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Oxidative stress conditions enhance the production of reactive oxygen species resulting from a variety of
stimuli, and are associated with various human diseases, including neurodegenerative disorders,
inflammation, and various cancers. Though such associations have been closely studied using animal
models, there has been no in vivo system for monitoring oxidative stress. We have developed an oxidative
stress indicator that is dually regulated by induction at the transcriptional level, and by protein stabilisation
at the post-translational level in Keap1-Nrf2 pathway. In vitro, our indicator elicited an intense and specific
signal to oxidative stress among various agents, in a Keap1-Nrf2-dependent manner. Moreover, the
transgenic animal expressing the indicator exhibited significant signals upon oxidative stress. These results
indicate the usefulness of our system as an indicator of oxidative stress both in vitro and in vivo.

O
xidative stress conditions enhance the production of reactive oxygen species (ROS) resulting from a
variety of stimuli including ionising radiation, exposure to xenobiotics, electrophilic agents, and dis-
eases1. Treatment of cells with electrophilic agents usually provokes cellular responses, including tran-

scriptional activation of genes encoding proteins that participate in the defence against oxidative stress.
The Keap1-Nrf2 pathway is a typical cellular defensive system against oxidative stress. Nrf2, a basic region-

leucine zipper (bZip) transcription factor, plays a key role in this pathway2–4. Under normal conditions, Nrf2 is
rapidly degraded by the ubiquitin–proteasome pathway through the association with Keap1 (Kelch-like ECH
associating protein 1), a substrate adaptor protein of the Cul3-based ubiquitin E3 ligase complex5–8. Upon
exposure to oxidative or electrophilic stress, reactive cysteine residues in Keap1 are covalently modified, leading
to the liberation of Nrf2 from Keap1-mediated degradation. The stabilised Nrf2 is then translocated to the
nucleus, and interacts with a member of the small Maf family proteins9. This complex activates the transcription
of a wide range of cytoprotective genes (HO-1, NQO1, GST, etc.) via a cis-acting DNA element known as the
antioxidant/electrophile responsive element (ARE/EpRE)10–12.

Importantly, both in in vitro and in vivo models, a great number of studies have shown that the Keap1-Nrf2
pathway is involved in the onset or mitigation of various human diseases, including neurodegenerations like
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis (ALS)13,14.
Moreover, recent studies using Nrf2 knockout mice indicate significant, close relationships between Nrf2 and
human diseases15–17, including acute lung injury or acute inflammation18.

Therefore, studies on oxidative stress in vivo should yield crucial information, from both scientific and medical
aspects. However, no oxidative stress indicators which could be used in vivo have been reported. To facilitate in
vivo analysis, we developed an indicator for oxidative stress in living cells, named OKD48 (Keap1-dependent
Oxidative stress Detector, No-48). Here, we describe the specificity and sensitivity of OKD48 as an oxidative stress
indicator, and the usefulness of OKD48 transgenic mice.

Results
Design and construction of OKD48, a novel oxidative stress indicator. To design the oxidative stress indicator,
we used the dual regulating mechanism in the Keap1-Nrf2 pathway. The designed indicator consists of the
following. First, the Nrf2 fragment which contributes to the stress-dependent stabilisation was fused to luciferase.
Second, the resulting fusion gene was expressed by oxidative stress inducible promoter (Fig. 1). Under normal
conditions, such a fusion gene is not transcriptionally induced and the leaked fusion protein is degraded by
Keap1, and therefore no signal is detected. However, under oxidative stress conditions, the fusion gene is induced
at the transcriptional level by endogenous Nrf2, and the resulting protein is stabilised at the post-transcriptional
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level by cancellation of Keap1-mediated degradation. Thus, the dual
regulating mechanism produces an intense signal upon oxidative
stress (Fig. 1).

To optimise the combination with stress-inducible promoters and
the lengths of Nrf2 fragments, several types of construct were tested
(Supplementary Fig. 1). As a result, the combination of three repeats
of ARE promoter with Nrf2 fragment (a.a.1–433) showed the best
response to the oxidative stressors ASN (sodium arsenite) and DEM
(dimethylmaleate) (Supplementary Fig. 1). We named this construct
OKD48 (Keap1-dependent Oxidative stress Detector, No-48) (Fig. 1),
and used it for subsequent experiments.

Characterization of OKD48 in vitro. First, to test the functionality
at the cellular level, OKD48 was transiently transfected to cells, treated
with various agents, and its activities were evaluated. Among various
agents, OKD48 specifically and robustly responded to oxidative
stressors (ASN or DEM), and barely responded to other stressors
(ER stressors Tun (tunicamycin) or Tg (thapsigargin); reducing
reagent DTT (dithiothreitol); apoptosis inducer via DNA damage
from topoisomerase II inhibition Etp (etoposide); chemical hypoxia
inducer TTFA (thenoyltrifluoroacetone)) (Fig. 2a). The specific res-
ponse of OKD48 was also confirmed at the protein level: OKD48
protein was detected only with oxidative stressors, not with other
agents (Fig. 2b). To check the response of the endogenous Keap1-
Nrf2 pathway to these agents, the Nrf2 protein was examined by
Western blot. As shown in Fig. 2c, the endogenous Nrf2 protein was
significantly induced only by ASN or DEM but not by other regents,
similarly to the case of OKD48. These results indicated that the res-
ponse and specificity of OKD48 corresponded with the endogenous
Keap1-Nrf2 pathway. Moreover, the examination of OKD48 with
various concentrations of ASN (Fig. 3a) revealed its higher sensitivity
than the traditional promoter-driven reporter (5x ARE in Fig. 3b).

The activation of the endogenous Keap1-Nrf2 pathway under these
conditions was evaluated by the induction of the HO-1 (Heme
Oxygenase 1) mRNA, which is the transcriptional target of Nrf2
(Fig. 3c). These results imply the usefulness of OKD48 as an
oxidative stress indicator in vitro.

Because OKD48 is regulated by the endogenous Keap1-Nrf2 path-
way, there was a possibility that OKD48 produced a dominant nega-
tive effect on the cells. To eliminate this doubt, we evaluated the
induction of the HO-1 (Heme Oxygenase 1) mRNA. As shown in
Supplementary Fig. 2, HO-1 mRNA was induced at comparable
levels both with and without OKD48, indicating that OKD48 does
not have a dominant negative effect on the endogenous Keap1-Nrf2
pathway.

Next, the effects of Keap1 or Nrf2 for OKD48 were examined in
vitro. As expected, the activity of OKD48 was greatly strengthened by
overexpression with Nrf2, and also slightly activated by the treat-
ments with ASN or DEM (Fig. 4a; left). The powerful activation by
overexpression with Nrf2 was also confirmed at the protein level
(Fig. 4a; right). On the contrary, overexpression with Keap1 attenu-
ated OKD48 both with and without oxidative stress, though the stress
response was maintained (Fig. 4b; left: cellular assay, right: Western
blot). The effect of MG132, a proteasome inhibitor, was also exam-
ined. As shown in Fig. 4c, MG132 activated OKD48 more strongly
than the oxidative stressors ASN or DEM. The stronger activation by
MG132 was also found in endogenous Nrf2 (Fig. 4d). These results
support the predicted working model that OKD48 is induced at the
transcriptional level by Nrf2, and is degraded/stabilised at the post-
translational level by Keap1.

In addition to the luciferase-fused type, we also developed a GFP-
fused indicator (Supplementary Fig. 3). Similarly to the luciferase
version, the GFP-fused indicator (OKD48-venus) yielded significant
fluorescence upon treatment with oxidative stressors (Supplementary

Figure 1 | Schematic of OKD48 function. p(3xARE)TKbasal-hNrf2(1-433)GL4-Flag was generated as the OKD48 construct. In human Nrf2, the Neh2

domain (red) functions as the Keap1 binding and ubiquitinated region, and the Neh1 domain (blue) functions as the DNA binding region. The OKD48

construct has 3xARE promoter (light blue), human Nrf2 (a.a.1–433; purple) and Flag-tagged luciferase (GL4; yellow). Under normal conditions,

transcription of the OKD48 construct was not induced, and the leaked OKD48 protein was degraded by the Keap1 (orange) system. Upon oxidative stress,

OKD48 was transcriptionally induced by the 3xARE element, and the resulting protein was stabilised by the Keap1 system. Thus, we detected

luminescence only in cells experiencing oxidative stress.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 229 | DOI: 10.1038/srep00229 2



Fig. 3a: fluorescence image; Supplementary Fig. 3b: fluorescence
intensity with lysates). The specific induction of the GFP-fused indi-
cator was also confirmed at the protein level (Supplementary Fig. 3c).
These results suggest that the GFP-fused reporter (OKD48-venus)
also functions as an oxidative stress indicator.

Generation of OKD48 transgenic mice. Given the functionality
in vitro, we generated OKD48 transgenic mice and performed the
following experiments. As expected, the resulting transgenic mice
expressed the OKD48 transgene in all the organs that we examined
(Fig. 5a). In the in vivo experiment, oxidative stress was induced by
the intraperitoneal injection of ASN (Fig. 5) or DEM (Supplementary
Fig. 4).

Whole body analysis indicated that the ASN injection elicited
significant signals from the thorax, abdomen (and weakly, from
the lower abdomen) in the transgenic mice. In contrast, the control
transgenic mice that received an injection of PBS showed very little
luminescence, comparable with that of wild type mice (Fig. 5b). The

signals were further precisely analysed by abdominal operation. The
ASN-injected mice showed intense signals in almost all organs
(Fig. 5c), and the liver elicited a particularly strong signal (Fig. 5d).
Subsequent ex vivo analysis with surgically-eviscerated organs con-
firmed the signals from the liver, stomach, kidney, and lung (Fig. 5e).
Furthermore, the expressions of HO-1 mRNA in the liver were
examined (Fig. 5f), and comparison analysis with these data indi-
cated correlated activation between the OKD48 transgene and the
endogenous Keap1-Nrf2 pathway. Also, as HO-1 was induced both
in wild type mice and transgenic mice at comparable levels, the
OKD48 transgene did not have a dominant negative effect on the
endogenous Keap1-Nrf2 pathway.

Similarly to the case of ASN injection, luminescence signals were
detected in the DEM-injected transgenic mice. Analysis by abdom-
inal operation showed specific signals from the stomach and kidney
in the DEM-injected transgenic mice, but not in the wild type mice or
control mice (Supplementary Fig. 4a). Subsequent ex vivo analysis
confirmed significant signals from surgically-eviscerated stomach

Figure 2 | Characterization of OKD48 in vitro. (a) Specific response of the OKD48 to oxidative stress. The OKD48 construct was transfected into HeLa

cells, and luciferase assays were performed after treatment with or without various stresses (sodium arsenite (ASN), diethylmaleate (DEM), H2O2,

tunicamycin (Tun), thapsigargin (Tg), dithiothreitol (DTT), etoposide (Etp), and thenoyltrifluoroacetone (TTFA)), for 8 hr or 16 hr. (b) Protein

expression of OKD48 construct under various stresses. The OKD48 construct was transfected into HEK293T cells, and then treated with or without

various stresses for 8 hr. Their lysates were subjected to anti-Luc, anti-Keap1 or anti-GAPDH Western blotting. (c) Protein expression of endogenous

Nrf2 under various stresses. HeLa cells were treated with or without various stresses for 8 hr or 16 hr, then their lysates were subjected to anti-Nrf2, anti-

Keap1 or anti-GAPDH Western blotting.
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(Supplementary Fig. 4b). Moreover, the examination of HO-1
mRNA confirmed a significant correlation between the luminescence
signals and the activation of the endogenous Keap1-Nrf2 pathway in
the kidney of DEM-injected mice (Supplementary Fig. 4c).

Characterization of OKD48 transgenic mice. To test the in vivo
functionality, we next performed three oxidative stress assays with
OKD48 transgenic mice. First, we elucidated the signal intensity with
several concentrations of ASN. As shown in Fig. 6a and b, OKD48
transgenic mice showed intense signals with the injection of 9.4 mg/kg

Figure 3 | Dose-dependent activation of OKD48. (a, b) Luciferase assay

with various concentrations of ASN. The OKD48 construct (a) and a

promoter-driven reporter (b) were transfected into HeLa cells, and luciferase

assays were performed after treatment with or without various concentrations

of ASN for 8 hr. (c) Induction of HO-1 with various concentrations of ASN.

Total RNAs from each ASN-treated cells were subjected to quantitative PCR

analysis. GAPDH was used as an internal standard.

Figure 4 | Keap1-Nrf2-dependent regulation of OKD48. (a) Effect of

overexpression with Nrf2 on OKD48. Left: The OKD48 construct and Nrf2

overexpression vector were transfected into HeLa cells, and luciferase

assays were performed after treatment with or without sodium arsenite

(ASN) and diethylmaleate (DEM) for 8 hr. Right: The OKD48 construct

and Nrf2 overexpression vector were transfected into HEK293T cells, and

then treated with or without sodium arsenite (ASN) and diethylmaleate

(DEM) for 8 hr. Their lysates were subjected to anti-Luc, anti-Keap1 or

anti-GAPDH Western blotting. (b) Effect of overexpression with Keap1 on

OKD48. Assays similar to those in Fig. 4a were performed with the Keap1

overexpression vector. (c) Effect of MG132 on OKD48. The OKD48

construct was transfected into HeLa cells, and luciferase assays were

performed after treatment with or without sodium arsenite (ASN),

diethylmaleate (DEM), and MG132 for 8 hr. (d) Effect of MG132 on

endogenous Nrf2 protein. HeLa cells were treated with or without sodium

arsenite (ASN), diethylmaleate (DEM), and MG132 for 8 hr, then their

lysates were subjected to anti-Nrf2, anti-Keap1 or anti-GAPDH Western

blotting.
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ASN, and the signals were further increased with 12.5 mg/kg ASN.
However, no significant signal was detected with 6.25 mg/kg ASN
or PBS. The examination of HO-1 mRNA confirmed a significant
correlation between the luminescence signals and the activation of
the endogenous oxidative stress response (Fig. 6c).

Next, we performed multiple-round assays with OKD48 trans-
genic mice, taking advantage of the less-invasive method of in vivo
imaging. As shown in Fig. 6d, the same individuals (upper, middle,
lower for each) were sequentially injected with PBS or ASN at an
interval of 4 days. The upper and middle were the control experi-
ment confirming that the one-shot injection with ASN elicited sig-
nificant signals at day 1 and day 5, respectively. Importantly, mul-
tiple injections at day 1 and day 5 both elicited intense signals
repeatedly (Fig. 6d; lower). This indicated that the oxidative stress
signal in OKD48 transgenic mice could be analysed repeatedly with
the course of time.

Finally, OKD48 transgenic mice were subjected to UV-A irra-
diation, a milder and more physiological oxidative stimulus19 than

toxically induced stress. As shown in Fig. 6e, the strong signal was
detected with intense irradiation (30 mW per cm2; upper), and a
significant signal was also detected even under more moderate con-
dition with weak irradiation (5 mW per cm2; lower). However, no
signal was detected before UV-A irradiation. The examination of
HO-1 mRNA confirmed activation of the endogenous oxidative
stress response with UV-A irradiation (Fig. 6f).

Thus, OKD48 transgenic mice could produce intense signals in
line with the degree of stress damage, could be used for multiple-
round assays, and could detect both toxically induced and UV-A
induced oxidative stress. The OKD48 transgenic mice would thus
be useful for identifying organs or cells under oxidative stress in vivo.

Discussion
As described in the introduction, many recent studies have reported
a significant connection between oxidative stress and various dis-
eases, and so an in vivo imaging system for oxidative stress has been
awaited. Although a reporter mouse for oxidative stress has been

Figure 5 | Generation of OKD48 transgenic mice. (a) RT-PCR analysis of OKD48 transgene expression in various tissues. b-actin was used as an internal

standard. (b) Luminescence activity in whole body. Mice were intraperitoneally injected with ASN. After 6 hr, the mice were analysed using the in vivo

imaging system. (c, d) Luminescence activity in internal organs. The abdominally operated mice from Fig. 5b were analysed using the in vivo imaging

system with wide range (c) or narrow range (d). (e) Luminescence activity in surgically-eviscerated organs. Liver, stomach, kidney and lung in Fig. 5b were

surgically eviscerated, and analysed using the in vivo imaging system. (f) Induction of HO-1 mRNA in liver. Total RNAs from mouse liver were subjected

to quantitative PCR analysis. GAPDH was used as an internal standard.
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Figure 6 | In vivo oxidative stress assay with OKD48 transgenic mice. (a) Luminescence activity with several concentrations of ASN in internal organs.

OKD48 transgenic mice were intraperitoneally injected with several concentrations of ASN. After 6 hr, the mice were abdominally operated, and analysed

using the in vivo imaging system. (b) Luminescence activity with several concentrations of ASN in liver. Livers in Fig. 6a were surgically eviscerated,

and analysed using the in vivo imaging system. (c) Induction of HO-1 mRNA with several concentrations in liver. Total RNAs from each ASN-injected

mouse liver were subjected to quantitative PCR analysis. GAPDH was used as an internal standard. (d) Multiple detection of OKD48 signal in vivo. At day

1, OKD48 transgenic mice were intraperitoneally injected with ASN. After 6 hr, the mice were analysed using the in vivo imaging system. After an interval

of 4 days (at day 5), the same individuals were re-injected with ASN, and analysed similarly to day 1. (e) Luminescence activity with UV-A irradiation

in vivo. Before (left) and after (right) UV-A irradiation (30 mW per cm2 (upper), and 5 mW per cm2 (lower)), OKD48 transgenic mice were analysed

using the in vivo imaging system. (f) Induction of HO-1 mRNA with UV-A irradiation. Total RNAs from mouse skins irradiated with or without UV-A

were subjected to quantitative PCR analysis. GAPDH was used as an internal standard.
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previously reported20, its performance was not sufficient to detect the
stress signal in vivo. In this study, we developed an oxidative stress
indicator that is dually regulated by induction at the transcriptional
level, and by protein stabilisation at the post-translational level in the
Keap1-Nrf2 pathway (Fig. 1). Our in vitro experiments showed that
OKD48 works as a specific and sensitive indicator for oxidative
stress, in a Keap1-Nrf2-dependent manner (Fig. 2–4). Also, experi-
ments in transgenic animals showed that OKD48 functions as an
indicator for oxidative stress in vivo (Fig. 5 and 6). This is the first
system which can monitor oxidative stress with high sensitivity both
in vitro and in vivo.

Previously, the activation of the Keap1-Nrf2 pathway has been
monitored by the Western blot or Northern blot. These methods
need cell lysis, involve multiple complicated procedures, and are
time-consuming. However, the newly-developed OKD48 system
uses the luminescent reaction to overcome these problems and pro-
vides a simple, less-invasive, and highly-sensitive detection method
both in vitro and in vivo. This is a major advantage of our system.

The high S/N ratio of our system is achieved by combining the dual
regulation mechanism from the Keap1-Nrf2 pathway. Previously,
ARE-driven reporters have been used as a common tool for identify-
ing transcription activators or inhibitors21. However, these reporters
have an inherent drawback in terms of specificity. The consensus
ARE sequence is TGAG/CNNNGC11, which overlaps with a 12-O-
tetradecanoylphorbol 13-acetate (TPA) responsive element (TRE:
TGAG/CTCA). In fact, many functional AREs found in target-gene
regulatory regions include a TRE sequence22. Thus, the ARE-driven
reporters are activated not only by Nrf2 but also by other transcrip-
tion factors that bind to TRE23. To avoid this issue, we used a GSTYa
fragment as the ARE promoter (GGAAATGACATTGCTAATGG-
TGACAAAGCAACTTT), which does not contain a typical TRE
sequence. Furthermore, given the usefulness of the Nrf2-fusion23,24,
we optimised the length of the fused Nrf2 fragment. The resulting
fragment (a.a. 1–433 of Nrf2) contains a region other than the Neh2
domain (a.a. 1–93), which mainly contributes to the Keap1 binding
and the stabilisation/degradation. This extra region (a.a. 94–433)
might also contribute to the stress-dependent stabilization25, and thus
to the high sensitivity of the OKD48 system. These elements in the
OKD48 system at the transcriptional level and post-translational level
contribute to minimise the side effects and maximise the sensitivity to
oxidative stress.

OKD48 is a highly specific, sensitive system for screening Nrf2
inducers. There is a growing body of research suggesting that Nrf2-
activating compounds will be potential therapeutic agents for various
diseases such as cancers and neurodegeneration. In animal models,
Nrf2-inducing compounds have a powerful ability to suppress chem-
ical carcinogenesis by inducing both phase II detoxifying enzymes
and antioxidant enzymes26. It has been reported that in an
Alzheimer’s disease model, Nrf2 activation improved symptoms27.
To discover efficient Nrf2 inducers, high-throughput screening
(HTS) of compound libraries will be one of the most powerful tech-
nologies24. We expect that HTS screening with the OKD48 system
will allow highly efficient and specific screening of Nrf2 inducers.
Moreover, the OKD48 transgenic mice also could be exploited to
address various issues regarding oxidative stress in human diseases
and drug development. By crossing the OKD48 transgenic mouse
with a mouse model for a human disease, information about the
status of oxidative stress during the course of disease could be
obtained. As shown in Supplementary Fig. 5, intraperitoneally
injected luciferin could reach the brain, though the efficiency was
slightly less than that to the liver. Thus, OKD48 transgenic mice
could also be useful for elucidating the oxidative status in a disease
model relating to neurodegeneration. The OKD48 construct and the
OKD48 transgenic mice could be powerful tools for addressing vari-
ous issues regarding oxidative stress in human disease and drug
development.

However, there are still some limitations to the usefulness of
OKD48 transgenic mice. For example, weak oxidative stress assoc-
iated with chronic diseases might not be detected in the mice. Indeed,
we could not detect significant signals under physiological condi-
tions, as detected in the case of our ER stress indicator28,29. One
reason would be the low emission from the OKD48, though this
indicator has an excellent S/N ratio. By fusing with the Nrf2 frag-
ment, the luminescence ability of the luciferase portion might be
partially inhibited. The use of other types of luminescence protein
which have stronger light-emitting ability would overcome this
problem; further research on this issue is required.

Nevertheless, OKD48 transgenic mice may provide valuable
information regarding the oxidative status during development
and under pathological conditions. Transient induction of oxidative
stress in a limited portion of tissue may be a crucial trigger for disease
progression. The OKD48 transgenic mice reported here will help
clarify the mechanisms involved in oxidative stress and disease.

Methods
Plasmid construction. To make p(3xARE)TKbasal, a PCR-amplified ARE fragment
(from mouse GSTYa promoter ACTAGTACTAGTGGAAATGACATTGCTAA-
TGGTGACAAAGCAACTTTTCTAGA; attached restriction sites are underlined)
was digested with SpeI-XbaI and self-ligated to form a triple-repeat fragment, and
further inserted into pTKbasal with XbaI-SpeI sites, which are located in the 59 site of
TK basal promoter30. The cDNA encoding human Nrf2 (a.a.1–433 in Fig. 1, or 1–93,
1–433, full-length in Supplementary Fig. 1) was PCR-amplified and inserted into
the p(3xARE)TKbasal (or pTKX in Supplementary Fig. 1), with KpnI-XhoI sites.
The cDNA encoding luciferase (GL4) was PCR-amplified with 1x Flag-tag on its
39 terminal, and inserted into p(3xARE)TKbasal-hNrf2(1–433) with XhoI-NheI sites.
The resulting p(3xARE)TKbasal-hNrf2(1–433)-GL4-Flag was used as the OKD48
construct. We constructed its GFP version, p(3xARE)TKbasal-hNrf2(1–433)-Venus-
Flag, in a similar way and used it as the OKD48-venus construct.

The overexpression vector of human Nrf2, pCAX-hNrf2, was constructed by
inserting a PCR-amplified human Nrf2 fragment into pCAX with KpnI-XhoI sites.
The overexpression vector of human Keap1, pCAX-hKeap1, was constructed by
inserting a PCR-amplified human Keap1 fragment into pCAX with HindIII-XhoI
sites.

Cell culture, transfection, and treatment. HeLa cells and HEK293T cells were
cultured at 37uC in DMEM supplemented with 100 U/ml penicillin, 100 mg/ml
streptomycin, and 10% fetal bovine serum, in an atmosphere containing 5% CO2. The
calcium phosphate-DNA precipitation method was used to introduce plasmid DNA
into the cells. To test cellular response to drugs, cells were treated with 10 mM
(or various concentrations in Fig. 3) ASN (sodium arsenite), 100 mM DEM
(diethylmaleate), 200 mM H2O2, 2.5 mg/ml tunicamycin, 1 mM thapsigargin, 1 mM
DTT, 100 mM etoposide, 100 mg/ml TTFA (thenoyltrifluoroacetone), or 20 mM
MG132 for the indicated time.

Luciferase assay. Dual luciferase assay was performed using the dual luciferase assay
system (Promega) and a luminometer (Berthold). As an internal control, phRL-TK
(Promega) was used. The results are shown as mean 6 s.e.m. from triplicate
experiments. Each value is shown as a fold induction normalised to that of each non-
treated (for Fig. 2a, 3a and b), non-treated without Nrf2 overexpression (for Fig. 4a),
or non-treated without Keap1 overexpression (for Fig. 4b), the value of which was set
at 1.0. As a promoter-driven oxidative stress reporter, Cignal Reporter Assay Kit ARE
(QIAGEN) was used in Fig. 3b.

Western blot analysis. Cells were lysed in SDS sample buffer (50 mM Tris-HCl (pH
6.8), 2% SDS, 50 mM DTT, 10% glycerol and 1 mg/ml bromophenol blue). The lysate
was heated to 98uC for 10 min, and SDS-PAGE was used to resolve the proteins in
the lysate. After electrophoresis, the proteins were electrotransferred onto a
polyvinylidene fluoride microporous membrane and immunodetected with a
monoclonal antibody to luciferase (Promega), monoclonal antibody to GFP (Nacalai
Tesque), monoclonal antibody to GAPDH (Cell Signaling Technology), monoclonal
antibody to Keap1 (Cell Signaling Technology), or polyclonal antibody to Nrf2 (Santa
Cruz) using standard procedures. The lysates from mice tissues were analysed
similarly.

Quantitative PCR analysis. Quantitative PCR analysis of each transcript was
performed using a TaqMan probe and 7900HT (Applied Biosystems) in Fig. 5f,
Supplementary Fig. 2b, Supplementary Fig. 4c, or StepOneplus (Applied Biosystems)
in Fig. 3c, 6c and f, in accordance with the manufacturer’s instructions with GAPDH
transcript as an internal control. Results are expressed as mean 6 s.e.m. from
triplicate experiments using RNA isolated from three independent samples. The
probe/primer sets Hs01110250_m1 and Mm00516005_m1 were used for the
quantification of human HO-1 and mouse HO-1 transcript, respectively.
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Transgenic mice. The 4.5-kb SpeI-SfiI fragment of p(3xARE)TKbasal-hNrf2
(1–433)-GL4-Flag was microinjected as a transgene into fertilised C57BL/6 mouse
eggs, and the transgenic offspring were screened by PCR using the primers 59-ATC
ACC AGA ACA CTC AGT GG-39 and 59-ACT CGG CGT AGG TAA TGT CC-39.
The resulting mice were used for in vivo imaging analysis. To induce oxidative
stress for mice, ASN (12.5 mg/kg31, and various concentrations in Fig. 6a and b) or
DEM (5 mmol/kg)32 was intraperitoneally injected. As a control for ASN, PBS was
injected21. As a control for DEM, corn oil was injected32. UV irradiation was
performed with a Blak-Ray High Intensity Lamp (100W, B-100A, 115V (UVP))
which emitted radiation of wavelength above 320 nM, providing 5 mW or 30 mW
per cm2 UV-A. After 6–8 hr, the mice were intraperitoneally injected with D-luciferin
(0.15 mg/g body weight) in PBS, and analysed using the in vivo imaging system IVIS
(Xenogen) according to standard protocols. Liver, kidney, stomach, and lung were
collected surgically from mice 10 minutes after luciferin injection, immersed in
300 mg/ml D-luciferin, and analysed. All experimental protocols involving animals
were approved by the Animal Studies Committees at RIKEN and Gunma University.

RT-PCR. In Fig. 5a, total RNA was prepared from mouse tissues using the Isogen
reagent (Nippon Gene). A SuperScript first-strand synthesis system (Invitrogen)
was used to synthesise the cDNA, according to the manufacturer’s instructions. The
target cDNA was amplified by 35 cycles of PCR using the following primers: GL4
sense primer, 59-GTG GTG TGC AGC GAG AAT AG-39; GL4 antisense primer,
59-CCT CCT CGA AGC GGT ACA TG-39; b-actin sense primer, 59-ATG GAT GAC
GAT ATC GCT-39; and b-actin antisense primer, 59-ATG AGG TAG TCT GTC
AGG T-39.
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