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Gauge Physics of Spin Hall Effect
Seng Ghee Tan1,2, Mansoor B. A. Jalil2,3, Cong Son Ho2, Zhuobin Siu2 & Shuichi Murakami4

Spin Hall effect (SHE) has been discussed in the context of Kubo formulation, geometric physics, spin 
orbit force, and numerous semi-classical treatments. It can be confusing if the different pictures have 
partial or overlapping claims of contribution to the SHE. In this article, we present a gauge-theoretic, 
time-momentum elucidation, which provides a general SHE equation of motion, that unifies under  
one theoretical framework, all contributions of SHE conductivity due to the kinetic, the spin orbit  
force (Yang-Mills), and the geometric (Murakami-Fujita) effects. Our work puts right an ambiguity 
surrounding previously partial treatments involving the Kubo, semiclassical, Berry curvatures, or the 
spin orbit force. Our full treatment shows the Rashba 2DEG SHE conductivity to be + e

π8
 instead of − e

π8
, 

and Rashba heavy hole + e
π

9
8

 instead of − e
π

9
8

. This renewed treatment suggests a need to re-derive and  
re-calculate previously studied SHE conductivity.

Spin Hall Effect (SHE)1–5 refers generally to the transverse separation of the electron carriers of opposite spin, 
quantized along the axis-z, which results in a net accumulation of spin but not charge on the left and right lateral 
edges of a nanoscale device. There have been many studies of the numerous possible mechanisms that could have 
given rise to SHE, but the gauge theory approach by Murakami et al.6 showed for the first time that in the Luttinger 
spin orbit coupling (SOC) system, SHE physics is related to the adiabatic alignment of electron spin with the spin 
orbit effective magnetic field in the momentum space. An emergent form of magnetic field, with spin quantization 
axis along the lab-z axis, can then be defined and linked physically to a transverse velocity component of geometric 
origin. Following this emergent gauge approach, SHE physics of k-geometric origin could be conveniently extended 
to many other systems, e.g. the linear and the cubic spin orbit in semiconductor and metal, pseudospin in massless 
and massive graphene, topological insulator and so forth7,8.

On the other hand, Sinova et al.9 derived the SHE conductivity for a two-dimensional-electron-gas (2DEG) 
system with linear Rashba SOC. Careful analysis8,10–13 would reveal that the SHE conductivity is in fact related to 
the velocity of kinetic origin. In 2010, Fujita et al. derived a gauge field in time (t) space that also led specifically 
to the kinetic velocity contributing to SHE in the 2DEG. The time-space gauge field can, in turn be linked to a 
t-geometric velocity which has the same form as13,14 the k-geometric velocity of Murakami. It is thus clear that 
one now should be particularly mindful of the multiple sources of velocity that contribute to the physics of SHE: 
kinetic, Murakami k-geometric, and Fujita t-geometric.

On the other hand, a separate body of work15–19 which study the spin transverse force in terms of the 
non-Abelian spin orbit gauge, has led to the concepts of spin orbit force and spin orbit velocity. At first glance, one 
might be tempted to ascribe the transverse spin orbit force to SHE. But it was soon realized that while spin orbit 
force might contribute to the jittering motion (Zitterbewegung) of the spin carrier, it did not quite contribute to 
SHE yet. In fact, it is the spin orbit velocity that provides an additional source to the SHE. This results immediately 
in a SHE velocity originating from an emergent gauge reminiscent of the non-Abelian Yang-Mills gauge.

We are therefore motivated to provide, in this paper, a gauge-theoretic energy framework that unifies SHE 
velocity of kinetic, Yang-Mills, k-geometric, and t-geometric origins for any SOC system under one equation of 
motion (EOM). One unified energy system that merges the two spaces of t and k is derived, debunking any previous 
suspicion of overlapping energy terms. The energy equation with a merged t-k identity is then used to derive the 
velocity equation-of-motion (EOM) for all SHE systems. Previous efforts13,14 unified Luttinger and Rashba SHE 
with respect to the adiabatic physics and the gauge fields, but still it remained that the Luttinger was described in 
k-space, and the Rashba in t-space.
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Results
The main accomplishment in our renewed treatment is that we show that a form-invariant t-k Hamiltonian is a 
complete energy equation, and can be used to derive a complete EOM that describes spin Hall. The complete EOM 
reveals in clear-cut, and non-overlapping manner, the velocity components of kinetic, Yang-Mills, and geometric 
origins. The significance of this result is the prediction of a reversal of sign in the SHE conductivity, suggesting 
the need to revisit and recalculate previously derived SHE conductivity. The Methods section will describe in 
details the theoretical techniques used in the process of unification. Unification provides the theoretical basis for 
a form-invariant, t-k manifestation of the gauge potential, which is summarized in Table 1 above.

We will now use the t-k form-invariant energy to derive a complete spin Hall EOM for the spin carrier. In the 
energy physics of the SOC systems, we have shown in Methods and summarized in Table 1 the unified, t-k man-
ifestation of the local gauge. It is reasonable to ascribe before merger, the k-gauge to the k-geometric velocity due 
to Murakami6, and the t-gauge to the t-geometric velocity due to Fujita10. What we have done, after merger is 
uniting the two velocities and precluding their simultaneous manifestation. We show that a physically intuitive 
spin Hall EOM that encompasses the kinetic, Yang-Mills, and Murakami-Fujita velocity can be derived from the 
locally transformed t-k energy equation. Local transformation in this context is an abstract but useful technique 
to absorb the physics of spin dynamics into the gauge potential. One is free to view the effective Hamiltonian in 
either time or momentum space. In time space, one can define an effective magnetic field of = −

γΣB B At. The 
complete SHE velocity EOM is

σ γ σ σ〈 〉 = 〈Σ| , |Σ〉 − 〈Σ| (∂ /∂ ) , |Σ〉 ( )Σv
p

m
B p1

2
{ } 1

2
{ } 1y

z y
z

a
y a z

σ γ≡ Σ Σ −
∂
∂ ( )
Σv

p

m
B
p 2

y
z y
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y

We would like to note that the velocity expression 〈 〉vy
z  above follows from the more formal expression of 

σ〈 ′〉 = 〈 , , 〉† †v Ur U UHU{[ ] }y
z

y z   , which in the case of a 2D system in lab frame leads to σ〈 〉 = 〈 , , 〉†v r UHU{[ ] }y
z

y z  
as used in Eqs. (1)&(2) above. The first term on the RHS is the kinetic velocity. The second term comprises the 
Yang-Mills and the Murakami-Fujita velocity as shown below

(3)

The kinetic SHE velocity can also be written as

σ= ± . ± = ( . ) ( )Σa n av
p

m

p

m 4z zy
z

KE

y y

with both nΣ and az having unity magnitude. The ±  sign arising from the two eigenstates of Σ  correspond to the 
(+ ) and the (− ) bands, respectively. The negative sign of the spin orbit energy implies that energy is low when 
spin is aligned with the effective B field. Thus in the (+ ) band of Fig. 1a, spin is aligned along the B fields in both 
East and West. In the (− ) band of Fig. 1b, spin is anti-aligned everywhere. The term ( ).Σn ap zy  is the fractional 
unit of the B field projected to the az. Note that = ( × ∂ ) +

γΣB n n nBt , and . =Σ
Σ

Σ
n az

B
B

z
, lead to 

= ( × ∂ ) +
γΣ
Σ Σ

n n n n
B t

B
B

, where  ( × ∂ )
γ Σ

n n
B t  is the time-gauged spin orbit field, and 

Σ
nB

B
 is the simple spin 

orbit field. The kinetic spin velocity is thus

Time-space Momentum-space

1 Local gauge transformation and 
vector potential notation  ( ∂ ) = − ′† AiU Ut t ( ∂ ) = − ′†eE iU U eEk

a
k k

a
k

2 Physics of effective magnetic field 
 σ ′′ = . At t ,  σ′ = ( . ′)AeE Ek

a
k k

a
k

 σ σ( ). ( × ∂ ) = − . ′† n n AiU U tt2
σ σ( ). ( × ∂ ) = − . ′† n n AeE iU U eEk

a
k k

a
k

1
2

3 Hamiltonian in the locally rotated 
frame

γσ= − + . + ′E r AH B ep a
m z t
2

2
  

Rotation of the z–axis to B(t)
γσ= − + . − ′E rH B e eEp a

m z k
a

k
2

2
 

Rotation of the z–axis to ( )B k

4 Hamiltonian in lab frame, showing 
effective magnetic fields σ σγ= − . + . + .B E r AH ep a

tm

2

2
σ σγ= − . + . − ( . )B E r AH e eEp a

m k
a

k
2

2
  

k in three-momentum space

Table 1.  Summary of important gauge theoretic quantities expressed in both time and momentum spaces.
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clearly showing that the external electric field is required to generate ∂tn. The expression = ( × ∂ )
γΣ
Σ

n n n
B t  relates 

to the physics of Ex producing an effective B field. For illustration in the 2D projected region surrounded by the 
equator, nΣ points along axis −z in the region of + py, and axis + z in the region of − py (see illustration in Fig. 1). 
In other words, nΣ actually changes sign with py. Therefore, careful examination of the (+ ) band (Fig. 1a) would 
show that pynΣ.az, hence 〈 〉vy

z
KE

 is negative in both the East and West hemisphere. The result is always positive in 
the (− ) band. To determine SHE conductance, one needs to sum 〈 〉vy

z
KE

 over the entire Fermi surface for both 
bands. Since the two band cancels one another, it is necessary to identify a region where only one band exists, or 
in other words, to impose a band filtering effect.

The kinetic velocity has been identified in previous time-space10 to contribute to SHE in the following systems, 
producing SHE conductivity of σ =

π
−

xy
z e

8
 Ref. 9 in 2D RSOC hetero-structure, σ =

π

−
xy
z ek

12
F
2

20 in n-doped 
cubic-Dresselhaus, and σ =

π
−

xy
z e9

8
21 in Rashba heavy-hole system. There was, however, no explicit previous effort 

to investigate the total SHE effects that should include the Yang-Mills and the Murakami-Fujita contribution in 
those systems. In the Discussion section, we make explicit the other contributions to SHE in the two-dimensional 
Rashba SOC system, now keenly studied for technological applications in magnetic memory. The SHE velocity of 
Yang-Mills 〈 〉vy

z
YM

 and Murakami-Fujita 〈 〉vy
z

MF
 inherit their negative signs from the spin orbit energy. The explicit 

expression is
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The 〈 〉vy
z

MF
 in the t-k form-invariant EOM has previously been studied in the k-space for the SOC systems of 

Luttinger6, Perel-Dresselhaus7,8, cubic-Dresselhaus in n-doped Zinc-Blende22. There was, however, no previous 
effort that explicitly investigates the effect of kinetic contribution in those systems. On the other hand, the 〈 〉vy

z
YM

 
shown previously in simple (not locally gauged) quantum mechanics either vanishes for linear SOC systems, or is 
simply not considered. The reason for partial treatment in previous works could be due to conceptual ambiguity. 
It was not clear beforehand if the 〈 〉vy

z
KE

 derived in the t-space gauge or the Kubo approach and the 〈 〉vy
z

MF
 derived 

in the k-space gauge are strictly independent without overlapping contribution. Therefore one of the main tasks 
of this paper is to establish that these velocity components are not overlapping and there is no double counting. 
Of particular importance is the so-called 〈 〉vy

z
MF

 which exists in slightly different forms in both Fujita’s t-gauge and 
Murakami’s k-gauge pictures. This becomes clear after the form-invariant t-k Hamiltonian unifies both spaces. In 
unifying the two pictures, we determined that there should only be one MF velocity component. The next step is 
to derive all the velocity components directly from the unified or rationalized t-k Hamiltonian. The SHE velocity 
EOM descended from the t-k Hamiltonian shows vividly that these velocities are additive. The simple conclusions 
one draws here is that previous SHE conductivity related to Kubo, semiclassical, t-gauge are mostly related to 
〈 〉vy

z
KE

. On the other hand, previous SHE conductivity related to Berry curvature or k-gauge are related to 〈 〉vy
z

MF
. 

What we would like to establish therefore in this work is that future treatment of SHE should be based on a locally 

Figure 1. Fermi sphere of a general electron gas system in the presence of spin orbit coupling shows a 
distribution of the momentum, band, and effective magnetic field projected along z (Bz). It is assumed that 
p =  k. The shaded region encircled by the equator shows a specific system (Rashba 2D) where for (a) the  
+  band, Bz changes sign over the Eastern and Western hemisphere, resulting in a positive kinetic spin velocity, 
(b) the − band, Bz changes sign in a similar manner, thus resulting in a negative kinetic spin velocity. The slender 
red arrow indicates spin polarization of ± nΣ.az.
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transformed, t-k Hamiltonian that would provide all velocity (〈 〉 + 〈 〉 + 〈 〉 )v v vy
z

KE y
z

YM y
z

MF
 contributing to the 

physics of SHE.

Discussion
One popular form of SHE exists in device or hetero-structure that exhibits the Rashba spin orbit coupling (RSOC). 
Examples are the GaAs/AlGaAs/GaAs semiconductor heterostructure, or the oxide/Metal/Pt metal multilayer, 
both with structural inversion asymmetry. Shown above in Fig. 2 is a schematic of the nanoscale structure where 
the specific RSOC exists as a result of inversion asymmetry at the interface. The effective magnetic field of the 
RSOC device is

α

γ
α
γ γ

=




− +





+

( )
ΣB a a a

k k eE k

k 7x y z
y x x y

2

where α is the strength of the Rashba SOC effect.
We will first examine a two-dimensional system, where the SHE current density is obtained from the SHE 

kinetic velocity as follows

∫ π
=

( ) ( )
J g

dk dk
v

2 8y
z x y

y
z

KE2

The coupling constant g represents spin flux for g = /2, or electron charge flux for g =  e. It has been shown that, 
for g =  /2, SHE conductivity σ = −

πy
z e

8
 is resulted in the annular region of the Rashba bandstructure where only 

the (+ ) band exists below the Fermi energy. In the region where both (+ ) and (− ) are below the Fermi energy, 
total SHE conductivity vanishes. In fact, the above has the dimension of g

L t
[ ]

[ ] [ ]
, and the general SHE conductivity 

is σ = − ,y
z ge

h2
 leading to respectively, the charge (g =  e) and the spin (g = /2) flux of:

σ σ
π

= − , = − ( )
e
h

and e1
2 8 9y

z
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2

Referring to Eq. (5), we will now proceed to the Yang-Mills velocity. In the case of a linear SOC system, where 
e f fec t ive  SO C f ie ld  i s  contained in  the  2D plane,  i t  i s  easy  to  determine  that  the  
Yang-Mills effect vanishes. We will move on to the last SHE term which is the Murakami-Fujita of 
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, and which can in turn be broken down into two terms. 

The first term produces SHE current density
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It can be shown that δ δ π( × ). = − ( ) ( )∂
∂

∂
∂

a k kn n
zk k x y

y x
. Considering that there are two bands cutting through the 

k =  0 point, the SHE conductivity due to 〈 〉vy
z

MF
 is +

π
e

4
. This is in addition to the −

π
e

8
 arising due to 〈 〉vy

z
KE

 giving 
rise to a total SHE σ = +

πy
z e

8
. The advantage of physical clarity with the gauge theoretic approach is clearly manifest 

here. The first contribution to SHE conductivity originates from the kinetic velocity which is effective in the annular 
region of the 2D concentric circles. The second contribution originates from the Murakami-Fujita velocity that 
has a geometric origin, and is effective in the degenerate point where the (+ ) and the (− ) bands intersect. The 
same is carried out for the Rashba heavy hole system where δ δ π( × ). = − ( ) ( )∂

∂
∂
∂

a k k3n n
zk k x y

y x
. The final results 

are SHE σ = +
πy

z e9
8

 instead of the −
π
e9

8
 with partial treatments. Both results are summarized in Table 2.

(a) (b)
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,
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,
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,

Figure 2. (a) In the case of a 2D nanostructure, where n lies in the x −  y plane, the (n ×  ∂tn) term points along z, 
thus one has 


〈 〉 = ± | × ∂ |

γ
v n ny

z
KE

p

B t
y ; (b) Table of quantities for the Rashba system that can be used to derive 

the SHE expression for the Rashba system.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:18409 | DOI: 10.1038/srep18409

We will make a quick remark on the second part of 〈 〉vy
z

MF
, which is

 ∫ ∫π π
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When integrated via partial fractional reformulation of the integrand, the integral delivers a “ π” or a “–π” 
solution depending on the sequence in which the integration is performed. But a proper treatment referring to 
the Fubini-Tonelli theorem leads to its vanishing results.

Therefore, the central results in this paper consist of the unified energy and the SHE EOM. On the energy, we 
have provided a theoretical basis to the existence of the t-k interchangeable, form-invariant Hamiltonian. This 
Hamiltonian allows the physics of SHE in various SOC systems to be studied under one SHE velocity EOM. The 
EOM descended from the t-k energy would lead to the kinetic, Yang-Mills, and Murakami-Fujita velocity which 
give a complete account of all contribution to SHE conductivity in any SOC system. Our work puts right an 
ambiguity surrounding previously partial treatments of SHE involving the use of the Kubo, semiclassical, Berry 
curvatures, or the spin orbit gauge. We showed for the Rashba 2DEG and the Rashba heavy hole that full treatment 
produces SHE conductivity of opposite signs (Table 2) due to the Murakami-Fujita contribution. More importantly, 
our renewed treatment can be extended to all other SOC systems to re-derive and re-calculate SHE conductivity.

Methods
Energy in the Unified Time-Momentum (t-k) Space. The Hamiltonian of a system with SOC can be 
written with the physical clarity of simple magnetism as follows:

σγ= − . + . ( )
p B E rH
m

e
2 12

a
2

where B is a momentum dependent effective magnetic field, and γ has the dimension of γ = .[ ] Joule
Tesla

 In a 
single-particle system with electric field, the Hamiltonian = + .E rH ep a

m2

2
 might seem sufficient, at first glance, 

to describe a carrier with kinetic and potential energy. But a charge-spin carrier with a constant p in the presence 
of E field generates an energy term of γσ.B(p). The Dirac relativistic quantum mechanics is needed to account for 
this SOC energy. In the absence of any retardation effect due to scattering, the carrier would accelerate due to the 
E field. As a result, the carrier will acquire an E-dependent energy σγ . ( )B pd

dt
. This is a geometric related energy 

that can only be revealed with the local gauge transformation or time-dependent perturbation treatment.

Momentum Space. The approach that has been used to derive SHE velocity in refs 6,22 is based on a local 
gauge transformation in the k-space. In the “Schrodinger” picture, transformation applies to the k-space only, but 
not the t-space, because momentum is time-independent. Local transformation leads to

γσ′ = = − + . ( + ∂ ) ( )
† †p E rH UH U

m
B e iU U

2 13a kS S z

2

where the gauge potential  = − ∂ †iU Uk k , with dimension  = −m[ ]k
1, is associated with the SHE velocity via 

the Karplus-Luttinger method.

Time Space. The t-space approach has on the other hand, been adopted in refs 10–13 to derive SHE in refs 
9,20,21. To study the transformation in the fourth time space, an “Interaction” picture is necessary. The term 
γσ.B(k) would become γσ.B(t), where 


( ) = ( ( ) − . )∂ ( )

∂
ν

υ
B B kt B keE t

k
 is the instantaneous SOC field. One needs 

to split the Hamiltonian into two parts, i.e. HS =  H0 +  VS, and note the following:

( ) = + ( )−H t H e V e 14I
iH t

S
iH t

0
0 0

or HI(t) =  H0 +  VI(t). In the “Interaction” picture, one has i∂tψI(t) =  VI(t)ψI(t). Thus a transformation in time 
space is appropriate here

 ψ ψ∂ ′( ) = ′( ) ′ ( ) ( )†i U U t V t t 15t I I I

where iU∂tU† =  i∂t +  iU(∂tU†), and the second term is contingent upon ∂k/∂t ≠ 0, a condition that would be 
fulfilled when E field is present in the device. We assign as follows: γσ= −V Bp

s m z2

2
, and H0 =  E.r. On the RHS of 

SHE Conductivity New SHE Conductivity

Rashba 2DEG −
π
e

8 +
π
e

8

Rashba Heavy hole −
π
e9

8 +
π
e9

8

Table 2.  The gauge theoretic physics provides a full treatment of the SHE, showing results opposite in sign 
to previous treatments, summarized above.
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Eq. (5), ′ ( ) = ( ) + (∂ )
†V t V t i U UI I t , where iU(∂tU†) is also known as the time-space gauge with the dimension 

of energy. The unitary rotation operator U in local space is

σ ω= ( . ) ( )U exp i t
2 16

and one can quickly obtain that   σ ω(∂ ) = . .† †i U U U Ut
1
2

 Rearranging, one can now write the locally 
time-transformed Hamiltonian in “Interaction” picture as

γσ( ) = ( − ( )) − (∂ ) + . ( )
†p

E rH t
m

B t i U U e
2 17
I a

I z t

2

Equation (17) in time space has the same form as Equation (13) in momentum space. Re-examining the time-gauge 
in the k-space,

 
− ( ∂ ) = −

∂
∂
. ∂ = . (∂ ) ( )

† † †k Ei U U i
t

U U e iU U 18k
a

kt

leads to one obtaining a gauge expression in the k-space. Note that (− ) =∂
∂

Eek
t

. The fact that H0 =  eEa.r is impor-
tant for the survival of the gauge  . ∂∂

∂
– †i U Uk

kt
 for the gauge coupling constant is only non-vanishing because of 

H0 =  eEa.r. Inverse transformation of ′ = ( )−H e H t eS
iH t

I
iH t0 0  would lead to higher order terms with respect to − i

U(∂tU†). Dropping the higher order terms, the following is arrived

γσ′ = − + . ( + ∂ ) ( )
†pH

m
B eE r iU U

2 19S z k
a k

k

2

Note that for expression iU∂kU†, subscripts are subject to ∈ ( , , )k k k kx y z , while for expression rk, subscripts are 
subject to ∈ ( , , )k x y z . Equation (19) is transformed in the t-space at the outset, but now appears identical to the 
k-space Equation (13). The energy equations have thus been merged under a form-invariant t-k identity. What is 
clear from the above is that the gauge potential derived, interchangeably in the k-space or the t-space, will not exist 
simultaneously in both spaces. It is now logical to conclude that the gauge potential has an independent, 
non-overlapping contribution to the geometric velocity of SHE. Back to the Lab frame (mere relabeling of the 
axis), one can write the Hamiltonian in the form of Zeeman magnetic field as in Eq. 20(a), and in the form of 
Lorentz magnetic field as in Eq. 20(b),

σ
γ

= − . ( + ) + .
( )

p B A E rH
m

e E e
2 20k

a
k
a

2

σ σγ= − . + ( − . ) ( )
p B AH
m

eE r
2 21k

a k
k

2

Note that in the above the convention σ( ∂ ) = − .† AE iU U eEk
a

k k
a

k is followed. Similar convention in time space 
is followed (iU†∂tU) =  − σ.At.

We would, however, note that the Hamiltonian alone, pre- or post-transformed could not reflect the full phys-
ical reality of the 2D system in which electron propagates in time. As electron propagates in momentum and spin 
space, so does the spin-orbit magnetic field, and the actual physics related to such effect can only be reflected in 
the wave-function that is solved taking into account the path of evolution. This is a separate task that needs to 
take into account approximations therein. Simply stated, a stationary Hamiltonian cannot reveal how electron 
propagates in time, as it only reveals the stationary eigen-states, which has spin aligned parallel or anti-parallel. 
Local gauge transformation locks the spin orbit field to a specific axis (e.g., z), generating a gauge field. Still, the 
post-transformed Hamiltonian only reveals the stationary eigen-states, but one which is more intuitive now with 
spin aligned to a total field out of plane. Note however, that in both pre- and post-transformed Hamiltonian, 
expectation values of observables remain the same. But this is not important as we are not interested in the station-
ary expectation values. What we need from these Hamiltonians are clues to determining the actual propagation 
physics of electron. In previous works2,3,6, adiabatic approximation of spin locking to spin orbit field is commonly 
applied. Parallel spin locking to the spin orbit field can then be associated with a scalar gauge field that is physical, 
while anti-parallel locking produces a similar but negative effect. Initial spin state determines the proportion of 
parallel or anti-parallel alignment. In this paper, adiabatic approximation of spin locking to the total field instead 
of the in-plane spin orbit field is considered. In SHE, parallel and anti-parallel spin locking will be equally likely, 
and this is true for initial spin state that is random or in-plane. SHE will then be the z-projection of the total field 
taken along the two lateral sides of the device.
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