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Layer-switching cost and optimality 
in information spreading on 
multiplex networks
Byungjoon Min1,2,*, Sang-Hwan Gwak1,*, Nanoom Lee1 & K.-I. Goh1

We study a model of information spreading on multiplex networks, in which agents interact through 
multiple interaction channels (layers), say online vs. offline communication layers, subject to layer-
switching cost for transmissions across different interaction layers. The model is characterized by the 
layer-wise path-dependent transmissibility over a contact, that is dynamically determined dependently 
on both incoming and outgoing transmission layers. We formulate an analytical framework to deal 
with such path-dependent transmissibility and demonstrate the nontrivial interplay between the 
multiplexity and spreading dynamics, including optimality. It is shown that the epidemic threshold and 
prevalence respond to the layer-switching cost non-monotonically and that the optimal conditions can 
change in abrupt non-analytic ways, depending also on the densities of network layers and the type 
of seed infections. Our results elucidate the essential role of multiplexity that its explicit consideration 
should be crucial for realistic modeling and prediction of spreading phenomena on multiplex social 
networks in an era of ever-diversifying social interaction layers.

Networks are penetrating ever more deeply through every facet of individual lives and societal functions1. At its 
center, the explosive rise of social media driven by the information communication technology or ICT revolution 
has profoundly transformed the landscape of human interactions. Human interactions mediated by social media 
could defy the spatial and temporal limitations of traditional communications in an unprecedented way, thereby 
offering a qualitatively new layer of social interaction, which coexists and cooperates with existing interaction 
layers to redefine the multiplex social networks2–4. In addition, networks with different types of edges categorized 
by their relationships have been studied for a long time in social network analysis5–7. These multiple interaction 
channels or network layers in a multiplex system do not function completely autonomously nor dependently; 
while each layer can support some function within its scope, it is the crosstalk and interplay between these layers 
that can fulfill the full functionality of the system and could give rise to nontrivial and unanticipated collective 
outcomes such as the recently uprising civil movements in the Middle East2. This poses theoretical challenge as 
well to extend existing single-network framework8–10 by formulating and disseminating the role of multiplex 
layers that do not always play independent roles in network structure and dynamics, the understanding of which 
is beginning to be culminated11–14.

Epidemic processes on networks are one of the most actively developed branches in complex network the-
ory15, which can address not only the spreading of infectious diseases but also many other contagious phenom-
ena such as information and rumor spreading on social networks. A few recent studies on epidemic spreading 
beyond the single-network framework have been performed under various terms like overlay networks16, mul-
titype networks17, interconnected networks18,19, interdependent networks20, interacting networks21, and mul-
tiplex networks22,23. Cascade processes have also been studied on multilayer, interdependent, and multiplex 
networks24–30. (For details of these terms and their similarity and differences, the reader is referred to the com-
prehensive table compiled in ref. 12). Here we study an epidemic-based information spreading model framework 
on multiplex social networks, distinguished from existing models by the presence of the layer-switching cost, 
describing the overburden or surcharge for transmissions that proceed by crossing different layers compared to 
those proceeding as confined within the same layer. For example, when one received new information through 
an online social medium, say Twitter, she would more likely spread it again through Twitter as it is most handy, 
than would do it over other online media, such as e-mail, let alone over an offline social network, as it would 
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require additional effort and/or accompany spatiotemporal delay in switching the medium (network layer). 
Indeed, early studies using data from Twitter and weblogs have shown that the information diffusion structure is 
highly platform-dependent31,32. Despite being commonplace, the layer-switching cost has not yet been explicitly 
addressed in multiplex spreading dynamics and thus its implication is not elucidated systematically.

In this paper, we show that this commonplace factor of layer-switching cost can significantly and nontriv-
ially modify information spreading dynamics on multiplex social networks. Most fundamentally, it intro-
duces the path-dependent transmissibility over a contact that is dynamically determined depending on both 
incoming and outgoing transmission layers, which requires a new theoretical formalism beyond the standard 
ones33–35. We formulate a generating-function based theory to cope with such path-dependent transmissibility in 
locally-treelike networks. Using both analytical calculations and numerical simulations, various consequences of 
the layer-switching cost, and thus the path-dependent transmissibility, are revealed. These include the existence 
of trade-off between the infection rates along the same layer and across difference layers to optimize information 
spreading for a given average infection rate over different channels and the nearly-confined spreading within the 
dominant layer when the layer-switching cost is large enough. Our study elucidates how the network multiplex-
ity and the layer-switching cost can alter the information spreading dynamics in non-trivial way and thereby 
suggests that the modeling neglecting the multiplex social interactions into an aggregated one could potentially 
mislead to inaccurate conclusions.

The Model
We take account of the effect of network multiplexity and layer-switching cost by introducing the layer-wise 
path-dependent infection rates. Given more than one layer through which the information or disease spreads, the 
infection rate for a link (contact) in one layer depends not only on the current layer but also on which layer the 
information or disease has transmitted from (as in the case of the Twitter example in the previous section). To 
implement this idea specifically, we construct a model based on the prototypical susceptible-infected-recovered 
(SIR) model framework for epidemic spreading36 taking place on multiplex networks with more than one layer. 
In the SIR model, each node is in one of three states, susceptible, infected, or recovered (or removed). An infected 
node can spread information (or rumor or disease) to a susceptible neighbor with the infection rate β, and each 
infected node is recovered after a time τ from the moment of infection. We here assume that the probability dis-
tribution of the recovery time τ is sharply peaked, and so well-described by the delta function. The probability 
that an infected agent infects its neighbors before recovery, denoted by T, is called the transmissibility, which is, 
under the above assumption, given by = − = −βτ λ− −T e e1 1  (Ref. 33), defining the dimensionless parameter 
λ βτ≡  as the effective infection rate. The average fraction of recovered nodes in the stationary state ( → ∞t  
limit), ρ, is called the prevalence and is the main observable in the spreading process.

For the spreading process on a multiplex network with in general  layers, we define the type-i transmission to 
be the infection event in which the infection occurs through a link in layer i ( = , ,…, )i 1 2 . The key feature of our 
model is that the infection rate over a link depends on the types of both incoming (preceding) and outgoing  
(current) infection layers. To be specific, when a node is infected via a type-i transmission, then the effective 
infection rate for the infection through the same layer link (type-i transmission) is λii whereas that through a link 
in different layer j (type-j transmission) is λ ji, where these infection rates are different in general. With the interest 
on the effect of layer-switching cost, we mainly consider the case λ λ≥ii ji, yet the model framework itself does 
not impose any such constraint. As a consequence of layer-wise path-dependent infection rates in our model, the 
transmissibilities T ij become accordingly dependent on the types of both incoming and outgoing infection layers. 
Therefore, the transmissibility through a given link is not fixed a priori but can change as the spreading dynamics 
proceeds, as exemplified in Fig. 1.
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Figure 1.  Schematic illustration of the information spreading model with layer-switching cost on the 
multiplex network with two layers. In this example, the spreading starts with the seed infection in layer 1. 
Subsequent spreading proceeds with the transmissibility T ji as the transmission in layer j is preceded by the 
transmission in layer i. Two possible sample spreading trajectories are shown for illustration in (a) and (b), 
respectively. Nodes are colored according to the type of transmission through which they are infected (blue for 
type-1 and red for type-2 transmission). Due to the path-dependency, the transmissibility of a given link is not 
fixed a priori but can take different value, as exemplified by the thick link in this figure.
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Analytical framework
In this section we develop an analytical framework for our model applicable to the case of the multiplex network 
of locally-treelike random network layers, based jointly on the well-established single-network framework for SIR 
models33–35 as well as the percolation on multiplex networks37–41. (While our theory is strictly derived from the 
assumption of locally-treelike random networks, the theoretical approach may also apply to some non-treelike 
real networks as reported in ref. 42). For the sake of explicit illustration, our discussion proceeds for the simplest 
case of 2-layer (duplex) networks, and the generalization to > 2 layers is straightforward.

Outbreak size
We first consider the average epidemic size once the epidemic outbreak occurs, denoted S and called the outbreak 
size, equivalent to the average nonzero final fraction of recovered nodes. According to the standard theory34,35, 
in order to estimate the outbreak size S one needs the incoming transmissibility of each type of links, which 
however is not given a priori in our model. In our model, the incoming transmissibility for a link is not assigned 
inherently and definitively but determined dynamically and dependently on the transmission channel by which 
the infecting node had become infected. In what follows we tackle this difficulty by using a method based on the 
self-consistency argument to infer the effective incoming transmissibility yielding the same outbreak size S as the 
original problem.

In order to infer the effective incoming transmissbility for each kind of links, we first estimate the probability 
πij that an infected node reached by following a randomly-chosen type-i link had been infected by a type-j trans-
mission. This probability πij can be expressed in terms of the probability π( , )ij

k k1 2  that an infected node with the 
multiplex degree ( , )k k1 2  reached by following a randomly-chosen type-i link had been infected by a type-j trans-
mission as π π= ∑ = , =

∞ ( , ) ( , )
ij k k

k p k k
z ij

k k
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1 2 1 2 , where zi is the mean degree of the layer i. In our model, there are two 
different possible ways that a node is infected by a type-i transmission: the node could be infected by a neighbor 
which had been infected either by a type-i or type-j transmission, with respective transmissibilities, T ii and T ij. 
For locally-treelike layers this consideration leads that π( , )ij

k k1 2  and π( , )ii
k k1 2  are respectively proportional to 

( )π π+k T Tj ji ji jj jj  and (ki −  1)( )π π+T Tii ii ij ij . Summing up for the multiplex degree and properly normalizing 
lead to the coupled self-consistency equations for πij’s, given by
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2

and πi is the normalization factor imposed by π π+ = 1ii ij , for distinct , ∈ ,i j {1 2}. Solving these equations for 
πij’s with given ( , )p k k1 2  and Tij’s (equivalently, λij’s), one can obtain the effective average incoming transmissibil-
ity through the type-i link, denoted T i and given by

π π= + . ( )T T T 2i ii ii ij ij

What is achieved thus far is to transform the original model into an equivalent (with respect to S) SIR model 
with (path-independent) transmissibilty T i in each layer i. The outbreak size of the transformed model can be found 
in the standard way, by adapting the methods developed for percolation in multiplex networks37–40. Let ( , )G x y0  be 
the generating function of the joint degree distribution ( , )p k k1 2 ,  ( , ) = ∑ ( , )= , =

∞G x y p k k x yk k
k k

0 0 0 1 21 2
1 2. The 

generating function ( , , )G x y p q;0  of the joint distribution of the numbers of occupied edges when the edges are 
independently occupied with the probability p in layer 1 and q in layer 2 can be written as ( , , )=G x y p q;0  
( + ( − ) , + ( − ) )G x p y q1 1 1 10 . In the transformed SIR model the edges in layer i are occupied with probability 

T i, so the probability that a node reached by following a randomly-chosen type-i link does not belong to the epi-
demic outbreak, denoted xi, is given by33

=
∂
∂

( , , )
( )

 x
z T x

G x x T T1 ;
3i

i i i
0 1 2 1 2

with = ,i 1 2. Finally, the outbreak size S (that is, the probability that a random-chosen infected node belongs to 
the giant connected component of infected nodes) can be obtained as

= − ( , , ), ( ) S G x x T T1 ; 40 1 2 1 2

with xi’s being the physical solution of Eq. (3).

Outbreak probability
The outbreak probability can be in general different with the outbreak size due to the effective directionality 
induced by the path-dependent transmissibility in our model34,35. In order to obtain the outbreak probability, 
we can follow the path-dependent transmissibilities determined by the incoming and the outgoing transmission 
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channels explicitly. Let yi be the probability that a node infected by type-i transmission does not lead to an epi-
demic outbreak. Similarly to Eq. (3), yi’s satisfy the coupled self-consistency equations

=
∂
∂

( , , ),
( )

y
z T y

G y y T T1 ;
5i

i ii i
i i0 1 2 1 2

with = ,i 1 2. The probability Pi that a type-i seed infection gives rise to an epidemic outbreak (that is, the infec-
tion spreads indefinitely) is then given by

= − ( , , ), ( )P G y y T T1 ; 6i i i0 1 2 1 2

with yi’s being the physical solution of Eq. (5). Note that unlike the outbreak size S, the outbreak probability Pi 
depends on which layer the epidemic is initiated from.

Epidemic threshold
The epidemic threshold can be obtained by the linear stability criterion of the trivial fixed point ( , ) = ( , )y y 1 11 2  of 
Eq. (5). The condition of the epidemic outbreak requires the largest eigenvalue Λ  of the Jacobian matrix J of Eq. (5)  
at (1, 1) to be larger than unity, Λ>1, which is the condition of the fixed point being unstable. The Jacobian matrix 
J at (1, 1) can be simply expressed as

κ
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The largest eigenvalue Λ  can be explicitly calculated as

 κ κ κ κΛ = + + ( − ) + . ( )T T T T T T1
2

[ 4 ] 811 1 22 2 11 1 22 2
2

12 21 1 2

Note that κ κΛ ≥ ( , )T Tmax 11 1 22 2 , meaning that the epidemic threshold of the multiplex network cannot be 
larger than the epidemic thresholds of individual layers.

Comparison with numerical simulations
To verify the validity of the proposed analytical framework, we compare the analytical calculation with the 
numerical simulation results. The numerical simulation of our model proceeds as follows. Initially, all nodes are 
susceptible except for one randomly-chosen seed which is assumed to be infected by a type-i transmission (that 
is, infected through layer i). Infected nodes transmit the disease to their susceptible neighbors with the infection 
rates λ ji determined by both the incoming channel i and the outgoing channel j. Each infected node recovers after 
a fixed recovery period, τ. The spreading process proceeds until all infected nodes in the network recover, which 
completes one independent run of the numerical simulation. After many independent runs, we compute the 
outbreak probability Pi as the fraction of runs ending up with the fraction of recovered nodes above the pre-
scribed threshold (chosen to be 1% in our numerical simulation). Likewise the outbreak size S is computed as the 
average of the fraction of recovered nodes above the threshold. The prevalence due to type-i seed infection, ρi, is 
computed as ρ = P Si i .

Duplex ER networks
To gain further insights on the role of layer-switching cost, we elaborate further on analyzing the model on the 
2-layer network formed by two independently-constructed Erdös-Rényi (ER) layers (henceforth the duplex ER 
network, for short), for which one can obtain the analytical results in an explicit form. Mean degrees of two ER 
layers are denoted z1 and z2, respectively. To focus on the effect of layer-switching cost, we further simplify the 
parameter setting such that the infection rates within the same layer are equal as λ λ λ= ≡ s11 22  (“s” for same) 
and similarly for the infection rates across different layers as λ λ λ= ≡ d12 21  (“d” for different). Corresponding 
transmissibilities are given by = − λ−T e1i

i, where i is either s or d. We further assume λ λ≥s d, so that the infor-
mation spreading along the same layer is easier than that across layers, in compliance with the concept of 
layer-switching cost.

When the two layers are randomly-coupled, the effective incoming transmissilibities can be calculated under 
this simplified setting as
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Using  ( , ) = ( − )+ ( − )G x y ez x z y
0

1 11 2  for randomply-coupled duplex ER networks, Eqs. (3) and (4) are reduced 
to a single equation for = = −x x S11 2 , so that the outbreak size S is given by the solution of

− = . ( )−( + ) S e1 10z T z T S1 1 2 2

Similarly for the epidemic probability, Eqs. (5) and (6) are reduced to two coupled equations for = −y P1i i, 
given by
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As shown in Fig. 2a, for randomly-coupled duplex ER networks the proposed analytical calculation results 
exhibit good agreement with the numerical simulation results even for the networks with moderate size =N 104, 
supporting the validity of the analytic framework. Deviations observed near the epidemic threshold are due to the 
finite size. Moreover the results in Fig. 2a manifest clearly that the outbreak probability Pi and size S can be differ-
ent each other above the epidemic threshold. It can also be noted that P1 and P2 can be different each other so that 
the outbreak probability and prevalence above the epidemic threshold does depend on the layer from which the 
infection is initiated.

Assessing the effect of layer-switching cost
To assess the effect of layer-switching cost in minimal way, we employ a new parametrization for the infection 
rates and the mean degrees as follows. First, the infection rates are parameterized by
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Figure 2.  (a) Comparison of the analytical calculation (lines) and numerical simulation (symbols) results for 
the outbreak probabilities P1 (□ ) and P2 (), the outbreak size S (∆), and the prevalence ρ1 (∇) and ρ2 (), 
plotted as a function of λ. The results are for the duplex ER networks with = .z 2 50 , δ = /z 1 2, and δλ= /1 2. 
Numerical simulation results are obtained with =N 104 nodes. (b,c) The prevalence ρ on duplex ER networks 
with = .z 2 50 , δ =z 0 (b) and δ = /z 1 2 (c) for several values of cost parameter δλ=0 (□ ), /1 4 ( ) , 1/2 (Δ ), 3/4 (∇), 
and 1 (). Theoretical curves (lines) and numerical results obtained with =N 104 nodes (points) are shown 
together. (d, e) The plots of prevalence ρ on duplex ER networks with δ = /z 1 2 for = .z 1 250  (d) and = .z 5 00  
(e) for several values of cost parameter δλ. Same symbols and lines as panels b and c are used. (f) The infection 
path profile in terms of the stacked histogram of the epidemic outbreak size different infection channels ρ ji for 
duplex ER networks of = .z 2 50  and δ =z 0 (left) and δ = /z 1 2 (right), with λ = .1 2 and various values of δλ.
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λ δλ λ λ δλ λ= ( + ) = ( − ) . ( )1 and 1 12s d

Here λ is the average infection rate and δλ≤ ≤0 1 accounts for the level of layer-switching cost, such that 
λ λ≥s d. By this parametrization we consider the scenario in which one could modulate the difference in λs and 
λd with δλ while the average infection rate is kept fixed by the total amount of resource for information spreading. 
Similarly, the mean degrees of the two layers are parametrized as δ= ( + ) /z z z1 21 0  and δ= ( − ) /z z z1 22 0 . 
Here z0 is the total mean degree of the two layers and δ≤ ≤z0 1 quantifies the disparity in the link density of the 
two layers. By using this parametrization we aim to assess the effect of layer-switching cost as the relative link 
density of two layers changes while the total number of links is kept fixed.

To have the first sense for the effect of layer-switching cost, we take a look at the information spreading 
dynamics on duplex ER networks initiated from a type-1 transmission for several values of δλ. Two values of link 
density disparity δ =z 0 and δ = /z 1 2 for the same total degree = .z 2 50  (equivalently, = .z 1 8751  and 
= . )z 0 6252  are chosen for comparison. As shown in Fig. 2, the effect of layer-switching cost is multifaceted, 

depending on the network (parametrized by δz  here) as well as which aspect of information spreading one is 
interested in. For δ =z 0, the effect is rather simple: the layer-switching cost tends to hinder the information 
spreading, in that the larger δλ is, the larger is the epidemic threshold λc as well as the smaller is the prevalence ρ 
(Fig. 2b). For δ = /z 1 2, however, the effect of layer-switching cost is more intricate (Fig. 2c). As δλ increases from 
zero, the epidemic threshold becomes smaller, meaning that the epidemic outbreak is facilitated near the thresh-
old. On the contrary, larger δλ yields smaller value of prevalence ρ when λ is sufficiently larger than the epidemic 
threshold. For large enough λ the system is well percolated, so large value of layer-switching cost causing confine-
ment of epidemic spreading within the initial layer hinders the effective use of entire available network and thus 
produces suppressive effect. What happens for small λ is instead that the confined spreading within the denser 
layer due to large layer-switching cost becomes advantageous by avoiding the trapping of spreading in the sparse 
layer below percolation threshold. In this way, the layer-switching cost can lead to apparently counteracting effect 
depending on the average infection rate λ. Numerical simulation and theoretical calculation for different total 
mean degree = .z 1 250  and = .z 5 00  with δ = /z 1 2, for which both the layers are unpercolating (percolating) for 
the former (latter), show qualitatively similar pattern (Fig. 2d,e).

Infection channel profile
The unequal usage of different transmission channels arises from the link density and the layer-switching cost. To 
quantify this we make the infection channel profile consisting of epidemic outbreak sizes due to each channel 
ρ ←i j, which can be computed by the fraction of each transmission channels T ij is used during the information 
spreading process. In Fig. 2f we show the infection channel profiles for the previously-examined two cases of 
duplex ER networks of = .z 2 50  with δ =z 0 and δ = /z 1 2 (corresponding to Fig. 2b,c), respectively. We take 
λ = .1 2, well above the threshold. For δ =z 0, as the layer-switching cost parameter δλ increases the use of 
cross-layer transmission channels is suppressed more significantly whereas the intra-layer channels remain used 
in a similar level as long as δλ<1, illustrating clearly the simple detrimental role of layer-switching cost for δ =z 0. 
For δ = /z 1 2, on the other hand, the total epidemic size ρ is more or less insensitive to δλ while the composition 
of ρ ←i j significantly and systematically varies, with the intra-layer channel through denser layer ρ ←1 1 increasingly 
dominating the spreading as δλ increases.

Epidemic threshold and prevalence
To establish a more comprehensive picture, we compute the epidemic threshold and the prevalence for the full 
range of δλ and δz. We specifically consider the prevalence ρh computed for λ = .1 2, well above the threshold, to 
address the situation where the level of available infection capacity is high enough for large-scale spreading. 
Therefore the two quantities could be a relevant measure for the efficacy of information spreading when the avail-
able infection capacity is tightly limited and sufficiently rich, respectively.

Plots of the epidemic threshold λc and the prevalence ρh for the duplex ER networks with = .z 2 50  are shown 
in Fig. 3. In Fig. 3a, we also indicate in the upper panel the loci of δλ producing the largest threshold λ( c

max, red) 
and smallest threshold λ( c

min, blue) for given δz. The corresponding maximal and minimal λc as a function of δz 
is shown in the lower panel. The loci of δλ for maximal and minimal λc  jumps abruptly at δ = .z 0 297 and 
δ = .z 0 253, respectively, which is accompanied by the discontinuity of the fist derivative in the plots of λc

max and 
λc

min vs. δz.
Similarly, in Fig. 3b, we display in the upper panel the loci of δλ producing the largest (red) and smallest (blue) 

ρh for given δz. The corresponding largest and smallest prevalence ρh as a function of δz is shown in the lower 
panel. The loci of δλ for maximal and minimal ρh also undergo abrupt jump at δ = .z 0 672 and δ = .z 0 543, 
respectively, which is associated with the discontinuity of the first derivative in the plots of ρh

max and ρh
min vs. δz.

Taken together, the effect of layer-switching cost demonstrated by Fig. 3 can be summarized as follows. First, 
its effect is rather simple either when the two layers have similar density δ( . )z 0 2  or when the network density 
disparity is high enough δ( . )z 0 7 . In such cases, its effect is largely monotonic: either suppressive or facilitative 
for information spreading, albeit the effect is reversed for small and large disparity. On the other hand, for inter-
mediate range of disparity  δ( . . )z0 2 0 7 , the effect of layer-switching cost is no longer simple. Its effect is 
non-monotonous as well as it can accompany an abrupt, substantial discontinuity in the optimal parameter under 
a slight change of network density disparity. In sum, since the layer-switching cost tends not just to hinder 
cross-layer transmissions but also to promote intra-layer transmissions, the relative contribution and tradeoff 
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between the two effects subject to the given network parameters and the level of available infection capacity can 
result in non-trivial and non-monotonic consequences to information spreading dynamics on multiplex net-
works, leading us to the concept of optimality43.

Optimal layer-switching cost for maximal spreading
The intricate effect of layer-switching cost allows formulation of many different optimization problems, contin-
gent upon the objective of optimization as well as the given network parameters. In this section we analyze one 
particular optimization problem of finding the optimal layer-switching cost δλ( )max

 that maximizes the preva-
lence for given total infection capacity dictated by λ, as an illustrative example.
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Figure 3.  The epidemic threshold λc (a) and the prevalence for λ = .1 2 denoted as ρh (b) as a function of δz 
and δλ for the randomly-coupled duplex ER network with = .z 2 50  are density-plotted in the top panels. Thick 
red (blue) line in top panels is the trace of the loci of maximum (minimum) value of λc (a) and ρh (b) with 
respect to δλ at the given δz, which can undergo discontinuous jump upon changing δz, indicated by the dashed 
line. At the bottom panels, the values of the maximal (red) and minimal (blue) λc (a) and ρh (b) with respective 
to δλ are plotted as a function of the given δz.
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Figure 4.  Plot of optimal cost parameter (δλ)max for maximizing prevalence ρ as a function of λ with 
several values of δz. The optimal parameter for information spreading with a limited resource (given λ) exhibits 
an abrupt discontinuous change for a wide range of δz. Note that all the (δλ)max’s below the discontinuous 
transition point are exactly 1 and overlapping; here we have purposefully split them next to each other for visual 
convenience.
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In Fig. 4, we show the optimal cost δλ( )max
 as a function of λ computed for duplex ER networks of = .z 2 50 . 

When δ < .z 0 280, small value of δλ, that is, layer-indiscriminate spreading, is advantageous for any λ above the 
threshold. On the other hand, when δ > .z 0 280, the optimal parameter δλ( )max

 changes sensitively to λ. Moreover, 
it undergoes an abrupt discontinuous change at some λ, whose location depends on δz, below which it is always 
advantageous to concentrate the spreading through the denser layer, that is, δλ( ) = 1max

, down to the threshold 
λc for spreading. The locations of the abrupt change in δλ( )max constitute the boundary of shaded region in Fig. 4. 
This example demonstrates explicitly how the non-analytical and discontinuous response of spreading dynamics 
to the layer-switching cost in multiplex networks can manifest generically in optimizing information spreading 
on multiplex networks. Optimization problems with other objectives such as minimizing the epidemic threshold 
for given network disparity can also be analyzed readily in this framework.

Effect of interlayer degree correlations
In investigating the effect of layer-switching cost so far we have only considered the spreading processes on 
randomly-coupled multiplex networks, in which the degrees of a node in different layers are uncorrelated. For 
many real-world networks, however, layers of a multiplex network often do not combine randomly. One of the 
simplest manifestation of the correlated coupling of multiplex layers is the interlayer degree correlation, that the 
degrees of a node at different layers are correlated, the effect of which has been examined for the robustness and 
controllability of multiplex networks27,40,44.
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Figure 5.  (a) Schematic cartoon illustrating the interlayer degree correlated couplings considered in the text. 
MC stands for maximally correlated, UC for uncorrelaed, and MA for maximally anti correlated. (b) Plots of 
epidemic prevalence ρ on maximally-correlated ( ) , maximally-anticorrelated (Δ ), and uncorrelated (◇ ) 
duplex ER networks with = .z 2 50  and δλ = /1 2, as a function of λ. Numerical results obtained with =N 104 
nodes (points) and theoretical curves (lines) are in good agreement. (c,d) The prevalence ρh for λ = .1 2 on the 
maximally-correlated (c) and maximally-anticorrelated (d) duplex ER networks with = .z 2 50 , together with 
the maximum (red) and minimum (blue) ρh plotted in the lower panels as a function of δz.
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We illustrate the effect of interlayer degree correlation by using duplex ER networks with three representative 
cases of interlayer correlated coupling38,40: Given two layers, we couple the layers in the maximally-correlated way 
by coupling the two nodes from each layer in their degree order; in the maximally-anticorrelated way by coupling 
the nodes in the opposite degree order; or just randomly in uncorrelated way (Fig. 5a). Consequently, a node that 
is the hub in one layer is also the hub in the other layer for the maximally-correlated case, but it has the smallest 
degree in the other layer for the maximally-negative case.

We show the prevalence plot for duplex ER networks of layers with equal mean degree 5/4 δ( = / , = )z z5 2 00  and 
with layer-switching cost δλ = /1 2 in Fig. 5b and for the entire range of δλ and δz in Fig. 5c,d, as illustrative example. 
In this case, the largest eigenvalue of the Jacobian matrix has the simple expression as κΛ = +T Ts d, where κ and 
 are the self- and cross-second moments, respectively, of the joint degree distribution defined in Eq. (1).  
This indicates that the epidemic threshold should decrease with the interlayer degree correlation, codified by , 
confirmed in Fig. 5b that λc is lowest for the maximally-correlated case and highest for the maximally-anticorrelated 
case. For the large enough λ, by contrast, the prevalence ρ becomes largest for maximally-anticorrelated case and 
smallest for maximally-correlated case. Therefore, the interlayer degree correlation facilitates the emergence of epi-
demics (lowering λc) but at the same time hinders the large-scale epidemic for high transmissibilities (smaller ρ), 
reminiscent of the effect of degree assortativity in single-layer networks45. For the intermediate case, the response of 
the epidemic prevalence with respect to interlayer degree correlation is more complicated and dependent on details, 
as exemplified in Fig. 5c,d for the maximally-correlated (c) and maximally-anticorrelated (d) cases, respectively.

Empirical Twitter network
We simulate the model on the empirical multiplex network constructed from Twitter data in ref. 4. This network 
consists of two layers, the retweet layer and the reply layer (Fig. 6a). Each node is a Twitter account and two nodes 
are connected in the retweet layer if one “retweets” the other’s tweet message at least once and in the reply layer if 
one “replies” to the other’s tweet at least once. Although these two layers do not represent different communica-
tion media or platforms but different modes of usage of the common medium, Twitter, considering them from a 
functional point of view they are relatively autonomous, in that the flow of information is likely confined within 

Figure 6.  (a) Sample snapshot of a small portion of the 2-layer Twitter network. One can notice that the retweet 
layer is denser than the reply layer and a significant portion of links are overlapping across the two layers. Size of 
the node denotes the degree of the node in that layer. The entire Twitter network data consists of = ,N 456 631 
nodes, with the mean degree of each layer being = .z 3 20retweet  and = .z 1 92reply , respectively. (b) The cumulative 
degree distribution of the two layers in Twitter network. Data for both layers are fitted to a power law with an 
approximate exponent ≈ − .2 3 (as indicated by the dashed guideline with the slope − 1.3). (c) Plots of the 
prevalence ρ on the Twitter network for various values of δλ. (c, inset) A close-up of the prevalence plot for the 
range of small λ λ( ≤ ≤ . )0 0 5 . (d) The infection channel profile for the Twitter network with λ = .1 2 and 
various values of δλ.
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the given mode and only occasionally crosses to the different mode: One is more likely to retweet the information 
seen from other’s retweet message than to reply it to someone else. It can therefore by addressed, at least schemat-
ically, by the model with layer-switching cost. Moreover, this dataset is one of the rare multiplex social network 
dataset which is publicly-available yet sufficiently large-scale, thus suitable for the modeling study. The network 
contains = ,N 456 631 nodes and the mean degrees of the two layers are = .z 3 21retweet  and = .z 1 92reply , corre-
sponding to = .z 5 130  and δ = .z 0 25. The degree distribution of each layer is fitted to a power law with the expo-
nent ≈ − .2 3 (Fig. 6b).

We show the simulation results of the prevalence ρ as a function of λ (Fig. 6c) and the infection channel profile 
with λ = .1 2 (Fig. 6d) for different δλ. On this network, the layer-switching cost is found advantageous for infor-
mation spreading in wide range of λ > 0, until λ becomes large enough λ( . )2 5  when no appreciable differ-
ences are observed for different δλ. Infections through the retweet layer predominate the epidemic process, as this 
layer is denser. Compared with the model network results on duplex ER networks (Fig. 2), two notable structural 
features of the Twitter network are worth to be highlighted. First, the broad degree distribution of the Twitter 
network brings the epidemic threshold close to zero46, so that the effect of layer-switching cost on changing the 
epidemic threshold is not observable. Secondly, structural organization of the two layers are not completely inde-
pendent; rather they are highly correlated, since people tend to reply to someone who she/he had retweeted. In 
effect, there is prevalence of link overlap47 across the two layers. In the current dataset, 73.2% of reply links are 
overlapping with retweet links and the size of giant connected component of the two-layer network is dominated 
by the retweet layer. This feature severely constrains the effect of outbreak suppression for large λ. Overall, the 
effect of layer-switching cost on the empirical Twitter data network is moderate yet non-negligible. Notably, when 
λ is not too large λ( )1 , it can induce change in the prevalence by as large as 10 to 50% (Fig. 6c, inset). The 
interplay of other higher-order structural features present in real-world networks, such as clustering and commu-
nity structure48 and evolution-driven correlation49,50, for information spreading dynamics remains to be investi-
gated further.

Infection Rates Dependent on Source Layer
Although motivated originally to address the effect of layer-switching cost, the present model framework is appli-
cable more broadly to the generic class of spreading processes involving layer-wise path-dependent trasmissibil-
ities. One such case is where the infection rates are still path-dependent but determined primarily by the source 
layer. For example, one may have the infection rates parametrized as

λ λ λ λ= ( + ) = ( − ) ( )c c1 and 1 13j j1 0 2 0

with − ≤ ≤c1 1. In the context of information spreading, such parameter setting may arise when a particular 
social layer (the layer 1 for > )c 0  has much higher credibility than the other so that the information received in 
that layer is taken more seriously and so more likely to be passed on through either layer whereas the information 
received in the other layer gets less attention and likely disregarded.
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Figure 7.  The epidemic threshold λc (a) and the prevalence ρh for λ = .1 2 (b) as a function of δz and δλ for the 
source layer-dependent spreading model with infection rates Eq. (13) on the duplex ER network with = .z 2 50  
(top panels), and the maximal and minimal values of corresponding observables with respective to δλ as a 
function of the given δz (bottom panels). The red (blue) line in top panels represents the loci of maximum 
(minimum) of the corresponding observables at the given δz, same as in Fig. 3.
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We perform analysis of the model with infection rates given by Eq. (13) on randomly-coupled duplex ER net-
works. The prevalence tends to be larger in this model than that for the original model with layer-switching cost, 
Eq. (12), while the epidemic threshold tends lower (Fig. 7, to be compared with Fig. 3). The generalized applica-
tion of our model framework put forward in this section also suggests a broader formulation of the optimization 
problem for information spreading in multiplex networks, beyond what has been discussed earlier. For exam-
ple, the results obtained in this section show that the parameter setting for the source layer-dependent model, 
Eq. (13), can be more effective in maximizing the information spreading than that with the layer-switching cost, 
Eq. (12).

Summary and Outlook
In this paper, we have studied an information spreading model framework on multiplex networks with 
path-dependent transmissibility, paying particular attention to the effect of layer-switching cost. We have for-
mulated a generalized theory to deal with the path-dependent transmissibility and illustrated how the epidemic 
threshold and prevalence could depend on the layer-switching cost, as well as on the network multiplexity factors 
such as the link densities of layers and the seed infection channel. Optimal parameters for maximizing preva-
lence or minimizing epidemic threshold exhibit non-analytic behaviors, reminiscent of the abrupt structural 
transition in interconnected networks51,52. Our formalism and results show that the seemingly benign factor of 
layer-switching cost is able to alter the macroscopic dynamic outcome in such nontrivial ways that the multiplex 
interactions cannot simply be reduced into a single aggregated layer23,30,51. According to our preliminary analy-
sis, the effect of layer-switching cost is observed to be qualitatively similar for another classical epidemiological 
model, the SIS model36, as well. Therefore, the network multiplexity should explicitly be taken into account in 
order to understand and predict spreading dynamics accurately on multiplex networks. To a broader perspective, 
our results elucidate the impact of path-dependency in spreading process, which can arise also from the presence 
of memory in temporal networks, the effect of which has recently been studied53–55. Finally, the multiplex infor-
mation spreading model framework proposed in this paper furnishes us with a versatile platform for more real-
istic modeling of spreading processes involving layer-wise path-dependent trasmissibility on multiplex systems, 
offering a fertile ground for future study.
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