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Reconnection is a fundamental event in many areas of science, from the interaction of vortices in classical
and quantum fluids, and magnetic flux tubes in magnetohydrodynamics and plasma physics, to the
recombination in polymer physics and DNA biology. By using fundamental results in topological fluid
mechanics, the helicity of a flux tube can be calculated in terms of writhe and twist contributions. Here we
show that thewrithe is conserved under anti-parallel reconnection.Hence, for a pair of interacting flux tubes
of equal flux, if the twist of the reconnected tube is the sumof the original twists of the interacting tubes, then
helicity is conserved during reconnection. Thus, any deviation from helicity conservation is entirely due to
the intrinsic twist inserted or deleted locally at the reconnection site. This result has important implications
for helicity and energy considerations in various physical contexts.

F ilamentary structures, such as vortex filaments in classical and quantum fluids1–4, magnetic flux tubes5,6,
phase defects7, and polymers andmacromolecules8,9 are ubiquitous in nature.When parts of these filaments
come sufficiently close to one another, they tend to influence each other and recombine through reconnec-

tions (see Figure 1). Reconnection is a process associated with a change of topology and geometry of the
interacting filaments by an exchange of the neighboring strands10. In general, when two disjoint, closed tubes
(like vortex rings) reconnect, the result is a single closed tube and when a single closed tube reconnects with itself,
the result is two closed tubes. Such a topological change is typically accompanied by a change in energy, partly
dissipated due to small-scale effects associated with viscosity, resistivity or other. Thus, detailed study of recon-
nections is crucial to understand energy re-distribution and dissipation in many fluid systems, from vortex
tangles in classical and superfluid turbulence11,12, to phase transitions in mesoscopic physics7, from astrophysical
flows in solar and stellar physics6,13 to confined plasmas in fusion physics14,15. Detailed analysis based on direct
numerical simulations of real fluid equations reveals certain qualitative common features of the reconnection
event (compare for instance the various scenarios shown in Figure 1). In themajority of cases at the time of closest
approach the interacting tubes tend to align themselves in an anti-parallel fashion, followed by a reconnection of
the local strands through a rapid,merging process in a direction orthogonal to theirmutual alignment before final
separation. Fine details of the reconnection event (such as the generation of secondary, bridge structures in vortex
dynamics) may differ from case to case, but certain geometric features such as anti-parallel alignment of the
reconnecting strands and transversal merging seem to have a generic character. Qualitatively similar features, for
instance, seem to characterize recombination events in polymer physics as well as in DNA biology8,16, when two
unknotted circular DNA plasmids are joined into a single plasmid in a site-specific recombination event9,17–19.
These common geometric features are the focus of this paper.

Results
Helicity, linking numbers and writhe. In fluid systems a fundamental quantity, that detects topological
information and that has a close relation with energy, is the helicity H of fluid flows (kinetic or magnetic). For
two interacting disjoint tubular filaments a and b, centered on their respective curves Ca and Cb (see Figure 1c),
the helicity H 5 H(a, b) can be written as20–23

H a,bð Þ~W2
aSL að ÞzW2

bSL bð Þz2WaWbLk Ca,Cb

� �
, ð1Þ

whereW is ameasure of the tube flux (field strength), and SL and Lk are topological numbers denoting self-linking
and mutual linking of the two flux-tubes, respectively (for their definitions see Refs. 24–26, and text below).
During reconnection, the interacting tubes may change strength, whereas topology certainly changes; hence a
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change in helicity should be expected. Even when the flux remains
conserved (as in the case of quantized vortices in superfluid helium),
a change in linking numbers may happen, because the reconnection
of a pair of closed, oriented curves produces a single closed, oriented
curve (with no linking number), and vice versa. Here all curves are
tacitly assumed to be smooth, with the exception of the polygonal
curves referred in the text below and in the next subsection.
Polygonal curves are used to facilitate the proof of conservation of
writhe under reconnection (since polygonal curves can approximate
smooth curves arbitrarily closely). Moreover, we implicitly assume
that our smooth curves have nonvanishing curvature almost every-
where (not a very restrictive assumption, since one can always
deform a curve with inflexion points in isolation to an inflexion-
free curve by a C2 infinitesimally small perturbation of the original
curve, without any appreciable effect on energy).
Since reconnection is a local process, themorphological and struc-

tural change experienced by the reconnecting strands is reflected in
the change of the individual self-linking numbers. For a single flux
tube a, SL(a) admits decomposition into two geometric quantities,
the writhe Wr(Ca) of the tube centerline Ca and the twist Tw(Ra) of
the tube reference ribbon Ra27; from standard differential geometry,
the twist can be decomposed into two parts, given by the normalized
total torsion T(Ca) of Ca, and the intrinsic twist N(Ra) of Ra around
Ca. Thus, we have

SL að Þ~Wr Cað ÞzTw Rað Þ~Wr Cað ÞzT Cað ÞzN Rað Þ: ð2Þ
Since writhe and twist are geometric quantities, their values change
continuously with the continuous change in space of the curve Ca

and the reference ribbon Ra.
Writhe is a geometric measure of non-planarity for spatial

curves27,28; indeed, planar curves and closed curves on a round 2-
sphere have zero writhe. Let the unit sphere S2 denote the space of
directions (unit vectors) in R3. Given an oriented, simple, closed
curve A in R3, consider a generic planar projection (knot diagram)

ofA in the direction ng S2, with standard sign convention of61 for
over/under–passes. One now adds up all of the signed crossings to
obtain the directional writhe ofA,vn(A). By averaging the directional
writhe over all directions, i.e. by summing algebraically the contribu-
tions vn(A) given by all possible projection directions n g S2, one
obtains the writhe of A:

Wr Að Þ~ 1
4p

X
n[S2

vn Að Þ: ð3Þ

Given a pair of disjoint, simple, closed curves {A, B}, the linking
number Lk(A, B) can be calculated from any generic projection of
the pair of curves by adding up the crossings between the curves
(neglect the self-crossings of each curve) as follows. Suppose that
there are n crossings {Xi, 1 # i # n} between A and B, and Ei~+1
denotes the sign of the i-th crossing according as the crossing is
positive or negative, then we have

Lk A,Bð Þ~ 1
2

Xn
i~1

Ei: ð4Þ

Since the linking number is constant over all projections, averaging
the value over all projections does not change this value.
Suppose now that A is an oriented n-edge polygon with edges

{ai, 1 # i # n}, and B is an m-edge polygon with edges {bj, 1 # j
# m}. Consider a pair of distinct oriented edges {ai, aj} of A.
Following Banchoff29 we wish to compute the contribution to the
writhe of A from the pair of edges {ai, aj}. The set of all directions on
S2, where one sees a single crossing between these edges, is an open
set; moreover, one sees the same crossing sign over this entire open
set. Under the antipodal map on S2, a map that takes any point xg S2

to 2x, this open set is invariant, since a crossing seen in a given
direction is seen as a crossing of the same sign in the opposite dir-
ection. The contribution to the writhe of A from the pair of edges {ai,
aj} isv(ai, aj), the signed area on the unit 2-sphere S2 of this open set.
Note that v(ai, aj) 5 0 if i 5 j, or if the edges meet in a common
vertex — in each case the edges are identical or co-planar, with no
crossings visible under any projection direction.We can computeWr
(A) in terms of the edges of polygon A:

Wr Að Þ~ 1
4p

Xn
i~1

Xn
j~1

v ai,aj
� �

: ð5Þ

For disjoint oriented polygons {A, B}, we can compute Lk(A, B) in
terms of the edges

Lk A,Bð Þ~ 1
4p

Xn
i~1

Xm
j~1

v ai,bj
� �

, ð6Þ

and similarly the writhe of the disjoint union of A and B:

Wr A|Bð Þ~ 1
4p

Xn
i~1

Xn
j~1

v ai,aj
� �

z
Xn
i~1

Xm
j~1

v ai,bj
� �"

z
Xm
j~1

Xn
i~1

v bj,ai
� �

z
Xm
i~1

Xm
j~1

v bi,bj
� �#

~Wr Að Þz2Lk A,Bð ÞzWr Bð Þ:

ð7Þ

Reconnection conserves writhe. Experimental and computational
evidence shows that reconnection is a process that takes place along
the interacting segments of two tube centerlines (see Figure 2b), and
does not occur at a point in isolation. Hence, when the interacting
segments of two tubes approach each other, the reconnection event
can only take place near an apparent crossing point (and not at a
crossing point, that in any case depends on the projection direction).

Figure 1 | Direct numerical simulations of reconnection events: (a)
vortex tubes in a viscous fluid; (b) quantized vortex tubes in superfluid
helium; (c) magnetic flux tubes in magnetohydrodynamics. t 5 0

interaction, t5 1 reconnection, t5 2 separation of two tube strands a and

b in a real fluid (not visible). (a) Initially orthogonally-offset vortex tubes

in a viscous fluid, (b) quantized vortex tubes in superfluid helium, (c)

magnetic flux tubes (centered on the spatial curves Ca and Cb) in

magnetohydrodynamics. The top, central diagram shows a sketch at the

reconnection site (yellow plane), where the vortex strands become locally

aligned in an anti-parallel fashion just before reconnection. Images

adapted from Refs. 40, 4 and 41, respectively.

www.nature.com/scientificreports
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Directional writhe, on the other hand, depends on the projection,
and only when it is averaged over all directions of sight it becomes a
projection independent measure (as in eq. (3)). Thus, reconnection
near a crossing does not change the writhe (see Figure 1a). Figure 2b
shows close up screen shots of the anti-parallel alignment of
two trefoil vortex strands and subsequent reconnection from the
experiment of Kleckner and Irvine30. From direct inspection of the
supplementarymaterial made available byNature Physics, we can see
(from the smooth tracings of Figure 2c) that the red vortex line has
been moved across the top of the blue vortex line (t5 0, 1) and then
the anti-parallel reconnection segments are spatially juxtaposed (t5
2). The configuration just after reconnection is shown in t5 3. The
directional writhe in each of the figures at t 5 0, 1, 2, 3 is 11. This
reconnection event is very fast compared with the typical vortex
evolution time, so that the writhe of the unseen rest of the
configuration remains essentially constant throughout this quick
reconnection. Although we only have one projection direction
shown in the screen shots, the pair of vortex segments are very
close to co-planar just before and just after reconnection takes
place, so the directional writhe is very close to the true writhe. In
this experiment, we see that observed reconnection of the trefoil
vortex to the Hopf link vortex conserves writhe.
A rigorous proof that anti-parallel reconnection conserves writhe

is given here below. Our result will not depend on any specific pro-
jection and proof relies on the following assumptions:

. A1: under reconnection, orientation is preserved;

. A2: the reconnecting segments are oriented in an anti-parallel
fashion;

. A3: the reconnecting segments are isomorphic, identical under
spatial translation.

Now, suppose that we have two disjoint oriented polygonsA5 {ai,
1# i# n} and B5 {bj, 1# j#m}, that have the following properties:

(i) edges an and bm have the same length;
(ii) polygon B can be translated without intersecting polygon A

until the edges an and bm are coincident with opposite orienta-
tion (as in the central diagram of Figure 3).

When edges an and bm are coincident, one has formed the h-curve
intermediate (A#B)*; by deleting the interior of the common edge an
5 bm from (A#B)*, one obtains the oriented reconnected curve
(A#B).
Consider the effect of the translation that aligns bmwith an on each

of the terms in equation (7) forWr A|Bð Þ: since translation is a rigid
motion,Wr(A) andWr(B) are unchanged during the translation, and
2Lk(A, B) is a topological invariant unchanged by translation. At the
end of translation, when an 5 bm, if we stipulate that in the calcula-
tion of Wr[(A#B)*] we will count the common edge an 5 bm twice
(with opposite orientations for an and bm), then we have shown

Wr A|Bð Þ~Wr A#Bð Þ�½ �: ð8Þ
Since an5 bmwith opposite orientations, for each edge e inA|B, we
have v(an, e) 5 2v(bm, e), so in the calculation for Wr[(A#B)*]
these terms cancel out in pairs, and we are left with the writhe of the
reconnected curve (A#B), and we have proved:
Theorem 1 Reconnection conserves writhe: for disjoint oriented

polygons A and B (satisfying properties (i) and (ii) above),
Wr A|Bð Þ~Wr A#Bð Þ½ �.
When a single curve reconnects with itself to produce a pair of

curves, the writhe of the single curve may change as the reconnec-
tion segments are aligned and brought into spatial juxtaposition.
However, as the segments to be juxtaposed are moved closer and
closer together, the writhe of the configuration approaches a limiting
value, the writhe of the theta-curve intermediate. This limiting value
of the writhe is equal to the writhe of the reconnected pair of disjoint
curves.

Conservation of helicity under anti-parallel reconnection.
Figure 4a shows the flux tube c, with center curve Cc and flux
ribbon Rc, formed by connecting Cc with one of the field lines in c.
Suppose also that flux tube c has flux W. For a single flux tube c eqs.
(1) and (2) give us

H cð Þ~W2 Wr Cc

� �
zTw Rc

� �� �
: ð9Þ

By using the right-hand side decomposition given by eq. (2), we can
distinguish the centerline helicity HC 5 W2[Wr(Cc) 1 T(Cc)], that
depends solely on tube axis geometry (so that can be entirely
estimated by external measurements of Cc), from the intrinsic twist

Figure 2 | (a) Diagrammatic reconnection of polygonal curves near a
crossing; (b) screen shots of a vortex reconnection; (c) smooth tracings of
screen shots. (a) Reconnection of two oriented (polygonal) curves near a

crossing does not change the writhe (since inscribed polygonal curves can

approximate smooth curves arbitrarily closely, in this example we use

polygonal curves). We assume that the curves remains almost co-planar at

the crossing site, hence in all cases Wr < 21. Note the production of the

‘pigtail’ (fourth diagram), due to the mutual cancellation of the anti-

parallel strands (yellow region in third diagram). (b) Screen shots of the

anti-parallel alignment and subsequent reconnection of two strands of a

trefoil vortex knot from the experiment of Kleckner and Irvine30

(reproduced with permission). (c) The apparent crossings at each time

sequence t 5 0, 1, 2, 3 (red curve over blue curve) are the original

overpasses of the same strands above. The stage just after reconnection is

shown in t5 3. The directional writhe in each of the figures at t5 0, 1, 2, 3

is 11. Compare this scenario with the idealized sketches above.

Figure 3 | Reconnection of polygonal curves with intermediate h-curve at
the center. Reconnection of polygonal curves A and B: the intermediate h-

curve (A#B)* at the center has two coincident and oppositely oriented

edges an and bm.

www.nature.com/scientificreports
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helicity HN5W2N(Rc), that depends on the internal twist of the field
line distribution. Let T(s) denote the unit tangent vector at position s
on the curve Cc (parameterized by arc length s), and V(s) denote a
unit normal vector pointing from Cc to the edge of ribbon Rc
at position s. The incremental twist of the ribbon Rc along the
center line Cc (in the direction of T) at position s is given by

w sð Þ~ dV
ds

|V

� �
:T (see Refs. 22, 27). The total twist is thus given

by the line integral:

Tw Rc

� �
~

1
2p

ð
Cc

w sð Þds~ 1
2p

ð
Cc

dV
ds

|V

� �
:T ds:

Suppose now that we have two disjoint flux tubes {a, b} with equal
flux W. Take W 5 1 for simplicity. Suppose also that the oriented
center lines of tubes a and b satisfy the smooth version of conditions
(i) and (ii) of Theorem 1 above for reconnection. Specifically, center
lines Ca and Cb are each divided into two arcs: Ca~Ca0|Ca1, and
Cb~Cb0|Cb1. In the reconnection event, Cb is translated (without
crossing Ca) until arcs Ca0 and Cb0 are coincident (with opposite
orientation), producing the h-curve intermediate (Ca#Cb)*. At this
time, the (infinitesimally small) coincident arcCa05Cb0 is removed,
producing the reconnected curve Ca#Cb~Ca1|Cb1. Before recon-
nection (see, for example, Figure 1c), we have:

H a|bð Þ~Wr Ca|Cb

� �
zTw Ra|Rb

� �
~Wr Cað ÞzWr Cb

� �
z2Lk Ca,Cb

� �
zTw Rað ÞzTw Rb

� �
:

ð10Þ

Preliminary results along the lines of the last eq. (10), based on
linking numbers and mutual winding of magnetic lines (but not on
writhe and twist decomposition), can be found in Ref. 14. Since the
ribbons Ra and Rb are disjoint, then the twist of the union of the
ribbons is the sum of the individual twists of each ribbon. Given that
the flux tubes are locally aligned for reconnection, then translatingCb

to Ca conserves the individual twist integrals.
For the h-curve intermediate, we assume that the superimposed

arc Ca0~Cb0 has both ribbons on it, so the twist of this ribbon over
the h-curve intermediate (Ca#Cb)* has total twist the sum of the
individual twists. The twist of the ribbon over the reconnected center
lines R(Ca#Cb) is Tw Ra1ð ÞzTw Rb1

� �
. We have the following equa-

tion for the change in twist due to reconnection:

DTw~ Tw Rað ÞzTw Rb

� �� �
{ Tw Ra1ð ÞzTw Rb1

� �� �
~Tw Ra0ð ÞzTw Rb0

� �
:

ð11Þ

In a reconnection event suppose now that twist is conserved, i.e.

DTw~0: ð12Þ
Given this, we have conservation of helicity:
Theorem 2 Given anti-parallel reconnection of flux tubes {a, b}

with equal fluxW, if the total twist of the flux tube ribbons is conserved,
then helicity is also conserved, that is

H a|bð Þ~H a#bð Þ: ð13Þ

Role of twist. Since the super-imposed edges have opposite
orientation, it is possible that the line integrals over the edges have
the same absolute value and different sign, giving us DTw 5 0.
Moreover, the edges that get superimposed to form the h-curve
intermediate can have vanishingly small length (or take the limit as
the length of the super-imposed edge goes to zero). At zero length
(the h-curve intermediate now becomes a figure-of-eight, where Ca

andCb have a vertex in common), the line integrals over the common

vertex vanish, and DTw5 0. This may be the case for reconnections
of quantized vortex filaments in superfluids, whose typical vortex
core cross-section is of the order of 10210 m in Helium–4, several
orders of magnitudes smaller than the average distance between
vortices in typical laboratory experiments2. Furthermore, since a
quantized vortex filament is essentially an empty cavity, we have
no intrinsic twist, hence total twist reduces to total torsion (cf. eq.
2). Lack of internal structure, and hence of intrinsic twist,
characterizes many other physical systems, such as atomic Bose–
Einstein condensates31, phase line singularities in nonlinear optics32

and, possibly, superconductors33, where reconnections may indeed
trigger topologically complex structures. For all these systems any
change in self-linking number (and helicity) should be ascribed to
the sole change in total torsion through reconnection.
As mentioned in the introduction (see again eq. 2), suppose that

the smooth curve Ca is parameterized by arc-length s, and that t(s)
denotes the torsion at a point on the curve. The normalized total
torsion T(Ca) of Ca is given by the integral

T Cað Þ~ 1
2p

ð
Ca

t sð Þds: ð14Þ

Suppose now that smooth curves Ca andCb are to be reconnected (in
an anti-parallel fashion). The normalized total torsion of the recon-
nected curve is given by the integral

T Ca#Cb

� �
~

1
2p

ð
Ca

t sð Þdsz
ð
Cb

t sð Þds
 !

~
1
2p

ð
Ca#Cb

t sð Þds:
ð15Þ

Since for infinitesimally small, anti-parallel, co-planar arcs T(Ca0)
5 2T(Cb0) 5 0 (total torsion is additive), we must have T Ca|ð
CbÞ~T Ca#Cb

� �
. Hence,

Corollary 1 If the intrinsic twist N(Ra0) ? N(Rb0), then

DH~H a#bð Þ{H a|bð Þ~DTw~DN: ð16Þ
Since total torsion is due to the contribution of the torsion of the tube
axes over their entire length, a quantity that can be estimated or
computed directly, any change in conformational energy through
reconnection can be estimated via total torsion information quite
accurately. Note that since reconnection does not take place at a
point, inflexion points in isolation are neither assumed to arise
nor, if they do, to have any particular effect in the process22. When
intrinsic twist is an important part of total twist (see Figure 4b),
careful considerations on the relative role of spatial gradients assoc-
iated with curvature and torsion of the tube axis and intrinsic twist
must be made. Since dissipative forces tend to erode higher order
gradients first, it is natural to expect that, in general, DN? 0. Hence,

Figure 4 | (a) Flux tube c centered on spatial curve Cc ; (b) vortex lines
(blue) and vorticity isosurface (solid grey) under reconnection. (a) The
ribbon Rc is formed by connecting Cc with one of the field lines in c. (b)

Note the bridge region (threaded by the red line) formed by the re-

organization of the weaker vorticity. From a direct numerical simulation of

the Navier-Stokes equations11.

www.nature.com/scientificreports
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as a consequence of Theorem 2 above, any change in helicity should
be ascribed to the sole change in intrinsic twist.

Discussion
We have proven that total writhe remains conserved under anti-
parallel reconnection of flux tube strands. Since the helicity of a flux
tube admits decomposition in terms of writhe and twist, this result
implies that for a pair of interacting flux tubes of equal flux, writhe
helicity remains conserved throughout the reconnection process. In
this case any deviation from helicity conservation is entirely due to
the intrinsic twist inserted or deleted locally at the reconnection site.
If the twist of the reconnected tube is the sum of the original twists of
the individual tubes before reconnection, then the flux tube helicity is
conserved during reconnection.
The analogue of flux tube reconnection in molecular biology is

site-specific recombination with directly repeated reconnection sites.
The sites are oriented in anti-parallel alignment, and reconnection of
a single DNA plasmid produces a pair of plasmids, and reconnection
of a pair of plasmids produces a single plasmid. Recent very inter-
esting work on the minimal DNA recombination pathway34 proves
that if one starts with the trefoil, and insists that recombination
reduces configuration complexity (minimal crossing number), then
theminimal pathway trefoilRHopf linkR unknotted circleR pair
of unknotted, unlinked circles is exactly the reconnection pathway
taken by the trefoil vortex in the Kleckner–Irvine experiment30.
Our result has therefore important implications well beyond fluid

mechanics. For physical systems where helicity and energy consid-
erations are important, and in particular for magnetic fields in solar
and plasma physics and for vortex flows in quantum and classical
turbulence, reconnections are not only key to understand geometric
and topological changes in the fluid flow structure5,30,35–37, but they
are also responsible for crucial re-distribution and dissipation
of the energy at smaller scales11,12,38,39. Our present results will help
to address the focus of current research on the role of twist and on the
finer details of the tube internal structure undergoing reconnection.
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