure with the 

Network Algorithms Best Worst Average ± Standard deviation

WE Power

Hill Climbing 0.1221 0.1072 0.1135 ±​ 0.0063

Simulated Annealing 0.1256 0.1097 0.1187 ±​ 0.0059

MA-Rcf 0.1494 0.1126 0.1330 ±​ 0.0082

US Air

Hill Climbing 0.0463 0.0378 0.0415 ±​ 0.0047

Simulated Annealing 0.0481 0.0382 0.0422 ±​ 0.0051

MA-Rcf 0.0537 0.0401 0.0475 ±​ 0.0062

Table 4.  The robustness of networks after optimization with different algorithms on two real world 
networks. The results shown were averaged over 10 independent runs. The initial Rcf values of the WE Power 
network and US air network were 0.1022 and 0.0251, respectively.
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initial structure, we can find several key edges, which—if changed—would increase network robustness signifi-
cantly. Considering the cost of optimization, there is no need to change all the edges of the real network; instead, 
MA-Rcf can help find the key edges.

The assortativity coefficient, average shortest path length and global communication efficiency of these two 
real networks both before and after optimization are reported in Table 5. As listed, the WE Power network has a 
positive assortativity coefficient while the US air network has a negative assortativity coefficient. After optimiza-
tion by MA-Rcf, the WE Power network has stronger assortativeness, while the disassortativeness of the US air 
network gets weaker. This result is the same as the results of the experiments with synthetic networks, further 
verifying that networks with more hub nodes connected to each other have a stronger ability to resist cascad-
ing failures. Interestingly, after optimization by MA-Rcf, the average shortest path length of these two networks 
decreases while their global communication efficiency increases. In other words, MA-Rcf can not only increase a 
network’s global robustness against cascading failures but can also increase its global communication efficiency—
even when applied to real networks.

Figure 6.  The network topology of two real world networks before and after optimization by MA-Rcf. The 
size of each node is proportional to its degree.

N
A (Average ± Standard 

Deviation)
L (Average ± Standard 

Deviation)
C (Average ± Standard 

Deviation)

WE Power
Before Optimization 0.1269 ±​ 0.0000 6.9381 ±​ 0.0000 0.1870 ±​ 0.0000

After Optimization 0.2176 ±​ 0.0097 4.9511 ±​ 0.1903 0.2313 ±​ 0.0115

US Air
Before Optimization −​0.2078 ±​ 0.0000 2.7381 ±​ 0.0000 0.4059 ±​ 0.0000

After Optimization −​0.0819 ±​ 0.0056 2.4980 ±​ 0.1410 0.4336 ±​ 0.0089

Table 5.  The changes in some important network properties of real world networks before and after 
optimization by MA-Rcf, including the assortative coefficients (A), the average shortest path length  
(L) and the global communication efficiency (C). The values of optimized networks were averaged over 10 
independent runs.
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Discussions
Securing network infrastructure is critical in today’s society. When studying networks subject to cascading fail-
ures, considering only the damage from one or even several nodes is insufficient. In this paper, we describe the 
design of a more comprehensive index that can evaluate the ability of networks to resist cascading failures. To 
enhance networks resistance to cascading failures, we propose a memetic algorithm, MA-Rcf. Then, to test the 
performance of MA-Rcf, we tested it on both synthetic and real networks. The topologies of the robust networks 
obtained by MA-Rcf are shown and some of their network properties are discussed. From experiments comparing 
with MA-Rcf other network optimization algorithms, we can conclude that MA-Rcf achieves a better performance, 
showing that MA-Rcf is an effective algorithm for enhancing the robustness of networks against cascading failures.

When dealing with complex networks, the large computational complexity of calculating shortest paths limits 
the algorithms that rely on such calculations from being applied to large-scale networks. For example, the com-
putation of Rcf in Equation (2) needs to calculate the shortest path of the network under each cascading attack 
circle; consequently, MA-Rcf is unable to optimize large networks at a low computational cost. However, studying 
the effects of MA-Rcf on cascading failures is still meaningful. MA-Rcf provides an opportunity to explore network 
structures that are robust against cascading failures. In this paper, we apply MA-Rcf to networks with specific 
sizes and study the topological structure and network properties of robust networks. The experiments show con-
necting hub nodes to each other more closely would be a good strategy when designing networks that are robust 
against cascading failures. Moreover, extending this discovery to large-scale networks is not difficult. In contrast 
with other traditional algorithms, MA-Rcf is a competitive algorithm for optimizing networks against cascading 
failures.
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