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Physics of turbulence and turbulent transport has been developed on the central dogma that spatial
gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent
experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that
the turbulence and transport change much faster than global parameters, after an abrupt change of heating
power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the
heating power directly influences the turbulence. New mechanism, that an external source couples with
plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force
in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control
parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is
modified accordingly. The condition under which this new effect can be observed is also evaluated.

T
urbulence and turbulent transport have been subject to intensive studies as a central issue in the modern
physics and science. The physics of turbulence and turbulent transport has been developed on the central
dogma that the spatial gradients constitute the controlling parameters, such as Reynolds number and

Rayleigh number1. This has also been the case in the research of turbulence in magnetized plasmas, and it has
lead to the formalism that the transport fluxes are expressed in terms of transport matrix and spatial derivatives of
mean variables2. However, the counter examples, which indicate that additional parameters (in addition to spatial
gradients of global parameters) seem to strongly influence turbulence, have also been reported in the history of
plasma turbulence research. For instance, the observations of dynamic responses against the sudden change of
heating power have indicated limitations of transport pictures, which are based upon spatial gradients of mean
parameters3–5. Recent observations on the nonequilibrium plasmas in toroidal magnetic confinement device have
unambiguously shown that the turbulence and transport change much faster than global parameters, after an
abrupt (step-function-like) change of heating power3. This observation has induced the hypothesis, that the
heating power directly influences the turbulence and transport, which has long been suggested (though less
decisively) by many experiments (experimental reports include, e.g., refs. 4 and 5).

Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating
power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctua-
tions in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e.,
the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial
gradients. Following the change of turbulence, turbulent transport is modified accordingly. This article provides a
theoretical logic for describing the direct influence of heating power as dynamical force, in addition to spatial
gradient of global parameters, on turbulence and turbulent transport. It is shown theoretically that

1. The plasma heating power directly influences the turbulence, without waiting the change of plasma parameters
and their spatial gradients. This effect (i.e., immediate impact) is more effective for fluctuations with long-wave
lengths.

2. New control parameter, LPheat=Lp½ �a2
�

xN, is analogous to the Reynolds number which is the ‘inhomogeneity-
driven rate of change’ normalized to diffusion rate, but is novel in the way that the thermodynamical force is the
rate of change in velocity space (not in real space). (Here, Pheat is the heating power density, p is the plasma pressure,
a is the plasma radius (characteristic scale length of spatial gradient), and xN is the turbulent thermal diffusivity.
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3. Accordingly, the turbulent transport increases when the heating
power is switched on, if LPheat=Lpw0.

4. The condition under which this new effect can be observed is also
evaluated.

Results
Model. The objective of the article is to introduce a theoretical logic
for describing a direct influence of heating power as dynamical force,
in addition to spatial gradient of global parameters, on turbulence
and turbulent transport. The essence of the new mechanism that
affects turbulence and turbulent transport in plasmas is illustrated
by observing the kinetic equation,
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where x and v denote the spatial and velocity coordinates, f, S, C are
the distribution function, source and collision operator, respectively6.
(The suffix s indicates the particle species.) In order to study the
evolution of turbulence, the distribution function is separated into
the mean and perturbation, as f ~f0z~f , and the evolution of ~f is
investigated, where the symbol , indicates the fluctuation part. The
source in the phase space S includes the particle, momentum and
energy supplies, is a functional of the distribution function, and
depends on phase space variables as well as on time owing to the
conditions of external circuit, so that it is expressed as S[ f; v, x, t].
Therefore, it naturally contains the component, which is coherent to
the fluctuation of interest,

S f ; v,x,t½ �~S f0z~f ; v,x,t
h i

~S0z
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~f : ð1bÞ

Thus the fluctuating part of equation (1a) takes a from, for electro-
static perturbations,
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The RHS of equation (1c) describes the source and sink of perturba-
tion. The first term indicates the driving mechanisms owing to the
plasma inhomogeneity, and the second term shows a new mech-
anism analyzed in this article. This new term modifies the response
timescale in changing the phase-space structure of f. It is well known
that the externally-induced change in f contains not only the slow
change of f in the whole velocity-space but also the rapid and loca-
lized changes in phase space. Therefore, the second term in the RHS
represents the change rate of distribution function by heating (as the
cause of structure change), and it directly couples with and affects the
fluctuations. This term jumps at the on/off of heating, so that the on/
off of heating can immediately influence the fluctuation dynamics,
without waiting the slower change of the mean f0.

In order to examine the impact of the 2nd term in RHS of equation
(1c) on turbulence, we employ fluid-like equations in describing the
turbulence in magnetically-confined inhomogeneous plasmas. (The
hierarchy of model equations that describe plasma turbulence has
been explained in, e.g., refs. 6 and 7.) Following the literature, we take
electrostatic potential, w, plasma current along the magnetic field
line, J, and pressure, p, as relevant parameters. We study here the
case, where the external heating source, Pheat(x,t), depends on plasma
parameters. Being stimulated by the experiments in ref.3, where the
absorption power via electron cyclotron resonance heating (ECH)
depends on the local density and energy of trapped electrons in phase
space, etc., we simply choose the case that the deposition power is
sensitive to p (as in ref.8),

Pheat x,tð Þ~Pheat x,tð Þz LPheat

L p
~pz � � � ð2Þ

where Pheat x,tð Þ is an averaged heating power, and LPheat=Lpð Þ~p is the
modulation of heating power which is induced by the presence of the
fluctuations, that corresponds to the 2nd term in RHS of equation
(1c). Equation (2) has a simplification in two aspects. First, the per-
turbation of Pheat(x,t) can also drive perturbations inw and J. Second,
other sources (particle source, electric induction, etc.) should be
considered as well. Leaving these additional effects to future thor-
ough studies, we take here a simplification for the analytic transpar-
ency of the argument.

By use of a method of the dressed test mode, the dynamical equa-
tion of fluctuations in magnetized turbulent plasmas has been
derived, to which the effect of heating, equation (2), is introduced,
as

LTzLf g~f ~ 0,0, LPheat=Lpð Þ~pð ÞT, ð3aÞ

where
~
f ~ w,J,pð ÞT denotes the fluctuating fields, L is the renorma-

lized operator, which includes the linear instability mechanisms and
the decorrelation by ambient turbulence8,9. Abbreviating as F:
LPheat=Lp, equation (3a) is rewritten as

LTz�Lf g~f ~0 ð3bÞ

where �L3,3~L3,3{F and �Li,j~Li,j otherwise. The screened operator,
which includes the effects of this direct heating power, is given as

L~
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with

�m~mNzmc,
�l~lNzlc, �x~xN zxc, ð4bÞ

where b is the unit vector in the direction of mean magnetic field, k is
the curvature of magnetic field, = p0 denotes the mean pressure
gradient, operators =jj and =H denote the derivatives parallel to
and perpendicular to the main magnetic field, respectively, m, gjj,
l, and x stand for viscosity, electric resistivity, current diffusivity and
thermal conductivity, respectively. The coefficient j is defined as
j~a2d{2

c , where a is a minor radius of torus (typical global scale
length), and dc is the collisionless skin depth. The suffix c and N
denote the contributions by molecular dissipation effects and ambi-
ent turbulence (for which explicit forms are given in ref.9), respect-
ively. The scale-invariant property of this pressure-gradient-driven
turbulence (in the limit of F 5 0) was explained in ref.10. As in the
literature, all quantities are normalized9.

Effects on Microscopic Turbulence and Turbulent Transport. For
the given intensity of ambient turbulence, equation (3) predicts that
strong instabilities can occur for microscopic fluctuations (with
larger wave number) and that fluctuations with longer wavelengths
are less unstable (or stable). The state of self-sustained turbulence,
where the nonlinearly-destabilizing and -stabilizing mechanisms
balance, has been derived. Replacing the term �x~xNzxc in
literature9 by �x~xNzxc{Fk{2

\ , the nonlinear marginal stability
condition is derived as

=~=c ky

� �
, ð5aÞ

where the LHS of Eq.(5a) is given in terms of the renormalized
turbulent transport coefficients as
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and the RHS of Eq.(5a) takes the minimum value =�c ~1:67 at the

characteristic mode number k�~
ffiffiffiffiffi
b�
p

s2=lNmNð Þ1=6 with b* 5 0.43.
Here, G0~k p00, denotes the driving parameter and s stands for the
magnetic shear parameter2, both of which represent the spatial gra-
dient of global plasma parameters. In a dimensional form, Eq.(5b) is
rewritten as

=~a
k p00t

2=3
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min0
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x{F k{2
\

� �
m1=3

, ð5cÞ

where a 5 s24/3j22/3 is a parameter which is independent of gradient,
min0 is the plasma mass density, tAp is the transit time of Alfven
wave at macro-scale of plasma majour radius R, tAp~Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0min0
p

B{1
0 . As is the case of Rayleigh number, the competition

between the pressure gradient and diffusive damping by thermal
conductivity and viscosity is apparent in Eq.(5c).

By use of the minimum value of=,=�c ~1:67, one has the relation
equation (in the limit of small collisional dissipations) as

xN{Fk{2
\
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xN

{1=3:
1
=�c
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One has two limiting solutions from equation (6):

xN^xN,0zFk{2
\ z � � � for F=xN,0k2

\ ð7aÞ

and

xN^Fk{2
\ z � � � for F?xN,0k2

\, ð7bÞ

where xN,0 is turbulent thermal conductivity in the absence of heat
source9,

xN,0:
1

=� 3=2
c

G3=2
0
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mN
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1=2
: ð8Þ

Equation (7) illustrates the competition between the impact of
plasma heating (term F) and diffusive transport xN,0k2

\. Thus, the
impact of heating on fluctuation is much stronger for modes with
longer correlation lengths.

Effects on Long-Range Fluctuations. The long-range fluctuations,
the radial correlation length of which is of the order of plasma size,
are much more stable than microscopic perturbations, but can be
excited to finite amplitude and sustained by nonlinear fluctuating
force11. Such nonlinearly driven fluctuations can have substantial
influence on turbulent transport12. By solving the stochastic equa-
tion, the amplitude of nonlinearly-driven long-range fluctuations has
been evaluated11. The influence of heating power on it is discussed
here. A stochastic equation has been derived as13–15

LTzL
� 	

f ~~s ð9Þ

where ~s~ ~s1,~s2,~s3ð ÞT is the nonlinear fluctuating force acting on the
fluctuation of interest16. The coherent effect of heating is included in
L (say, L33). (In equation (3b), the fluctuating force is neglected,
because the self-sustained turbulence develops without introducing
the effect of nonlinear fluctuating force.)

Following the standard procedures, the statistical average of am-
plitude of long-range fluctuations is calculated. Following ref.15, the
eigenvalue of the matrix L, – Cm (m 5 1,2,3 and C1 , C2 , C3), the
corresponding eigenvectors, em, and the projection matrix to each
eigenvector, Am, are introduced. (The expression of the projection

matrix Am is given in ref.15 and is not reproduced here). The least-
stable element m 5 1 is chosen, and more stable components, which
have larger damping rates, are neglected. By use of the projections
of the fluctuations and source onto the least stable components, Q1 5

e1 ? A1 f and ŝ1 tð Þ~e1
:A1~s, equation (9) is simplified as L=Ltzð

C1ÞQ1~ŝ1 tð Þ. The solution of the least stable element yields a stat-
istically-averaged value as

Q1Q1h i~ 1
2C1

ŝ1 tð Þŝ1 tð Þh i, ð10Þ

where � � �h i indicates the long-time average. In obtaining equation
(10), ~s is modelled as Gaussian white noises, ~si tð Þ~sj t0ð Þ


 �
!

d t{t0ð Þ, because it has a short auto-correlation time. In principle,
~si tð Þ~sj t0ð Þ

 �

has a short but finite correlation time, but this does not
change the conclusion of the analysis14,15.

The eigenvalue of current-diffusive interchange mode (the instab-
ility described by the system of equation (3)) is determined as equa-
tion (34) of ref.17. Away from the linear stability limit, the
decorrelation rate was given as C1~xNk2

h. Replacing x~xNzxc in
literature by x~xNzxc{Fk{2

\ in the presence of heating power
here, we have the decorrelation rate for the long-range mode as

C1~xNk2
h{Fk2

h

�
k2
\, ð11Þ

where contribution of molecular diffusivity is neglected. The non-
linear noise source ŝ1ŝ1h i is induced by microscopic fluctuations11,
which are less sensitive to heating power than the long-range fluctua-
tions. From equations (10) and (11), the mean amplitude of the
linearly-stable global mode in the turbulent plasma is given as

Q1Q1h i~ 1
1{Fx{1

N k{2
\

Q1Q1h i0 ð12Þ

where ÆQ1Q1æ0 is the intensity in the absence of the effect of the
heating, and an estimate xNk2

\^2xNk2
h is employed.

From this result, we see that an enhancement of the long-range
fluctuation is prominent if F

�
xNk2

\?1. That is, rewriting the wave-
length in terms of the global scale length, k{1

\ *a, the condition for
the strong influence of the heating power on fluctuations is written as

LPheat

L p
a2

xN
?1: ð13Þ

The LHS is the ratio between the new time rate associated with the
plasma heating power, hPheat/h p, and the decorrelation rate owing to
the turbulent diffusion. The new control parameter, [hPheat/h p]a2/
xN, is in one hand analogous to the Reynolds number which is the
‘inhomogeneity-driven rate of change’ normalized to decorrelation
rate by diffusion. It is novel because the thermodynamical force
hPheat/h p is the rate of change not in real space but in velocity space.
See the comparison in Table 1. The value [hPheat/h p]a2/xN can be
O(1) in the experimental condition of ref.3, if one uses an estimate
LPheat=L p^Pheat=p.

We next study the response of the long-range fluctuation after the
onset of the heating power. Consider the case that the strong heating
is turned on at t 5 t0, and the tem F is given as F 5 F H(t 2 t0), where
H(t 2 t0) is a Heviside function. The statistical average of fluctuation
intensity is deduced from the stochastic equation. The memory of the
state before the onset of heating is lost at the rate xNk2

\, and the access
to the new stationary value takes place at the rate of xNk2

\{F.

Discussion
This article has shown a theoretical framework that the heating
power can couple to and influence the turbulence directly and imme-
diately (i.e., without the change of mean parameters). The un-
derstanding of this new direct link between heating source and
turbulence has strong impact on our scientific predictability of
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dynamic response of turbulence in the system far from equilibrium
that is sustained by external supply of energy, momentum, etc. This
framework can provide possible explanations for the long-standing
mysteries, that the transport looks to change very rapidly, when the
plasma heating power changes abruptly3–5. For quantitative explana-
tion of these phenomena, further theoretical analyses are required,
along the line suggested in this article. First, an elaborate theory is to
be developed in order to quantify the influence of heating in colli-
sionless plasmas. For instance, the plasma heating via radio fre-
quency waves can modify the distribution function of trapped
particles2 in phase space (trapped particles are limited in velocity
space, and subject to restricted motion in real space), and such pro-
cess can be quantified. An analysis on the growth rate of dissipative-
trapped particle instability2 was performed18, and it was shown that
the influence of this new mechanism is substantial for the low-fre-
quency trapped particle modes to which the long-range fluctuation
in ref.12 was attributed. Namely, heating power is immediately trans-
ferred to the free energy source of the mode. The second issue is the
so-called nonlocal problem. In reality, influence on microscopic tur-
bulence can appear even in the case where the heating power is
absorbed at distant location. The long-range interactions (via, e.g.,
fluctuations with long-correlation length19, streamers20, spreading of
turbulence21,22, etc.) are candidates of mechanisms that explain such
non-local-in-space phenomena.

Analyses have been performed on ‘whether the observations in
ref.3 require new theoretical ideas, or can be explained within the
existing theoretical framework for strongly-nonlinear processes and
non-local-in-space processes (including the fluctuations with long-
correlation length and spreading of turbulence, or integral formula-
tion of heat flux23,24)’.

The experimental findings are reported in ref.25 more thoroughly.
The experimental study has shown that there are two distinct time
scales in the evolution of plasmas after the on/off of heating power
(which is absorbed at the plasma center); i.e., the time scale for the
well-known slow evolution of mean plasma parameters (such as the
temperature and temperature gradient) over the whole plasma, and
the very fast reaction time in the heat flux and fluctuation intensity25.
While the former is in the range of 40–100 ms, the latter is of the
order of 1 ms, the exact value of which is obscured by the time
resolution of diagnostic system.

The test of various models has also been in progress25. The result is
as follows. (1) The conventional way of modelling, in which the
strong nonlinearity of gradient-flux relation can cause a rapid res-
ponse after on/off of heating, is far from satisfactory (as was in the
case of rapid response after the transition of confinement property at
the edge26). (2) The integral formulation (in which the heat flux is
expressed in terms of spatial integral of gradients, and belongs to the
class of the non-local-in-space models) was tested. This framework

can explain some limited cases of experiments (where modulation
amplitude of heating power is small), but has failed to explain the
difference of the two time scales, as reported in ref.25. (3) Although it
is considered that the mechanisms based on the fluctuations with
long-correlation length and on the spreading of turbulence might
work in the present experiment, the existing theoretical framework
alone seems insufficient: This is because, within the existing frame-
work, the statistical-average property of these fluctuations (the fluc-
tuations with long-correlation length and spreading of turbulence) is
correlated with mean plasma parameters, so that the sudden vari-
ation of these activities without a change of global parameters and
gradients has not yet been explained. Thus, while the firm conclusion
whether the previously-published theoretical framework is sufficient
or not waits future detailed measurements of fluctuation dynamics, it
is highly plausible that the observation in ref.3 can not be explained
by existing models alone. The new theoretical framework in this
article explains the emergence of two time scales (i.e., the rapid
response of flux and fluctuation intensity right after the on/off of
heating power, as well as the slow time scale of changes of global
parameters and gradients). The unification of this new idea and
existing theoretical framework provides a key to understand the
experimental observations that the turbulence and transport change
much faster than the change of global parameters.

Methods
The renormalization method that leads to equation (4a) is explained in Chapter 8 of
ref.9 in detail. The deduction of equation (5) from equation (4) is explained in
Chapter 9 of ref.9.
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