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The rapid development of next generation sequencing (NGS) technology provides a new chance to extend
the scale and resolution of genomic research. How to efficiently map millions of short reads to the reference
genome and how to make accurate SNP calls are two major challenges in taking full advantage of NGS. In
this article, we reviewed the current software tools for mapping and SNP calling, and evaluated their
performance on samples from The Cancer Genome Atlas (TCGA) project. We found that BWA and Bowtie
are better than the other alignment tools in comprehensive performance for Illumina platform, while
NovoalignCS showed the best overall performance for SOLiD. Furthermore, we showed that
next-generation sequencing platform has significantly lower coverage and poorer SNP-calling performance
in the CpG islands, promoter and 59-UTR regions of the genome. NGS experiments targeting for these
regions should have higher sequencing depth than the normal genomic region.

T
he advent of Next Generation Sequencing (NGS) technology has significantly advanced the sequence-based
genomic research and its downstream applications1 which include, but not limit to, metagenomics, epige-
netics, gene expression, RNA splicing and RNA-seq and ChIP-seq2, 3. In the past three decades, the Sanger

method4 has been applied in many significant large-scale sequencing projects, and is considered as a ‘gold
standard’ because of its appropriate read length and high accuracy5. So far, three NGS platforms, the Roche/
454 GS FLX, the Illumina/Solexa Genome Analyzer and the Applied Biosystems SOLiD System, have attained
world-wide popularity. NGS focuses on generating three to four orders of magnitude more sequences but with
considerably less cost in comparison with the Sanger method on the ABI 3730xL platform (hereafter referred to as
ABI Sanger)5–7. Despite the recent advances of NGS technologies, it is not clear whether the sequencing coverage
by the NGS is the same across different regions of the genome.

After the short reads are generated, the first step is to align them to the reference genome. To discover tumor
genetic information through resequencing different control/case samples, the mapping process must be able to
efficiently align millions of sequences generated. Alignment algorithms should be robust enough to sequencing
errors, but be able to detect true genomic polymorphisms2. To take full advantage of NGS, more and more efficient
algorithms are designed to overcome the limitation of read length and non-uniform error score in NGS data.

Because of the tremendous volume of reads and the huge size of the whole reference genome, alignment speed
and memory usage are the two bottlenecks in mapping NGS reads. Traditional algorithms, such as BLAST8 and
BLAT9, can perform the NGS alignment more precisely, but they usually take a few days even on computer grids,
not to mention personal computers. The time and cost are usually unaffordable for most biologists. Another
challenge is how to pick true hit from multiple hits. Generally many aligners will report all possible locations with
the appropriate tags or pick a location heuristically. If the multiple hits cannot be ranked for certain standard, it
will make the comparison between read and reference unreliable. Furthermore, since the sequencing genome is
usually different from the reference genome, alignment algorithms should be robust enough to sequencing errors,
but do not miss true genomic polymorphisms2. To handle these challenges, a lot of short-read alignment
programs have been developed in recent years. A brief review of the popular programs is provided in supple-
mentary materials, and all of them are free for academic and non-commercial use.
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Based on the core alignment techniques used, the programs can be
classified into three categories10, 11. The first category uses hashing
tables, and it can be further divided into two sub categories, either
hashing the reads then using the reference genome to scan the hash
table, such as RMAP12, 13, MAQ14, ZOOM15, SeqMap16, SHRiMP17 (for
the updated version 2, it hashes the genome18) and RazerS19, or hashing
the reference genome then using the set of input reads to scan the hash
table, such as MOM20, Novoalign, MOSAIK and BFAST21. (‘Hash
table’ refers to a common data structure that is able to index complex
and non-sequential data in a way that facilitates rapid searching.)

The second category of programs, such as Bowtie22 (which does
not support gaps yet), BWA11, 23 and SOAPv224, are based on the
Burrows–Wheeler Transform (BWT)25. They can efficiently align
short sequencing reads against a large reference sequence, allowing
mismatches and gaps. These methods typically use the FM index data
structure, proposed by Ferragina and Manzini, who introduced the
concept that a suffix array is much more efficient if it is created from
the BWT sequence, rather than from the original sequence26. The FM
index retains the suffix array’s ability for quick pattern search and is
generally smaller than the input genome size27.

The third category is implemented by merge-sorting the reference
subsequences and read sequences. The representative one in this
category is Slider28, which is focused on the Illumina platform data.
The characteristics of the chosen software and their output formats
are summarized in Table 1. Since the first two categories are pre-
dominately used, we have assessed the performance of the repres-
entative software in the two categories.

Furthermore, accurate alignment is not sufficient to meet the needs
of further scientific discovery for most resequencing projects. For
example, the 1000 Genomes Project aims at sequencing more than
1000 human genomes to characterize the pattern of genetic variants
(common and rare) (http://www.1000genomes.org/). TCGA (http://
cancergenome.nih.gov/) has been sequencing a large number of cancer
and normal samples for different individuals, targeting at the genetic
variations of tumor. To this end, the whole analysis pipeline should
also include detecting genomic variations including single nucleotide
polymorphism (SNP), copy number variations (CNV), inversions,
and other rearrangements29. Although NGS provides a sequencing
error score, it is hard to distinguish true genetic variation from the
sequencing error or mapping error30.

Currently, there are several methods available for calling SNPs
from NGS data, including Pyrobayes31, PolyBayes32, MAQ14,
SOAPsnp33, Varscan34, SNVMix35, 36, SeqEM37 and Atlas-SNP229.
Pyrobayes and PolyBayes recalibrate base calling from raw data,
and then implement a Bayesian approach that incorporates prior
information with population mutation rates to detect SNP. MAQ
derives genotype calls from a Bayesian statistical model that incor-
porates the mapping qualities. It measures the confidence that a read
actually comes from the position it aligns to, error probabilities from
the raw sequence quality scores, sampling of the two haplotypes, and
an empirical model for correlated errors at a site. SOAPsnp is also

based on the Bayes’ theorem. It first recalibrates the sequencing
quality score to calculate the likelihood of genotype for each position
with existing conversion matrix, and then combines the prior prob-
ability for each genotype to infer the true genotype33. Varscan uses
parameters such as the overall coverage, the number of supporting
reads, average base quality, and the number of strands observed for
each allele to predict genotypes34. SNVMix combines three Binomial
mixture models to model allelic counts, nucleotide and mapping
qualities of the reads and infers SNPs and model parameters with
the expectation maximization (EM) algorithm36. In contrast, SeqEM
estimates parameters in an adaptive way. It uses the EM algorithm to
numerically maximize the observed data likelihood with respect to
genotype frequencies and the nucleotide-read error rate based on the
NGS data of multiple unrelated individuals37. Atlas-SNP is similar to
SOAPsnp, but it infers systematic errors of base substitutions on
single reads by fitting training datasets using a logistic regression
model which identified read sequence-related covariates to the
base-quality score29.

We used three representative programs – MAQ(version 0.71),
SOAPsnp(version 1.03) and SNVmix(version 2-0.11.8-r4)- to call
SNP on the merged GBM alignment result in bam file format38,
and assumed the genotype of each base to be in one of three states:
‘aa’ as homozygous for the reference allele, ‘ab’ as heterozygous and
‘bb’ as homozygous for the non-reference allele, with the latter two
genotypes constituting an SNP36. We compared the NGS analysis
result with the SNPs detected by the Affymetrix genome-wide
human SNP array 6.0, which was treated as the gold standard.
According to the setting, a true positive SNP is a site whose genotype
is called as ‘ab’ or ‘bb’ in array and a true negative SNP is ‘aa’.

Results
Alignment performance. We evaluated the performance of sequence
mapping software in aligning reads from the cancer genome atlas
(TCGA) project39, including 2 3 13,326,195 paired-end reads
(SRR018643) and 15,578,118 single-end reads (SRR018725) with
length of 76bp each from the Glioblastoma multiforme (GBM)
sample (SRS004141) sequenced on Illumina Genome Analyzer II,
2 3 13,716,752 paired-end reads (SRR018658) with length of 76bp
each from blood derived normal sample (SRS004142) sequenced
on Illumina Genome Analyzer II, and one million single-end
reads(SRR030482) with length of 50bp from the Serous
Cystadenocarcinoma sample (SRS004260) sequenced on the AB
SOLiD System 3.0.(see Method section for detail)

To compare the aligner performance fairly, we adjusted the para-
meters of each exact match programs to standardize the general
filters: at most 5 mismatches in whole read or at most 2 mismatched
in first 28 bases seed region (if supported. Consider average 10%
error base calling rate in 30bp 39bp tail and basic 2-seed-mismatch
maq-like policy). However, this filtering strategy does not fit well for
Smith-Waterman based algorithms. Smith-Waterman based algo-
rithms penalize all errors (insertion, deletion, mismatch, etc)

Table 1 | Summary of the representative software tools

Program Version Algorithm
Color-space
supported

Read length(bp)
supported Gapped

pair-end
supported

Can output
all(suboptimal) hits output format

Bowtie 0.12.7 FM-index Yes ,51024 no yes yes SAM
BWA 0.5.8c FM-index Yes Arbitrary yes yes yes SAM
SOAP2 2.2 FM-index No ,51024 no yes yes SOAP2
RMAP 2.0.5 hash reads No Arbitrary no yes yes BED
ZOOM 1.5.0 hash reads Yes ,5240 yes yes yes ZOOM
Maq 0.7.1 hash reads Yes ,5127 yes yes no Maq
Novoalign 2.07.00 hash ref. yesa Arbitrary yes yes yes SAM
SHRiMP 2.1.0 hash ref. Yes Arbitrary yes yes yes SAM
aNovoalignCS supports the SOLiD platform
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quantitatively and summarize them into one mapping score for fil-
tering. And if encountered with paired-end reads, the insert range
should be set from 0bp to 1,000bp. The setting for insert size is a very
loose standard because the insert size for our pair-end sample in the
genomic library has an average length of 586bp with a standard
deviation of 101bp. Default settings were used for the other para-
meters of each program.

From previous experiments, input/output loads were not significant
factors in total running time22, so only CPU time was considered for
assessment. We also divided the CPU running time into two parts, time
for index and time for alignment. Because the index is reusable, the
expensive cost of indexing will no longer exist in the application after-
wards. We tested these software tools on a typical desktop workstation
with a 2.66 GHz Intel core 2 processor Q9400 and 16GB of RAM, and
the system openSUSE 11.1. All programs run on a single thread.

The assessment results based on Illumina paired-end data are
summarized in Table 2. BWT based aligners, Bowtie and BWA
demonstrated the best overall performance compared with other
index based methods. Bowtie has balanced alignment sensitivity,
efficient CPU usage and memory consumption, finishing the job
within two and half hours with over 67.5% reads aligned.
Compared with Bowtie, BWA needed 88% more time to do the
alignment but with only 5% more reads aligned (72.99%) in
2-seed-mismatch maq-like policy.

RMAP, ZOOM and Maq belong to the ‘‘hashing reads’’ category.
Due to the huge volume of reads to deal with, their memory foot-
prints are not flexible anymore, ranging from 8GB to 10GB, which
may not be feasible for non-expert users. ZOOM beats the other
‘‘hashing reads’’ aligners significantly, using 7 hr to complete align-
ment with 60% sensitivity. Maq reached a better sensitivity of 72.0%,
but consumed 39 hr 10 min for alignment. Thus the alignment speed
up by nearly 20 folds in bowtie than Maq for 76bp length reads, and
the Maq also got a slighter higher sensitivity than bowtie, which
is consistent with the comparison in bowtie paper22. For the
‘‘hashing reference’’ aligners tested, as expected, they had the worst
performance on the running time and memory consumption when
parallelized computing was not implemented; however, due to the
underlying Needleman-Wunsch (Novoalign) and Smith-Waterman
(SHRiMP) exact search algorithms, they showed excellent sensitivity.
SHRiMP had a sensitivity of 81.2%, which was nearly 20% higher
than Bowtie, but it took 100 times longer than Bowtie for alignment
due to the thread and RAM limitation. We also evaluated the per-
formance of the eight programs on Illumina single-end data from the

same GBM sample (Supplementary Table 1) and observed similar
results. To validate that the sample phenotype does not affect the
performance of the aligner, we tested one run from normal sample
(Supplementary Table 2), the relative rankings of memory con-
sumption and computing speed of each aligner are similar in both
samples. Meanwhile, the differences on sensitivity in both samples
also have the similar trends for all aligners, which should be attrib-
uted to the heterogeneity of sample inner property and the variation
in the sample amplification stage.

For the SOLiD data, NovoalignCS showed the best overall per-
formance. Different from the letter-space index, all aligners except
ZOOM create color-space index for SOLiD data. On average they
had a lower proportion of reads mapped compared with the Illumina
data. The time for the extremely high sensitivity in SOLiD alignment
of SHRiMP was more than 1000 times longer than Bowtie
(Supplementary Table 3).

The preferred output format for each program is also listed in
Table 1. The Sequence Alignment/Map (SAM) format38 is designed
to support both single and paired-end reads, including color space
and base space reads from different platforms, which creates a well-
defined interface between alignment and downstream analysis.

Sequencing depth, CpG islands and genomic coverage. We
investigated how many sequencing depths are required to cover
the whole genome. We mapped 13 runs of the GBM sample
SRS004141 in experiment SRX006310 to the reference human
genome (UCSC genome browser human genome version hg18)
with Bowtie. With the increase of sequencing depth, the percent of
genome covered increases (Figure 1). At one fold sequencing
coverage (1 fold coverage 5 human genome 3.0 gigabases), only
less than 50% of the genome was covered at least once, and less
than 20% was covered at least twice. At ten folds sequence
coverage, nearly 90% of whole genome was covered, and 83% was
covered at least twice.

We next investigated whether different genomic regions have dif-
ferent coverage. We found CpG island regions have significant lower
coverage than the whole genome and gene regions (both P values less
than 2.2e-16). At ten folds coverage, only 50% of CpG islands were
covered at least once, compared to 90% for the whole genome
(Figure 2). Similarly, at one fold coverage, the numbers are 20%
and 50% respectively (Supplementary Figure 1).

Since CpG islands are in 74% of upstream promoters and 40% of
the downstream promoters of mammalian genes40, we hypothesized

Table 2 | Performance assessment of eight NGS mapping tools on Illumina paired-end sequencing data of SRR018643

Program Category Version
Index time

(h:m:s)
Peak Memory

footprint (gigabyte)
Alignment time

(h:m:s)
Peak memory

footprint (gigabyte)
Reads

aligned (%)

Bowtiea BWT 0.12.7 3:43:36 5.5 2:22:36 2.9 67.55
BWAb 0.5.8c 1:46:42 1.5 8:24:12 5.0 72.99
SOAP2c 2.20 1:45:54 2.3 10:22:26 6.8 60.93
RMAPd Hash reads 2.0.5 N/Ae N/A 10:15:18 10.0 55.98
ZOOMf 1.5.0 N/Ae N/A 7:01:53 10.2 62.86
Maqg 0.7.1 0:01:56 0.34 39:10:43 8.1 71.94
Novoalignh S-W 2.07.06 0:06:28 13.5 144:25:35 13.1 77.65
SHRiMPi 2.1.0 4:08:13 12.0 1065:10:05 12.0 81.23
aWith default -n mode to restrict no more than 2 mismatches in the first 28 bases (seed region) and the sum of Phred quality values at all mismatched positions (not just in seed) may not exceed 70, –chunkmbs
2000 to dedicate more memory to the descriptor, –I 0 –X 1000 to filter the insert size, -S to print in SAM format and –p 1 to denote 1 thread. Other parameters are default.
bWhen implement aln function, -k 2 and –l 28 to restrict at most 2 edit distance in first 28 bases seed region, –t 1 to denote 1 thread. When implement sampe function, set –a 1000 as the maximum insert size.
Other parameters are default.
cWith –m 0 and –x 1000 to filter the insert size, -l 28 to denote the 28 seed region, -M 4 to report the best hits which has at most 2 mismatches in seed region, -p 1 to denote 1 thread. Other parameters are
default.
dImplement rmappe function, with –m 5 to restrict no more than 5 mismatches in whole read, –min-sep 0 and –max-sep 1000 to restrict the insert size.
eDo not rely on index, the aligner create hashing table in memory every time.
fWith –pemin 0 –pemax 1000 to restrict the insert size and –mm 5 to at most 5 mismatches in whole read.
gWhen do map, setting –a 1000 and –A 1000
hSetting more precisely with –i 586 101, which stand for the average and the standard deviation of insert size(bp)
iDue to the memory limitation, we had to split the genome into 5 chunks. We prepared the seeds for each chunk as index, and sequentially did the alignment procedure. Setting: -N 1 -p opp-in -I 0,1000 -m 20 -
i -25 -g -40 -e -10 –E( –N 1 denotes the 1 thread.).
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that, the promoter and 59UTR regions, which are important for
regulatory roles of the genome, are also under covered by the NGS
technology. Indeed, in all three folds we tested, promoter and 59UTR
regions are significantly under covered by next generation sequen-
cing when compared with whole genome background
(Supplementary Figure 2) (both P values less than 2.2e-16). At ten
folds coverage, only 83% promoter and 76% 59UTR regions were
covered at least once, compared to 90% for whole genome. The
numbers are 42%, 40% and 50% respectively at one fold coverage.

Although gene region is well known to have a higher GC-content
than the genome average, its coverage, unlike CpG-island, is higher

than the genome average. To further study the relationship between
GC-content and sequence coverage, we randomly picked 10,000
windows with 1kb length each from human genome and computed
their GC-content and sequence coverage at 10 fold coverage. We
observed that sequence coverage increases with GC-content increase
when GC-content is less than 40–45%, but decreases when GC-
content is more than 50–55%, with the peak at around 45%
(Supplementary Figure 3). This observation is consistent with pre-
vious discovery41. The CpG island, promoter, and 59UTR regions have
average GC-contents of 68.6%, 57.7%, and 51.1%, which are higher
than the peak at GC-content of 45%. This explains why all of them

Figure 1 | The relationship between sequence fold and genomic coverage. Length of colour bar represents the percent of bases with corresponding depth

in the whole genome under corresponding volume of sequencing bases.

Figure 2 | Coverage comparisons for different genetic regions at ten folds coverage. P-value (all are less than 2.2e-16) for t-test through bootstrap shows

the significant poorer coverage of CpG-island region compared with genomic background or gene region. Meanwhile, the promoter and 59UTR region

are both significantly under-covered. (One star: p-value,0.05, two stars: p-value,0.01, three stars: p-value,0.001).
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have sequence coverage lower than the genomic average. On the con-
trary, the gene region has average GC-content of 46%, which is at the
peak. The figure explains why the coverage in that region is higher than
whole genome average (with average GC-content of 41%).

We then investigated whether the repetitive element is also a factor
causing low mappability in regulatory regions. For total 22571 pro-
moter sequences, we ranked them by repetitive coverage (the portion
of the sequence is covered by repetitive element), and then chose top
200 and bottom 200 sequences to compare their coverage pattern.
Though the t-test showed significant difference between them (top:
0.9460.10 (mean 6 std), bottom: 0.8360.21, p-value: 7.33e-12),
surprisingly, the sequences enriched for the repetitive element have
considerable higher coverage. We further ranked the promoters by
GC-content then do the similar test. We found that the top 200
promoters have significantly lower coverage than the bottom 200
promoters (top: 0.1060.10, bottom: 0.9260.13, p-value: 1.15e-
222). The results indicated that the relatively higher GC-content is
the major cause of the lower coverage in regulatory regions.

SNP discovery performance. We chose high quality SNP probes as
our test set by removing the probes with a confidence score above
0.018. The test set consisted of 583,891 probes, 98% (575,765/583,891)
of which were covered by NGS when ten folds coverage were used. The
relationship between NGS SNP coverage and genome fold coverage is
shown in Figure 3. Under the default setting (SNVmix parameter was
first set as same as that used in the original paper for the lobular breast

tumor35, then trained itself by the model SNVmix2, which extended
original Binomial mixture model SNVmix1. However, the genotype
result for self-training parameter showed similar ROC performance,
so we applied the first one), we obtained area under the ROC curve
(AUC) (see Method). MAQ and SOAPsnp have similar results (AUC
(MAQ) 5 0.8872, AUC (SOAPsnp) 50.8866), and both outperform
SNVmix significantly (AUC (SNVmix) 50.8394) (both P-value are
, 2.2e-16).

We also studied the SNP calling capability of the three software tools
on different depths (Figure 4). Due to the underlying post Bayesian
concept, the accuracies of SOAPsnp and MAQ increase as the depth of
the target bases increase. However, the SNVmix even demonstrated a
worse performance under higher coverage at 21–25 depths, which
suggests its unstable performance without the self-training para-
meters. For low-coverage SNPs, especially with the depth between
13–103, the performances of MAQ still remain the best.

Alternatively, we calculated the overall genotype concordance
which is defined in VariantEval module of the Genome Analysis
Toolkit (GATK)42 to measure the agreement between SNPs called
from NGS and array (Supplementary Figure 4). The concordance
score was defined as (A1F1L)/ (A1B1C1E1F1G1I1J1L)
(Supplementary Table 4). The profile is similar to the AUC measure-
ment, which shows that SNVmix is unstable in high depth situation.
The low concordance score when coverage depth is under 20-fold
suggests that there is still a big challenge to distinguish the heterozygote
from the minor homozygote when sequence coverage is low.

Figure 3 | The relationship of the number of probes covered and genomic sequence fold (total 583891 SNP probes)

Figure 4 | Comparison of SNP calling qualities (AUCs) of three software tools at different depths.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 1 : 55 | DOI: 10.1038/srep00055 5



Due to the poor sequence coverage in CpG-island, we tested the
classifying performance for 711 SNP probes in array, which are
located in CpG-island and covered by merged alignment files. The
AUC for each method is, MAQ: 0.8429, SOAPsnp: 0.8379 and
SNVmix: 0.5801. We further tested performance for the promoter
(3169 SNP probes) and 59UTR region (1099 SNP probes)
(Supplementary Table 5). No matter which classifier was applied,
performance in these regions was significantly inferior to the genome
background (P-value , 0.01) (Figure 5).

Discussion
We have assessed eight representative NGS mapping tools in aligning
reads from the cancer genome atlas (TCGA) project. FM-index based
aligners with BWT performed best in both paired-end and single-
end short reads alignments. Evaluated on reads sequenced on the
Illumina Genome Analyzer II, Bowtie demonstrated the best overall
performance. Bowtie has balanced alignment sensitivity, efficient
CPU usage and memory consumption, finishing one run of
sequences on the human genome within 2.5 hours with over 67.5%
reads aligned. Meanwhile, we should admit that a lot of aligners can
run in muliti-thread mode in practical and hardware limitation may
not be the barrier for normal groups. For example, the SHRiMP2
paper compare SHRIMP2, BFAST, BWA and Bowtie’s performance
on artificial data for different variation cases while utilizing an 8 core
3.0Ghz Intel Xeon machine with 16Gb RAM18. For that case,
SHRiMP 2 showed an acceptable speed (20 folds slower than bowtie)
and significantly higher precision and recall rate. Thus if we
primarily target the highly polymorphic reads and do parallelization,
these Smith-Waterman string matching algorithm based aligner
should be our first choice in practice.

With bowtie as the aligner, 90% of the whole genome were at least
once, and 83% were covered at list twice when 10 folds (30 gigabases)
input was given. Our results show that 3 folds may be a minimum
requirement for input raw data to reach more than 50% of whole
genome coverage.

In addition, we found that the CpG-island region shows a signifi-
cantly poor coverage compared with the whole genome average. The
promoter and 59UTR regions, which harbor regulatory elements and
are closely associated with CpG islands40, 43, are also significantly
under-covered by NGS compared with the whole genome. Thus to
discover above regions with target depth, we need to increase the
number of runs. For example, to cover 50% of genomic region at least
one depth, we need only one fold of the whole genome. However, to
cover CpG island regions with the same criteria, we need ten folds of
the whole genome (Supplementary Figure 2).

We also evaluated the SNP calling capability of three software
tools and found that MAQ performed the best. We found that
similar to mapping coverage, SNP calling performance also vary
in different genomic regions. The CpG islands, promoter and
59UTR regions have significantly lower SNP calling performance
than the genome and gene body regions. For the SNP analysis, 10
folds input is enough for the standard evaluation, though for the
classic Bayesian method, the higher sequencing depth, the more
accurate the SNP call will be. We only evaluated the software’s
capability on detecting known SNPs covered by array, but not on
novel ones. Several groups have pioneered in this direction44, but
how to evaluate the accuracy is yet to be solved in practice. Due to
the limitation of SNP array on the number and distribution of the
probes, NGS based GWAS will get a better resolution on the dis-
eases related bio-markers.

In summary, we assessed major NGS analysis tools for sequen-
cing mapping and SNP calling, and found that Bowtie is the best
tool for mapping, and MAQ the test tool for SNP calling.
Furthermore, we found that CpG rich regions, such as promoter
and 59UTR, where regulatory elements are usually located, are
poorly covered by the NGS platforms. This discovery raises the
concerns for NGS technology, particularly when regulatory ele-
ments are the focused study regions. NGS experiments for studying
these regions should have higher sequencing depth than the normal
genomic region.

Figure 5 | AUC (area under the curve) comparison for different genetic regions. CpG-island region has significantly poorer performance than genomic

background (p-value50.000972) or gene region (p-value50.0003607). Promoter (p-value50.00873) and 59UTR (p-value50.00946) region shows

similar pattern. Gene-region also reach a little bit lower performance (p-value50.0004641).
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Methods
Reads extraction. The sequences all in fastq (csfastq for SOLiD) format were
extracted from the database of genotype and phenotype (dbGap) in NCBI by
sequence read archive (SRA) toolkit. They were then mapped to the human reference
genome [NCBI build 36.3] through assigned aligners. The real data was not filtered or
modified (besides trimming) from what they originally appeared in SRA.

Coverage comparison for genomic regions. 59utr, 39utr, and gene regions were
directly retrieved from refGene table in RefSeq genes track for hg18 through UCSC
genome browser. Promoter regions were defined as starting at 5kb upstream of the
transcriptional start site, ending at the terminate coordinate of the gene. CpG islands
regions were retrieved from cpgIsland table in CpG Islands track for hg18 through
UCSC genome browser. The repetitive elements were downloaded from the RepMask
3.2.7 track in UCSC genome browser. Genome background regions were simulated by
randomly picking 10000 windows with 1kb length each from hg18 human genome.
Each original genomic region entry was in browser extensible data (BED) format. Then
we filtered the redundant entry and merged the overlapped entries together for each
genomic feature. For each entry, we computed the coverage percentage from the merged
NGS alignment files. Then we figured out the average coverage for each genomic feature.

To validate the significance of difference between coverage of different genomic
features, firstly we did 1000 times bootstrap to get 1000 sets of coverage entries of each
genomic feature (each time with 80% volume of total entry number in the feature
category). Then we did two-sided t-test for comparison between two features to get
the P-value.

Performance test for the SNP-caller. For SOAPsnp and MAQ, we assigned the
Phred-scaled likelihood that the genotype is identical to the reference, which is also
called ‘SNP quality’, as predictor, and assigned the 1 and 2 genotype in Affymetrix
array as SNP case and 0 in genotype as SNP control for the response. We also did the 0
to 2 and 2 to 0 conversion when the minor allele is the reference allele, before ROC
display and AUC calculation. SNVmix outputs 3 possibilities, homozygous to
reference, heterozygous genotype and homozygous to the non-reference, we added
the latter two (AB and BB) together to get the ‘SNP possibility’ as predicator, and also
assigned the 1 and 2 genotype in Affymetrix array as case and 0 in genotype as control
for the response. To provide statistical significance for the comparison between
different classifiers, firstly we found the genomic location which is both covered by
SNP array and the NGS alignment method (total 583891 in Figure 3), then we did
bootstrap 1000 times to get 1000 AUC values for each classifier (each time with 80%
volume), lastly we did two sided t-test to get the p-value. To compare the performance
of classifier in different regions (the regions for each feature were defined as above),
we do the similar: firstly we found those coordinates which located in certain features,
and both covered by array and NGS alignment, then for each feature, we did bootstrap
to get 1000 AUC values from the method, lastly we did the same two sided t-test to
compare different features to get the p-value.
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