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Control of complex processes is a major goal of network analyses. Most approaches to control nonlinearly
coupled systems require the network topology and/or network dynamics. Unfortunately, neither the full set
of participating nodes nor the network topology is known for many important systems. On the other hand,
system responses to perturbations are often easily measured. We show how the collection of such responses
—a response surface- can be used for network control. Analyses of model systems show that response
surfaces are smooth and hence can be approximated using low order polynomials. Importantly, these
approximations are largely insensitive to stochastic fluctuations in data or measurement errors. They can be
used to compute how a small set of nodes need to be altered in order to direct the network close to a
pre-specified target state. These ideas, illustrated on a nonlinear electrical circuit, can prove useful in many
contexts including in reprogramming cellular states.

collections of interacting elements, and can be modeled as networks of coupled nodes"*. Feedback within

such networks is believed to buffer their response under external changes and minor alterations in the
systems®. The feedback-induced moderation lies at the heart of robustness, for example, of biological processes.
Unfortunately, the robustness also makes it difficult to implement controlled alterations of the underlying system.
Thus, modifying one or a few nodes may be countered by feedback or may initiate uncontrolled, and possibly
damaging, consequences. The surprising lack of efficacy of many drugs designed to act on single molecular
targets®” and harmful side-effect from medications (e.g., Vioxx®) are a testament to these difficulties. Such
problems can be addressed if techniques to direct nonlinearly coupled networks to target states were available.

Precise controllability, one of the major goals of network analyses, has inspired several recent studies.
Controllability of a system is defined as the ability to steer the system from any initial state to an arbitrary final
state in finite time>'°. In networks, the number of control nodes depends primarily on the degree distribution but
not on the clustering coefficient or the community structure of the network'"'>. Furthermore, contrary to
expectations, it was found that the driver nodes are typically not the high-degree nodes of a network''
However, scale-free networks can be driven to a pre-specified state'® or steered to a desired evolution'* by pinning
or targeting their most highly-connected nodes. Ref. 15 analyzes graph structures of controllable linear systems'®,
and shows that nodes required for network control include source nodes (i.e., those with only outgoing links),
internal dilations (due to branching points), and external dilations (due to surplus nodes with only incoming
links). The application of these algorithms requires knowledge of the network topology. In contrast, the approach
introduced in Ref. 17 (which applies to linearly or nonlinearly coupled networks) relies on perturbation of control
nodes and following the evolution of the system to search for passage from an undesirable initial state to the basin
boundary of a desirable target state. It was used to identify possible therapeutic targets for T-LGL leukemia and to
drive an associative memory network to a target state'”.

Unfortunately, the network topology of many real systems is not known'®, and it is difficult to follow the time
evolution of other systems (e.g., gene regulatory networks) experimentally. Here, we propose a methodology to
address a more restricted issue on partially-known systems, namely how to move such a system close to a pre-
specified target state. Although the methodology applies for a broad class of systems, we introduce terminology
from gene regulatory networks for ease of presentation. The state of the system is the collection of values taken by
the nodes. The state is to be changed by altering the values of a small set # of nodes, defined as the master nodes; the
remaining nodes are slave nodes. States obtained by externally setting the values of the master nodes are referred to

N atural and artificial systems such as those underlying biological processes"* and the internet® consist of
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as mutants. A single knockout mutant is a state where the value of one
of the master nodes is set to zero and a double knockout mutant is one
where two master nodes are set to zero. The object of our study is the
response surface containing the states of all master node mutants'**.
It is an n-dimensional surface in state space. The nature of the res-
ponse surface depends on network interactions; conversely, the res-
ponse surface itself contains partial information about network
interactions.

Figure 1 outlines the method schematically. A network of the type
shown in Figure 1(a) may represent a system under study. When
neither its topology nor the forms of interactions between its nodes
are known, it is not possible to use the network for control.
Alternatively, we can represent the behavior of the system in state
space. As an example, consider a network to be controlled using a
single master node, whose value is denoted X;. As X; is externally
manipulated, the state of the system spans a one-dimensional curve
7, which in principle can be accessed experimentally. (For example,
the response of a genetic regulatory network to changes in one bio-
molecule can be measured using microarrays or deep sequencing®'.)
The solid line in Figure 1(b) shows the cross-section of y in the (X,
X;) plane. Py and P, represent the states of the original system and
the single knockout mutant, and 7" denotes the desired target state.

The first step is to find a sufficiently accurate approximation to y in
the region of interest. The lowest order (linear) approximation can be
made using Py and P;; higher order approximations require addi-
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tional points on y. Next, compute the point ¢ on the approximation
that is closest to 7. By setting X to its value at ¢ externally, the system
is forced to a point on the response surface in close proximity to 7.
This is the best that can be done by only manipulating X;. However,
since y is a one-dimensional curve in a high dimensional state space,
may not be sufficiently close to 7. Thus, we need to expand the set of
master nodes. Interestingly, as shown below, the states Py, Py, and 7
can be used to identify the “best” node to be selected as the second
master node; in the example, it is assumed to be node 3. Next, we
consider the response surface for the pair of master nodes shown in
Figure 1(c). As before, it is approximated using the plane PyP;Ps,
the last point being the state of the single knockout mutant of node 3.
Now, the point closest to 7 on PyP;P;, and the next node to be
included in the master set are computed; the process is continued
until a point sufficiently close to 7 is reached. Figure 1(d) shows how
the distance to 7 reduces with the number of master nodes in our
example.

The novel aspect of our approach is its reliance only on the response
surfaces; it does not require or suppose additional information about
the network. An important observation from studies of model net-
works is that these response surfaces are smooth®® and hence can be
well-approximated using low-order polynomials. Computations of
the coarsest approximations, i.e., planes, only require responses of
the single knockout mutants'®, which were utilized in the example
outlined in Figure 1. Finally, stochasticity in the measurements is not
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Figure 1| (a) A schematic of a network. When its topology and the forms of interactions between its nodes are not known, the network cannot be used to
move the system to a target state. (b) The response surface and a linear approximation when the single master node 1 is externally altered. Py, P,

and 7 denote the states of the original system, the single knockout mutant, and the target state. The closest point t on the approximation and the next
master node can be computed from Py, Py, and 7. (c) The response surface and its planar approximation when there are two master nodes 1 and 3.
(d) The decay of the closest distance J as a function of the number of master nodes. dy is the distance between the states of the initial system and the target.
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amplified in computations of the response surfaces. Thus, the pro-
posed algorithm provides a realistic approach for controlling a par-
tially known network to a target state.

Methods

The control algorithm is illustrated using a nonlinearly coupled electrical circuit.
Nonlinear elements of the circuits are junction field-effect transistors (JFETs)?,
semiconductor devices containing a source (S), a drain (D) and a gate (G).
Conduction between S and D is modulated by the gate voltage; the current I depends
on the potential differences Vs between D and S and Vg between G and S. We have
shorted G and S (i.e., Vs = 0) reducing the number of terminals in each JEET to two.
Consequently, the polarity independence of S and D conduction is broken. For
example, an n-channel device exhibits p — n junction diode conduction for Vg < 0
and typical JFET current-voltage characteristics for Vpg > 0; the latter is shown in
Figure 2(c).

The circuit we analyze is shown in Figure 2(a), which is equivalent to the network of
Figure 2(b). It has two regulatory levels. Each node of the circuit is a point of equi-
potential. Interactions between nodes are determined by resistors/JFETs connecting
them. Nodes 1, 2, 3, and 4 on the uppermost regulatory level are selected as (pre-
liminary) master nodes. This circuit only contains activating interactions. Below and
in Supplementary Materials, we summarize corresponding results from a network
containing “inhibitory” interactions as well.

The circuit was driven at 10 V by a Topward 6302D (TekNet Electronics,
Alpharetta, GA.) power supply. The 16 node voltages were measured with two 8-
channel AD cards (MiniLab-1008, Measurement Computing Corp.) and in a few
cases cross checked using hand-held voltmeters. Mutants are generated by setting the
master node potentials externally using either the AD cards or by connecting to power
supplies. Single (double) knockout mutants are obtained by grounding one (two)
nodes. Since the master nodes themselves are coupled, controlling them at or close to
the required potentials is a non-trivial task. Control was particularly difficult when the
power supplies were sourcing small voltages, since they have to accept current from
the network rather than supply current to it. Another difficulty is the interference
between power supplies due to their small but non-zero internal impedance. These
difficulties were resolved by placing a small resistor (typically 5Q) in parallel with the
power supply controlling each master node. It allowed the supply to source current,
most of which passed through the resistor, and to apply the desired voltage on the
node. Implementing simultaneous controls on multiple nodes was feasible with this
approach.

The state of the network (i.e., the set of node potentials) varies smoothly as master
node potentials are altered. In Figure 3, this is illustrated through a cross section
X5(X,, X3), where X,, is the n” node potential. The coarsest approximation to the
surface is a plane computed as follows: denote the state of the unperturbed circuit by
X®eR', and those of the four single knockout mutants by X(WeR'®, for n = 1,2, 3,
4. The 4-dimensional plane in R'® passing through these points can be parameterized
as

X(4) =X 4 24:1,, (X(") 7x(°>>. (1)
n=1

Next, it is necessary to model interactions between master nodes. Denoting the
projections of X (n = 0, 1, 2, 3, 4) to the subspace of master variables by x”, linear
approximations to these interactions can be expressed as

K —xO0= 3", (x<mux<°>), @)

m#n

for m,n =1, 2,3, 4. These equations can be written in terms of a 4 X 4 matrix M which
satisfies M * (x™ — x©) = 0 for each n. M, with unit diagonal elements, can be
computed from the data x© and x *. M approximates the motion of the state on the
response surface as one or more master nodes are altered.

The approximation to a response surface can be improved using higher order
polynomials. For example, the quadratic approximation to the response surface can
be expressed as

. ' 1 2
where i is a slave node, and m, n are master nodes. The coefficients vfn) and vfm)n are

computed by forcing the approximation to pass through a set of mutant states. This
system has to be supplemented by quadratic generalizations of Eq. (2). The solution of

1
the quadratic approximation requires data on 5 d(d+1) additional mutants, d being

the dimensionality of the response surface.

Once an approximation to the response surface is evaluated, we can compute how
the master nodes need to be altered in order to reach as close as possible to a target
state TER'®. We illustrate the computation using the planar approximation, Eq. (1).
Note that changes in the master nodes only move the system along the response

surface, which is approximated by X(A). The strategy is to search for X(Z) that

minimizes the weighted-square-distance Z Wan( T — Xon(2))%. The weights w,,,
account for cases where the proximity of certain nodes to T are more critical. The
minimum U (T; w) satisfies

3 (T X (7)) (0 —X2) =0, @

for n = 1, 2, 3, 4. With identical weights, X(j) is the projection of T to X(4). If our
assertion, that the response surface and the approximating plane are close, is valid
then imposing potentials {Xl (;L) Xo <5> X3 (;1) Xy (Z) } on the master nodes will

move the system close to the target state T [see Figures 1(b) and (c)].

Results

We first analyze the planar approximation and its deviation from the
response surface. The input data are the master node potentials for
the unperturbed circuit and the four single knockout mutants, which
are given in Table 1. X, n = 0, 1, 2, 3, 4 can be used to construct the
planar approximation to the response surface within the 4-simplex
defined by the five points. Figure 3(a) shows the cross section X,(X;,
X;), the points X® (n = 0, 1, 3) denoted P,, and the planar
approximation.

Next, we estimate the differences between the solution surface and
the planar approximation within the simplex PyP;P,P3P4. Since a
large set of data points is needed to span this 4-dimensional region
with sufficiently high resolution, we restrict consideration to several
subsets of the simplex. As an example, let us investigate the approx-
imations on the boundary Py P; Ps. A total of 25 X 25 grid points (x;,
x3) are selected within the relevant domain and the response of the
16-node circuit is recorded when the potentials of nodes 1 and 3 are
pre-set at these grid values. The average magnitude of the vector of
sixteen node potentials (eR'®) on the surface is 5.19 Volts. The
proximity of the approximations to the response surface need to be
compared with this value. The planar approximation is constructed
via Eq. (1) using the node potentials X, X and X®. We evaluate
the magnitude of the difference between the experimental data and
the planar approximation at each grid point (x;, x3). The mean value
of this magnitude within PyP;P3 is 152 mV.

Data on three additional points are required to construct the
quadratic approximation. They are selected close to the midpoints
of the sides of PyP;P;, and denoted Qp, Q; and Qj; in Figure 3(b).
The mean distance between the response surface and the quadratic
approximation is found to be 24 mV. Thus, the quadratic approxi-
mation is significantly closer to the response surface than the plane.
Similar results are found on other boundaries of the simplex
PoP1P2P3Pa.

Most natural networks are subjected to internal and external
stochastic actions. For example, genetically identical cells can display
variable levels of gene expression or even distinct phenotypes™>°.
Next, we wish to address the role of stochasticity in approximating a
response surface. Stochastic effects are added (synthetically) to node
potentials since the level of noise in the electrical circuit is signifi-
cantly smaller than in most natural systems. Specifically, the res-
ponse surface is left unchanged and we add Gaussian noise of
magnitude 5% to the components of X, X and X®. Since the
approximations to the response surface depend directly on X®,
one expects the deviations from the response surface to change by
a similar level. (This is in stark contrast to computations of network
interactions, which require nonlinear inversions, generally amplify-
ing the errors significantly.) We have computed the differences
between the response surface and the approximations for 10,000
such cases. The addition of noise increases the mean deviation of
the planar approximation from response surface PyP;P; from
152 mV to 255 mV, and that of the quadratic approximation from
24 mV to 207 mV. When the level of noise is increased to 10%, the
deviations of the planar and quadratic approximations increase to
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Figure 2 \ The electrical circuit used to test the network control algorithm. (a) Circuit which models the network shown in (b). Rectangles in the circuit
represent JFETs. Junctions corresponding to nodes on the upper levels of (b) are color-coded. (c) I, for the four JFETs used in the experiments.
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Figure 3| (a) Cross section of the response surface and the planar
approximation. Py, Py, and P; are the projections of the original state and
the two single knockout mutants of nodes 1 and 3. (b) The cross section of
the quadratic approximation that utilizes the two mutants (represented by
Q) and Qj3) where X, and X; are individually set to half their values in the
original system and one double mutant (Qg) where the values of both X;
and X; are set to half their values in the original system. The quadratic
surface is required to pass through Py, Py, P3, Qp, Q1 and Qs.

450 mV and 430 mV respectively. These differences are small com-
pared to the mean magnitude 5.19 V of node potentials on the res-
ponse surface. We also note that, in this example, the advantage of
using more refined approximations diminishes as the level of noise
increases.

It is time and resource intensive to extract the entire response
surface in examples like gene networks (where each point requires
the sequencing of a genetically perturbed organism). Since we have
already shown that a limited set of data points can provide a good
approximation to a response surface, it is appropriate to derive error
estimates using a small set of perturbations as well. For example,
consider mutants where two master nodes are externally set to half
their values in the unperturbed network. In our electrical circuit with
four master nodes, there are six such mutants. Their mean prediction
error using the planar approximations for the response surfaces is
38.4 mV. One can also consider double knockout mutants. Their

Table 1 | Potentials, in Volts, of master nodes for the unperturbed
circuit and for the four perturbations where one of the master nodes
is grounded

X X X3 X
XO 1.614 1.461 1.148 1.847
X0 0 0.988 0.665 1.513
X2 0.903 0 0.403 1.381
X© 0.995 0.902 0 1.427
X4 0.428 0.352 0.372 0

mean error is 18.5 mV. The mean errors for triple and quadruple
knockout mutants are 28.2 mV and 35.7 mV.

Next, we illustrate how the system can be moved close to the target.
We note, first, that in examples such as gene networks, constraints on
some nodes may be more important than those on others, an issue
that can be resolved with appropriately defined weights, see Eq. (4).
As an example, suppose we wish to move the network as close as
pOSSible to T6 = 3.0, Tg =0.9, TlO = 0.6, T12 =23, T14 = 1.5and T16
= 0.8, the last three conditions being half as important. The relevant
weights are ws = wg = wyp = 1; wi, = wyy = wyg = 0.5 (the
remaining w’s = 0). Solving Eq. (4) gives X; = 0.89, X, = 0.96, X3
= 0.71,and X; = 1.44. When these potentials are externally imposed
on the master nodes, the electrical circuit reaches a state with Xg =
2.98, Xz = 0.87, X10 = 0.56, X1, = 2.25, X;4 = 1.49 and X, = 0.68; U
(T; w)is 1.2 X 1072

If the target T is far from the response surface, it is necessary to
expand the set of master nodes (i.e., increase the dimensionality of
the response surface) in order to reach sufficiently close to it. (For
example, if we are required to increase V4 5-fold with no other
changes, it is best to include node 16 in the master set.) Consider
an example where the target state is T, which is identical to T except
for T";6=1.2. We find that the closest point on X(4) has X; = 2.31,
X, =0.67, X5 = 0.58, and X, = 1.51. Imposing these node potentials
on the circuit yields a state where X5 = 3.06, Xg = 1.23, X;0 = 0.78,
X1, = 2.31, X4 = 1.73 and X4 = 0.75; now U (T’; w) is 0.27. Closer
approaches to T’ cannot be made by controlling only the four master
nodes.

The choice of additional master node(s) is made as follows: we
compute U (T’; w) when each of wg, wg, wig, Wiz, W14 and wie is
individually set to zero. Small values for the corresponding U (T'; w)
imply that the remaining nodes can be made to reach the point T’ by
altering the four master nodes, and hence that the selected node
needs to be added to the master set. We find U = 0.07 when wy is
set to zero, U= 3.76 X 10~ *when wg = 0, U = 0.002 when w;, = 0, U
= 0.08 when w;, = 0, U = 1.46 X 10~ ° when w4, = 0, and U = 6.60
X 107° when w;¢ = 0. Thus, one or more of nodes 8, 14, or 16 should
be considered for inclusion in the master set. Using nodes 8 or 14 for
the extension is experimentally impractical because some master
node potentials require large changes from X©. The problem can
be avoided by using node 16. The point on the (now 5-dimensional)
response surface that minimizes Uis X; = 1.79, X, = 0.76, X5 = 0.35,
X, = 1.33, and X;5 = 1.20. When these node voltages are imposed,
the circuit reaches an equilibrium with X4 = 2.91, Xg = 0.95, X;, =
0.56, X1, = 2.19, and X;, = 1.42; U (T'; w) is 2.1 X 102 Thus we
have successfully moved the circuit close to T’ by controlling nodes 1,
2, 3,4, and 16.

We have shown how to compute the point on the approximating
surface closest to the target and, if this point is not sufficiently close,
how to expand the set of master nodes. The algorithm to reach the
target can be initiated with a one (or a few) obvious master node(s).
As the set is expanded, the dimensionality of the response surface
increases, and states closer to the target are reached. As an example,
consider convergence to a randomly selected target state. We select
Node 3 as the first master node. Following the algorithm outlined
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Figure 4 | The decay of the closest distance ¢ of the target to the response
surface as the number of master nodes increases. J, is the distance
between the original state of the circuit and the target.

above, we find that the next several master nodes are Nodes 6, 2, 16,
13, and 14. Observe that these are not necessarily regulatory nodes,
shown in Figure 2(b). Figure 4 shows how the minimum distance &
between the target and the response surface, normalized by the dis-
tance J, between the original state and the target, decreases as the
number of master nodes increases. In most cases, 6/0, ~ 20% within
3-4 master nodes. Addition of noise does not change the results
significantly.

The circuit of Figure 2(a) only contains activating interactions (i.e.,
0V;/0V;> 0 for each direct connection from node i to node j). Hence,
all direct and indirect (i.e., with intermediary nodes) paths from node
i to node j are activating. Consequently, the system is a monotone
network®, a class of networks whose solutions are highly robust®**.
Most natural networks contain both activating and inhibitory inter-
actions, although they are conjectured to be near-monotone. An
obvious question that can be raised is whether the success of the
response-surface-based control mechanism is related to the circuit
being monotone.

To address this issue, we present an analysis of the network shown
in Figure 5. It contains JFET's as well as Operational Amplifiers which
are used to produce inhibitory interactions, i.e., 0V;/0V; < 0. The
response surfaces of this network are found to be smooth as well. As
seen in Figure 6, the plane passing through the original state and two
mutants is found to be a good approximation to the surface.
Importantly, it was possible to control this network to target states
using the response-surface approach. Further details on the response
surfaces and control of this network can be found in the
Supplementary Materials. These results confirm that the efficacy of
our control algorithm is not restricted to monotone networks.

Discussion
Precise controllability is a major goal of network analyses''. A net-
work can be controlled if an accurate model were available; unfortu-
nately, such detailed information is rarely available for complex
systems. Other approaches to control nonlinearly coupled systems
require the network topology'*'* or the ability to follow the evolution
of a perturbed state experimentally'’. Network topologies of many
real systems are not available, and in examples like genetic networks,
it is extremely challenging to follow the evolution experimentally.
We have introduced an alternative approach for control that relies
only on (the static) network responses to perturbations; typically,
measurement of these responses is relatively straightforward.

The first step is to identify a preliminary set of master nodes to be
used for control. In cases where the network topology is known,
nodes of high out-degree can be selected for the purpose. When

the topology is unknown, other information (e.g., transcription fac-
tors in gene networks) must be used for the selection. The coarsest
approximation to the response surface is a plane passing through the
original state and the single knockout mutants; the input data for the
algorithm are these states. Computation of more refined approxima-
tions to a response surface, such as a quadratic approximation,
requires the states of additional mutants. Once an approximation
is evaluated, the point on it that minimizes the weighted-squared-
distance from the target state is computed. Our control strategy is to
alter the master nodes to their values at this closest point.

Since the dimension of the response surface is significantly smaller
than that of the state space, the nearest point on it may not be
sufficiently close to the target. In such cases, it is necessary to expand
the set of master nodes. We have shown that nodes to be included in
the expansion can be deduced using suitable weighted distances.
Following this process, control can be initiated with a small set of
master nodes, which is expanded recursively to systematically move
closer to the target. We emphasize that the final set of master nodes
used for control will depend on the target state. The approximations
to response surfaces are all that are needed to implement control; we
neither require the full set of nodes nor the network topology. We note,
however, that since our control algorithm relies only on stationary
states, it cannot be used to perform dynamic feedback control.

In cases such as genetic networks, where the creation of mutants is
expensive and/or time-consuming, data on double mutants can be
used to estimate the deviation of the response surface from an
approximation. In addition, the same data can be used to provide
more refined approximations, such as quadratic approximations, to
the response surface. We showed that typical quadratic approxima-
tions are significantly closer to the response surface than the corres-
ponding planar approximations. However, the advantages of higher
order approximations reduce as the level of stochasticity increases;
the allocated resources may not offer comparable returns in noisy
systems.

A significant advantage of our approach is that stochastic effects
are not amplified in computing response surfaces. This is reasonable
because the mutant data lie on the response surface, and inaccuracies
in their measurements only change the response surface locally by a
similar amount. These assertions were validated in the nonlinear
electrical circuit. This robustness should be contrasted with compu-
tations of interactions between nodes which require nonlinear inver-
sion; typically, errors are significantly amplified, especially in large
systems.

We have tested our algorithm in networks whose sizes range from
~10 to ~50 nodes. Differences between the response surfaces and
their planar or quadratic approximations are found to have similar
magnitudes. Furthermore, the rate at which the target is approached
[Figure 4] as a function of the number of master nodes exhibits
similar behavior.

Our algorithm may need to be extended in the presence of bist-
ability; i.e., when a response surface is folded. Bistability in a slave
node is of no concern since our control is implemented only on the
master nodes. It may be relevant if the surface representing the state
of a master node is folded as a function of the levels of other master
nodes. One solution is to replace the bistable master node with
another. Alternatively, one can use additional mutants to estimate
the two branches of the folded surface.

We conclude with speculations on applications to a class of pro-
blems, namely genetic conversions of cellular states, where our con-
trol algorithm can potentially prove invaluable. Biological processes
are governed by gene regulatory networks'®. At present, neither the
full set of nodes in many of these networks nor the interactions
between the nodes are known with sufficient accuracy to model or
control the systems. However, the states (i.e., their genetic profiles) of
the systems and of mutants are easily determined using microarrays
or deep sequencing®'. Furthermore, genetic networks are organized
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Figure 5| (a) Inhibitory interactions were produced with inverting amplifiers, each constructed from an Operational Amplifier (Op Amp) and a resistor,
as in the interaction between node 1 and node 4 (and inset), and an Op Amp, a resistor, and a JFET for the effect of node 2 on node 6. (b) The network
modeled by the circuit (a) where activating and inhibitory interactions are shown in black and red respectively. The network is not monotone. For

example, the direct interaction 1 — 3 is activating while the indirect interaction 1 — 4 — 3 is inhibitory. (c) The output of an inverting amplifier shown in

the inset as a function of the input.

around nodes of high out-degree*'. They include transcription fac-
tors (which control the production —and hence the expression levels—
of many genes by binding to specific DNA sequences®®**) and/or
micro RNAs (each of which down-regulates the levels of large collec-
tions of genes and transcription factors within cells®). Interestingly,
transcription factors and microRNAs associated with a biological
process are often known even in when the network topology is
unknown or partially known. Some of these high out-degree nodes
can be selected for the preliminary set of master nodes. The algo-
rithm outlined above can then be used to expand the set of master
nodes and to close in on the target. Note that the additional master
nodes do not need to be of high out-degree.

One specific application may be in reprogramming fibroblasts (a
class of connective tissue) to cardiomyocites (beating heart cells)*"*.

It was demonstrated recently that the transformation can be achieved
in culture using an assortment of three transcription factors Gata4,
Mef2c, and Tbx5*"**. This set of genes was identified by studying the
effects of adding all combinations of transcription factors associated
with cardiac cell-fate®. Unfortunately, reprogramming efficiency
and conversion to the mature cardiac phenotype remain low***
and it is not clear if cardiac-like phenotype was maintained when
the reprogrammed cells were transplanted into mouse hearts*. In
order for these exciting findings to be used for heart repair, it is
necessary to enhance the reprogramming efficiency and guarantee
the robustness of the conversion. Two modifications may aid in these
tasks: (1) Identifying the optimum levels at which the transcription
factors are introduced into cells*?>, and (2) Inclusion of additional
genes of small or moderate out-degree. In the application of our
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Figure 6| (a) Cross section of the response surface and the planar
approximation. Py, Py, and P, are the projections of the original state and
the two single knockout mutants for the circuit of Figure 5.

algorithm, the states of fibroblasts and cardiomyocytes are the initial
and target states. The preliminary set of master nodes can consist of
Gata4, Mef2c, and Tbx5; their single knockout mutants can be used
to derive the planar approximation to the three-dimensional res-
ponse surface. The ratios in which the three genes should be intro-
duced is evaluated from the closest point (on the plane) to the target.
Additional nodes to be included in the master set (not necessarily
high out-degree nodes) can be identified using weighed-distances.
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