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Computational simulations of coronary artery blood flow, using anatomical models based on clinical
imaging, are an emerging non-invasive tool for personalized treatment planning. However, current
simulations contend with two related challenges – incomplete anatomies in image-basedmodels due
to the exclusion of arteries smaller than the imaging resolution, and the lack of personalized flow
distributions informed by patient-specific imaging. We introduce a data-enabled, personalized and
multi-scale flow simulation framework spanning large coronary arteries to myocardial
microvasculature. It includes image-based coronary anatomies combined with synthetic vasculature
for arteries below the imaging resolution, myocardial blood flow simulated using Darcy models, and
systemic circulation represented as lumped-parameter networks.We propose an optimization-based
method to personalize multiscale coronary flow simulations by assimilating clinical CT myocardial
perfusion imaging and cardiac function measurements to yield patient-specific flow distributions and
model parameters. Using this proof-of-concept study on a cohort of six patients, we reveal substantial
differences in flow distributions and clinical diagnosis metrics between the proposed personalized
framework and empirical methods based purely on anatomy; these errors cannot be predicted a priori.
This suggests virtual treatment planning tools would benefit from increased personalization informed
by emerging imaging methods.

Coronary artery disease (CAD) is the leading cause of deathworldwide1,2. It
causes narrowing or occlusion of coronary arteries, which can lead to
myocardial infarction and loss of contractile heart function. Although
clinical interventions such as stenting or coronary artery bypass graft
(CABG) surgery can restore coronary flow, long-term outcomes remain
unsatisfactory. While CABG improves mortality and morbidity in patients
with severeCAD3–5, 24%ofpatients report chest painwithin a year6 and50%
of vein grafts exhibit significant stenosis within 10 years7. However, ran-
domized clinical trials have shown that clinical interventions guided by
hemodynamic functionalmetrics, such as fractionalflow reserve (FFR)8 and

myocardial perfusion imaging9–12, lead to improved outcomes, less unne-
cessary revascularization, and lower costs13–18. This is likely because CAD
severity assessed using anatomical imaging correlates poorly with the
functional severity and myocardial ischemic risk19,20.

Computational fluid dynamics (CFD) simulations of coronary blood
flow using anatomical image-based models are an emerging non-invasive
method for hemodynamics-based risk assessment and treatment
planning21. Clinical trials involving the FDA-approved FFRCT, which uses
patient-specific CFD to non-invasively compute FFR22, have demonstrated
increased diagnostic accuracy compared to anatomical imaging and a
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reduction in invasive catheterization procedures23–25. Patient-specific
simulations have also shed light on biomechanical stimuli data, such as
wall shear stress, that correlate with CAD progression and vein graft
failure26–32.

However, the accuracy of patient-specific coronary flow simulations
depends on the quality of imaging upon which they are based. A common
source of error is the exclusion of coronary arteries that are under-resolved
by imaging. CFD models are often based on coronary computed tomo-
graphy angiography (CCTA), which cannot accurately resolve
vessels < 2mm diameter33. Unsurprisingly, incomplete coronary artery
branching in CFDmodels causes erroneous flow distributions amongst the
arteries34,35. Simulated flow is also affected by the boundary conditions
specified at each arterial outlet. A widely used method for prescribing these
boundary conditions is Murray’s law36,37, which is an empirical relationship
between the flow through an artery and its diameter. However, this method
does not account for occluded and collateral arteries, microvascular dys-
function, and metabolic regulation. This method ignores inter-patient
variability and is not personalized to each patient. As expected, this
uncertainty in anatomyandboundary conditions significantly affectsmodel
predictions38–44.

In this work, we propose a framework for increased personalization of
coronary hemodynamics computational models that combines: (1) recent
advances in clinical imaging ofmyocardial perfusion to obtain personalized
coronary flow distributions; (2) computational methods to model vascu-
lature beyond the limits of clinical imaging resolution; and (3) data-driven
tools to personalize computational models by tuning parameters to match
patient-specific clinical measurements. In addition, this framework reflects
the multiscale nature of coronary circulation – including three dimensional
flow in the large coronary arteries that can be reconstructed from CCTA,
synthetic vascular trees for the small arteries that are under-resolved by
CCTA, microvascular flow in the myocardial tissue, and closed-loop
lumped parameter models for the heart and the systemic circulation.

In this framework,wepersonalizemodels to reproducepatient-specific
coronary flow distributions by assimilating Dynamic CT Myocardial Per-
fusion Imaging (MPICT) into the CFD model parameters. MPICT is a CT-
based non-invasive technique to quantify myocardial blood flow (MBF)
distributions11,12. Imaging the coronary anatomy and MBF can be per-
formed using a single CT imaging modality, and this has been used to
diagnose CAD16–18,45. Since the myocardium is perfused by upstream cor-
onary arteries, the myocardial flow distribution can be used to infer cor-
onary flow distributions. This allows us to estimate personalized boundary
conditions derived fromMPICT, which are independent of purely empirical
rules or vessel diameters46.

Our framework also takes advantage of computational methods for
generating realistic vascular trees47. This allows us to create more physio-
logical coronary artery models by combining image-based anatomical
models of epicardial vessels with synthetic vasculature for distal vessels.
While similar approaches have been used previously48–50, they have not
incorporated high-fidelity flow simulations, closed-loop circulationmodels,
or personalized boundary conditions. Here, we demonstrate a novel tech-
nique to tune such vascular trees, as well as the parameters of closed-loop

lumped parameter circulatory networks, based on patient-specific
measurements.

Finally, our hybrid image-based and synthetic vascular models of
coronary flow are coupled to downstreammodels of microvascular flow in
themyocardium49–54. Suchmodels depend on several parameters, including
properties of the tissue and flow in the upstream coronary artery tree.While
previous studies have discussed the parameterization and estimation of
tissue properties53,55, they have not personalized the distribution of myo-
cardial perfusion, which is dictated by the upstream coronary arteries. This
work therefore seeks to recapitulate clinically measured myocardial perfu-
sion using a multi-scale model of coronary flow.

The overarching aimof this work is to build accurate, personalized and
multiscale computationalmodels by assimilating clinicalMPICTandcardiac
functionmeasurements.We emphasize that this framework does not aim to
predict personalized hemodynamics in the absence of these clinical mea-
surements. Instead, the goal is to assimilate clinical and imaging data into
personalized model parameters such that the resulting models reflect the
hemodynamics of each patient at the time of the clinical measurements.
Such models provide a crucial baseline for performing virtual treatment
planning based on clinical measurements of hemodynamics prior to
treatment. We therefore describe the framework in the context of patient-
specific data acquired prior to CABG surgery. This study represents an
initial proof-of-concept to demonstrate the efficacy and utility of this per-
sonalization framework, which we apply on a cohort of six CAD patients.
The objectives and novelty of this paper are hence as follows: (1) we
demonstrate a personalized multi-scale computational simulation pipeline
for coronary flow from the large blood vessels to the capillaries in the
myocardium, which is informed by MPICT; (2) we demonstrate that para-
meter estimation can accurately recapitulate pre-treatment clinical mea-
surements; (3) we compare hemodynamics of these personalized models
with those constructed using conventional Murray’s law-based boundary
conditions and without synthetic vascular trees to highlight the importance
of model personalization.

Results
Weapplied the frameworkdeveloped in thiswork to personalize six patient-
specific coronary hemodynamics models (Fig. 1). An overview of the fra-
mework is provided in Fig. 2. The framework starts with image-based
anatomical models for the coronary arteries and the left ventricle (LV) that
were reconstructed from CT angiography andMPICT. For each patient, we
acquired myocardial blood flow (MBF) maps in the LV using MPICT
(Fig. 2a, b). To estimate personalized vessel-specific coronary flows for each
patient, we partitioned the LV into perfusion territories corresponding to
each coronary artery (Fig. 2c) and computed the total MBF within each
territory. We also augmented these image-based models with
computationally-generated synthetic vascular trees to represent coronary
vasculature below the resolution of the imaging and lumped parameter
descriptions of systemic circulation, including the four heart chambers
(Fig. 2d). This resulted inmultiscalemodels of coronary circulation for each
patient, which included three-dimensional image-based epicardial coronary
arteries segmented from CCTA, synthetic vascular trees for smaller vessels,

Fig. 1 | Coronary and LV anatomical models for the six patients in this study.The colors on the coronary arteries qualitatively represent simulated average pressure over a
cardiac cycle and the colors on the LV represent MBF from MPICT. Figures a–f show patients 1–6, respectively.
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lumped parameter models for distal circulation, and Darcy models for flow
in themyocardium (see sub-sections “Image-basedmodeling and coronary
flow simulations,” “Synthetic vascular trees,” “Coronary flow boundary
conditions,” and “Myocardial blood flow simulations” of “Methods”).
Computational simulations of blood flow were performed in the coronary
vasculature and the LV using finite-element simulations. For each patient,
we compared the hemodynamics resulting from models with and without
synthetic vascular trees, as well as models that employed flow distributions
based onpatient-specificMPICTwith the conventionally usedMurray’s law,
which is based purely on vessel diameters. This resulted in a set of four
models for each patient – with and without synthetic vasculature as well as
with and without MPICT-informed flow distributions.

Each of these models was governed by several parameters that dictated
the simulated cardiac function and coronary flow distributions. Model per-
sonalization was performed using amulti-stage optimization procedure. The
first stage tuned the models to match patient-specific measurements of car-
diac functionand the second-stage tuned themodels tomatchpatient-specific
flow distributions from MPICT. These flow distributions were computed in
terms of theflow in each coronary artery, and formyocardial bloodflow, they
are reported within each region of the LV that is perfused by a specific
coronary artery. In addition, the results are presented in terms of fractions of
the total flow because MPICT is known to underestimate absolute flow12.

The quality of the CCTA was lower for case 4 compared to the other
cases, and this case was included to highlight the challenge posed by lower-
quality clinical imaging. The imaging quality dictated the number of cor-
onary artery branches that could be segmented for each anatomical model,
resulting in 9 coronary artery branches perfusing the LV for case 4, and an

average of 17 branches in the other cases. This section discusses the per-
formance of the framework at recapitulating clinical measurements, as well
as comparisons with boundary conditions based on Murray’s law.

The performance of the first stage of the model personalization fra-
mework,which focusedonestimating theparameters of the closed-loopLPN
heart circulation model, is shown in Fig. 3. The framework successfully
recapitulated patient-specific clinical targets, comprised of systolic/diastolic
bloodpressure andechocardiographicmeasurementsof ejection fractionand
ventricle volumes, for all 6 patients. The average error between the simulated
and clinically measured targets was 5.07% for patient 1, 6.84% for patient 2,
4.36% for patient 3, 4.16% for patient 4, 3.88% for patient 5, and 5.35% for
patient 6. The measured and computed values for these clinical targets are
presented in Supplementary Table S1 of the Supplementary Information.

Our results reveal significant differences in the flow distributions
within the coronary artery tree between models using Murray’s law versus
MPICT-informed boundary conditions. Figure 4 compares the simulated
flow fraction at the outlet of each coronary artery with the corresponding
flow fractions estimated from MPICT for each case without synthetic vas-
cular trees. As expected for all cases informed by MPICT, there was rea-
sonable agreement between the measured flow fractions from MPICT and
simulated flow fractions. The mean error in flow fractions amongst all the
coronary arteries in each case utilizing boundary conditions informed by
MPICTwas 8.85% for case 1, 11.06% for case 2, 10.80% for case 3, 21.04% for
case 4, 2.05% for case 5, and 5.53% for case 6. We note that the low-quality
imaging in case 4 posed an added challenge to the parameter estimation
framework due to fewer coronary arteries perfusing the LV. Some arteries
were therefore associated with unfeasible/unphysiological perfusion

Fig. 2 | Overview of the computationalmodelingworkflow. aRaw volumemesh of
the LV, with color contours showing MBF from MPICT. b Segmented image-based
coronary tree and the LVmodels after co-registration and processing. cLVperfusion
volumes corresponding to each coronary artery. d The flow simulation setup,
consisting of 3D models of the coronary arteries and LV, synthetic vascular trees

perfusing the LV, and closed-loop boundary conditions. RA, RV, LA, LV and C
denote the right atrium, right ventricle, left atrium, left ventricle, and coronary outlet
LPN models respectively. e Simulated aortic pressure, aortic flow and left coronary
flow over a cardiac cycle.
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territories andflow fractions.Moreover, this case also included lesions at the
ostium of the right coronary artery and other junctions between arteries,
whichwere not captured in the 0D surrogate used for optimization (as is the
case with most common 0D and 1D surrogate models). This is discussed
further in section iii.

In contrast, the simulations utilizing boundary conditions based on
Murray’s law showed large deviations from themeasuredflowdistributions.
The mean error between the measured and simulated flow fractions
amongst all the coronary arteries was 626.72% for case 1, 50.73% for case 2,
71.55% for case 3, 53.93%for case 4, 76.15%for case 5, and1716.23% for case
6. By assessing the coronary artery branches in each case that showed the
highest deviations from the measured flow distribution, we found that the
branches with the largest errors were most often those affected by stenoses.
However, there was no clear trend in theMurray’s law boundary conditions
either over- or under-estimating the flow in branches affected by lesions.

We also compared simulated MBF in the LV (section vi) against
measuredMPICT on a branch-specific basis, i.e. theMBFwithin the regions
of the LV associated with each coronary artery branch. Similar to the

coronary flows, the simulated MBF distribution showed good agreement
with MPICT when using the framework developed in this work, and much
larger deviations when usingMurray’s law-based boundary conditions (Fig.
5 without synthetic vascular trees). The mean territory-wise error in MBF
fractions between MPICT and simulations was 3.13% for case 1, 0.78% for
case 2, 7.33% for case 3, 4.44% for case 4, 6.55% for case 5, and 1.34% for case
6. In comparison, boundary conditions based on Murray’s law produced
larger deviations of 17.88% for case 1, 11.32% for case 2, 26.71% for case 3,
17.45% for case 4, 28.06% for case 5, and 6.98% for case 6.

Similar trends were observed for the simulations with synthetic vas-
cular trees. Figure 6 compares the simulated coronary flow fractions at all
500 synthetic tree outlets perfusing the LV with the flow distribution
measured by MPICT for all six cases. Similarly, Fig. 7 shows the simulated
and measured MBF fractions in each vessel-specific LV perfusion territory.
The mean error in flow fractions between the simulation and MPICT was
14.48% for case 1, 12.68% for case 2, 20.32% for case 3, 23.45% for case 4,
19.76% for case 5, and 3.71% for case 6. In comparison, when using
boundary conditions based on Murray’s law the mean errors in flow

Fig. 3 | Comparison of simulated versusmeasured cardiac function for each patient. Figures a–f show data for patients 1–6, respectively. Dia. BPDiastolic blood pressure
[mmHg], Sys. BP Systolic blood pressure [mmHg], Stroke vol. Stroke volume [mL], EF% Ejection fraction.

Fig. 4 | Comparison of simulated versus measured flow fraction in each coronary artery for cases without synthetic vascular trees. The simulated flow fractions are
shown for cases using boundary conditions informed by MPICT as well as Murray’s law. Figures a–f show data for patients 1–6, respectively.
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fractions were 130.45% for case 1, 79.77% for case 2, 79.97% for case 3,
98.98% for case 4, 110.22% for case 5, and 89.53% for case 6. The mean
errors in MBF fraction when using MPICT-informed simulations were
4.50% for case 1, 2.23% for case 2, 7.28% for case 3, 6.25% for case 4, 7.57%
for case 5, and 1.98% for case 6. These errors increasedwhenusingMurray’s
law to21.04% for case 1, 14.30% for case 2, 32.83% for case 3, 24.29% for case
4, 32.24% for case 5, and 10.08% for case 6.

The utility of augmenting computational simulations with synthetic
microvascular vascular trees to model physiological MBF distributions in
the LV is highlighted in Fig. 8. Using case 1 as an example, Fig. 8a shows the
clinically imaged MBF distribution on the LV from MPICT. This is com-
pared with simulated MBF using synthetic vascular trees and Murray’s law
boundary conditions in Fig. 8b, MPICT-informed boundary conditions in
Fig. 8c, and without synthetic vascular trees in Fig. 8d. It is evident that the
MBFdistribution obtained from themodelwith synthetic vascular trees and
MPICT-informed boundary conditions best captured the clinically imaged
MBF distribution, while the Murray’s law-based simulation did not

qualitatively agree with the clinical imaging. Although the simulation result
without synthetic vascular trees (and with MPICT-informed boundary
conditions) agreed well with clinically imaged MBF on a per-vessel basis
(Fig. 5), the small number of vessels perfusing the LV led to an unphysio-
logicalMBFdistribution on the LV (Fig. 8d). This illustrates the utility of the
hybrid image-based and synthetic vascular models used in this work, par-
ticularly in the context of simulating physiological MBF distributions.

In current clinical practice, a widely used application of coronary
hemodynamics simulations is the non-invasive estimation of FFR using
CCTA-based anatomical models22. We therefore compared FFR along the
main stenosed branches of each case computed from our simulations using
boundary conditions based on Murray’s law versus MPICT flow distribu-
tions (Fig. 9). Thiswas computedonly in the epicardial image-basedportion
of each coronary artery where three-dimensional flow simulations were
preformed, and is presented formodelswithout synthetic vascular trees. For
each vessel, we computed FFR at any given point along its length as the
average pressure in the cross-section of the vessel at the given point divided

Fig. 5 | Comparison of simulated versus measured MBF fraction in each LV
perfusion volume corresponding to a distinct coronary artery for cases without
synthetic vascular trees. The simulated MBF fractions are shown for cases using

boundary conditions informed by MPICT as well as Murray’s law. Figures a–f show
data for patients 1–6, respectively.

Fig. 6 | Comparison of simulated versusmeasuredflow fraction in each coronary artery for caseswith synthetic vascular trees.The simulated flow fractions are shown for
cases using boundary conditions informed by MPICT as well as Murray’s law. Figures a–f show data for patients 1–6, respectively.
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by the aortic pressure. We observed that the difference in FFR computed
using these two methods was vessel-dependent, with the RCA exhibiting
substantial differences in cases 1, 2, 3 and 5. Differences were especially
pronounced for case 1 (Fig. 9a), where the FFR computed using Murray’s
law was below clinically-used thresholds that signify ischemic risk
(FFR < 0.8014) while the FFR computed using flow distributions from
MPICT was above this threshold. In this case, the RCA stenosis was
approximately 50% based on invasive angiography and quantitative cor-
onary angiography (QCA), however invasive FFR measurements were not
available. This is also true, although to a smaller extent, for the RCA in cases
2 and 3 where the RCA, the LAD and diagonal branches in case 4, and the
LAD in case 6, all of which had a 40%-60% intermediate-severity stenosis
according to the angiographic readings and QCA. In comparison, both
simulations based onMPICT andMurray’s law flow distributions produced
FFR≲ 0.80 for the circumflex and LAD in cases 1 and 2, the LAD in case 3,

and the diagonal branch in case 4, all of which had stenoses in the range
60-70% or more, and/or diffused lesions, according to the angiographic
readings and QCA.

Lastly, we compared the scaling of distal resistances at each coronary
outlet obtained from the current MPICT-based framework with those pre-
scribed according to Murray’s law. This is shown for the left and right cor-
onary artery trees for case 1 in Fig. 10a and b respectively, and for the left and
right trees of case 2 inFig. 10c andd respectively.Weobtained apower-lawfit
between outlet resistance (Ro) and coronary artery diameter (d) given by
Ro ~ d

−0.43 (R-squared = 0.17) and Ro ~ d
−0.78 (R-squared = 0.27) for the left

and right coronary artery trees for case 1, and Ro ~ d
−0.23 (R-squared = 0.10)

and Ro ~ d
−0.31 (R-squared = 0.13) for the left and right trees for case 2. It is

evident that there is not a good power-law fit for the coronary artery
diameter-flow relationship for these cases, and the obtained scaling differs
significantly from the Murray’s law relationship. This underscores the

Fig. 7 | Comparison of simulated versus measured MBF fraction in each LV
perfusion volume corresponding to a distinct coronary artery for cases with
synthetic vascular trees. The simulated MBF fractions are shown for cases using

boundary conditions informed by MPICT as well as Murray’s law. Figures a–f show
data for patients 1–6, respectively.

Fig. 8 | Comparison of the spatial distribution of MBF fraction on the LV for
patient 1 from MPICT and simulations. For each sub-figure, the posterior view is
shown on the left and anterior view on the right. aMBF from MPICT. b MBF
simulated using boundary conditions based on MPICT and synthetic vascular trees.

cMBF simulated using boundary conditions based on Murray’s law and synthetic
vascular trees.dMBF simulated using boundary conditions based onMPICTwithout
synthetic vascular trees.
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inter-patient variability in coronary flow distributions and consequently, the
need to incorporate novel clinical imaging such as MPICT to personalize
computational models.

Discussion
We introduced an automated pipeline for personalizing computational
models of coronary andmyocardial blood flow informed by patient-specific
clinical imaging and measurements. This study aimed to address two
challenges in patient-specific coronary hemodynamics simulationmodels –
the lack of patient-specific flow distributions in the coronary artery tree and
inaccurate/incomplete branching patterns in image-based coronary artery
anatomical models. To that end, we developed a simulation framework that
includes the multiscale nature of coronary circulation from large epicardial

vessels to myocardial microvasculature, and combined this with a novel
parameter estimation procedure to yield personalized models. This repre-
sents a proof-of-concept for the incorporation of patient-specific clinical
data, particularly MPICT, into novel multiscale coronary hemodynamics
models.Wenote that our goalwas not to predictpersonalizedflowcoronary
flow a priori, but to demonstrate the potential value of improved model
personalization by assimilation of novel imaging and clinical data into
simulations. In the following discussion, we highlight the findings, limita-
tions and future directions that stem from this work.

Impact of MPICT-informed coronary flow distributions
Amajor take-away from this study is that MPICT-based models resulted in
significantly different flow distributions than Murray’s law-based models.

Fig. 9 | Simulated FFR using boundary conditions based on MPICT (solid lines)
and Murray’s law (dashed lines). a–f Show data for patients 1–6 respectively. For
each vessel, the X-axis goes from 0 at the ostium to 1 at the outlet. LAD Left anterior

descending artery, LCXLeft circumflex artery, RCARight coronary artery, Diag. Left
diagonal artery.

Fig. 10 | Diameter versus estimated resistance at outlets perfusing the LV based on MPICT. The dashed lines show the Murray’s law scaling with exponent 2.6 for
comparison. a, b Show the left and right coronary tree for patient 1, and c, d show the left and right coronary tree for patient 2.
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The largest differences in coronary artery flow between models occurred
distal to lesions. Moreover, our findings suggest that there is no consistent
relationship across patients between the diameter of a coronary artery and
its corresponding flow as measured by MPICT. With the caveat that this
study was performed in a small cohort, this implies that the errors in cor-
onary flow distribution arising from Murray’s law based boundary condi-
tions are not predictable a priori. However, this should be confirmed with
larger patient cohorts and may differ in healthy patients, according to the
work of van der Giessen et al.38. Crucially, the differences in flow within
epicardial vessels between the models informed by MPICT and Murray’s
Law affected the computation of FFR, particularly in vessels with borderline
lesions of ≈50% stenosis. Risk stratification based on hemodynamics is
particularly valuable in these lesions13,56, hence, the implications of these
findings for the clinical use of computational models warrants more
attention. A more detailed discussion of factors that must be considered
prior to proving the clinical impact of these findings is provided in sub-
section iii below.

The difference in flow distributions resulting from Murray’s law and
MPICT likely stems from inter-patient variability arising from homeostatic
vascular adaptation, coronary regulation,metabolic demand, etc., which are
especially important in diseased coronary arteries and are not accounted for
in Murray’s law. Our findings agree with previous studies that have shown
significant hemodynamicdifferences, especially inwall shear stress, between
models that used boundary conditions based onMurray’s law versus in vivo
flow measurements38,40,44. We note, however, that these studies only inclu-
dedmodels of individual coronary arteries or single bifurcations, rather than
the entire coronary artery tree simulated here.

Another reason for the inaccurate flow distributions resulting from
Murray’s law-based boundary conditions is its strong dependence on the
outlet diameter of arteries. In the context of image-based computational
models, these diameters are derived from segmentations that are error-
prone. In contrast, one can view the use of MPICT-based boundary condi-
tions as a lumped-parameter correction for inconsistencies that arise in the
reconstruction of vessel lengths and lumen diameters in image-based
models. For example, the resolution of clinical imaging dictates the length of
each vessel visible in the image. However, this is not reflective of the actual
length of the vessel, and its resultant hydrodynamic resistance or pressure
drop. This therefore can be corrected for by optimizing lumped-parameter
boundary condition resistances to compensate for inaccuracies in image-
based segmentation. Indeed, as a demonstration of this, Supplementary
Section S1 of the Supplementary Information provides results and discus-
sion of the robustness of theMPICT-informedmodels versus those based on
Murray’s law in the context of segmentationvariability for onepatient in this
study. In addition, recent work by Xue et al.46, who demonstrated a fra-
mework to compute FFR from computational models informed byMPICT,
also showed the robustness of such computationalmodels to inaccuracies in
segmenting coronary epicardial vessels.

In the context of clinical translation, a particular advantage of MPICT-
informed models is the ability to provide high-resolution, full coverage
quantification of MBF. The ability to resolve vessel-specific MBF distribu-
tions (in contrast to lower-resolution perfusion imaging methods such as
PET/SPECT) is especially valuable in the context of the framework
demonstrated here. Moreover, there are clear advantages to using a single
imaging modality to produce both CCTA and MPICT so that the entire
framework can be integrated into a single non-invasive imaging protocol.
Theprognostic value ofMPICT fordetectionof functionally significantCAD
was previously demonstrated in several studies16–18,45, and its incorporation
into computationalmodels has substantial potential for added clinical value.

Synthetic vascular trees and multi-scale modeling
Another contribution of this work is the incorporation of the automated
model personalization with multi-scale models of coronary hemodyamics.
Our framework included flow in vessels smaller than the CCTA imaging
resolution,microvascular perfusion in themyocardium, andLPNmodels of
cardiac function and systemic circulation.

Our use of synthetic vascular trees appended to image-based coronary
vessels is motivated by studies that have highlighted the effect of inaccurate
coronary artery branching on modeled hemodynamics34,35. Synthetic vas-
cular trees provide a viable method to address this challenge even when
using imaging of insufficient resolution, especially when combined with
published morphometric data57 to create realistic vascular anatomies.
Moreover, we demonstrated that models of myocardial perfusion that
include more uniform and realistic vasculature can more accurately reca-
pitulate clinically imaged MBF distributions. This also translates to the
assimilation of data fromMPICTdata into computationalmodels, i.e. higher
resolution coverage of the perfusion volume by synthetic vasculature allows
higher-fidelity assimilation of MPICT data into computational models.
Finally, another motivation for this approach is to enable the modeling of
physiological vascular adaptation resulting from treatments. As stated
previously, an ultimate goal of developing this method is to use models
tuned to patient-specific pre-treatment measurements for the prediction of
post-treatment outcomes. To achieve this, it is important to model
homeostatic vascular adaptation following treatments, which can be per-
formedmore accurately within individual vessels by using these vessel-scale
models of distal vasculature rather than purely lumped-parameter
descriptions58.

Furthermore, our incorporation of closed-loop LPN models repre-
senting cardiac function allows us to further personalize models based on
clinical measurements, rather than using literature-based boundary condi-
tions. Such LPN models have been previously used for model-based treat-
ment planning and to model patient-specific changes in cardiac function59.
In addition, the coupling of the upstream hemodynamics in the coronary
artery tree with the microvascular blood flow in the myocardium could
enable models of coronary revascularizaton on myocardial tissue. This is
infeasible in prior models of coronary hemodynamics that focus exclusively
on epicardial hemodynamics22. Finally, thismulti-scale framework opens up
the possibility of studying microvascular disease using computational
models. A recently proposed metric, Microvascular Resistance Reserve
(MRR)60, has been shown to provide improved clinical diagnosis in patients
where existing epicardial disease is a confounding factor in the assessment of
microvascular disease. However, the non-invasive estimation of MRR
depends on being able to model coronary microvasculature and also accu-
rately estimate patient-specific coronary flows non-invasively – both of
which this framework can potentially be used for.

Limitations and future work
We recognize several limitations in this study. We first emphasize that this
study was performed on a small cohort of six patients to demonstrate the
added value of incorporating MPICT into multiscale models of coronary
flow. This is therefore a proof-of-concept, and further work is required to
establish clinical relevance. Most importantly, this framework needs to be
tested on larger patient cohorts and correlated with clinical outcomes. We
also did not explore the use of this method in coronary artery pathologies
other than CAD. Below, we highlight several other factors that should be
considered in future work.

The framework presented was deterministic, utilizing single mea-
surements of the clinical targets for each patient to optimize the computa-
tional models. However, each clinical measurement is associated with
various sources of uncertainty from the measurement protocols, patient
physiology, as well as post-processing. In addition, the model can include
anatomical uncertainty stemming from segmentation as well as the gen-
eration of synthetic vascular trees. Future work should account for uncer-
tainties in the estimation of patient-specific parameters as well as in the
model predictions; this can be performed following recent work in uncer-
tainty quantification by our group and others43,61–63. Similarly, the sensitivity
of themodel to different parameters also needs to be assessed. Additionally,
the dataset used here did not include clinically measured intra-coronary
flow to compare with the estimated flows fromMPICT. While the goal is to
build anon-invasive frameworkbased entirely onMPICT, comparisonswith
intra-coronary measurements would be valuable to increase confidence.
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Another area for improvement is the complexity of the modeling
utilized. While we used 3D simulations of coronary hemodynamics to
compute FFR, the parameter estimation used 0D surrogate models that
deviated from the true hemodynamics. In particular, 0D models do not
accurately capture the flow within stenoses and at junctions between
arteries. This contributed to larger errors in the flow distributions predicted
from 3D models than the thresholds specified in the surrogate-based
parameter estimation. Improved surrogate models will also be valuable for
applying this method within time-frames that are feasible for clinical use.
Another simplification was the single-compartment Darcy model we used
to simulate myocardial perfusion and the one-way coupling between
upstream coronary flow and myocardial blood flow. Previous work53 has
shown heterogeneity and anisotropy in the myocardial microvasculature,
which are ignored by the assumption of constant, isotropic permeability.
This also does not account for pathologically altered myocardial micro-
vasculature and tissue, which can occur in the case of infarction in CAD
patients. In fact, this is not only a challenge in the computationalmodel, but
the accurate estimation of MBF from MPICT is an additional challenge in
that context due to the resulting reduction in left ventricular wall thickness.
Future work should incorporate heterogeneity in the myocardial tissue
properties that reflects both healthy and diseased tissue. This should also
consider growth and remodeling ofmicrovasculature in response to normal
and pathological hemodynamics64. The two-way coupling between the
myocardial bloodflowandupstreamcoronaryflow, as in ref. 49, should also
be considered.Moreover, the permeability was not tuned to patient-specific
measurements.

This framework would also benefit from a more physiological
partitioning of the myocardium into regions perfused by each coronary
artery. Although there is evidence that each part of the coronary artery
tree perfuses a distinct volume of the myocardium52,65, there is no con-
sensus method to perform this partitioning in previous studies40,46,49,54.
However, these perfusion regions affect the simulated flow through each
coronary artery. They also influence the structure of the synthetic vas-
cular trees that extend into the myocardium from epicardial coronary
arteries. While we generated vascular trees within pre-defined LV per-
fusion regions, future workwill includemethods to grow larger synthetic
vascular trees that compete to perfuse physiological regions of the
myocardium. We also note that the method proposed here does not
depend on the particular choice of myocardial perfusion region corre-
sponding to each artery, because the main input to the framework is
simply the resulting vessel-specific flow. Supplementary Section S2 of
the Supplementary Information demonstrates this for one sample case
where the perfusion territories were computed based on the entire lumen
for each artery, which is a common alternative to the method used here
based on just the coronary outlets.

As mentioned earlier, the main goal of this work was to develop
models for personalized CAD treatment planning. To that end, future
work will explore applying these tools to predict the hemodynamics of
patients after CABG surgery. This will involve studies in larger patient
cohorts and methods to account for post-surgical vascular and cardiac
adaptation.

Conclusions
We introduced an automated pipeline for personalized and realistic com-
putational models of coronary and myocardial blood flow informed by
patient-specific clinical imaging and measurements. We used image-based
coronary artery anatomicalmodels augmentedwith synthetic vascular trees
to create patient-specific anatomical models with more realistic branching.
We personalized these models using flow distributions informed byMPICT
and measurements of cardiac function by ultrasound. The simulation fra-
mework included three-dimensional simulations of blood flow in the cor-
onary arteries and the left ventricle, coupledwith closed-loopLPNmodels of
distal and systemic circulation. We showed that our simulation framework
was successfully able to assimilate and recapitulate the clinical measure-
ments. These personalized models produced significantly different results
from those based on conventionally used boundary conditions. This has
important implications for the non-invasive computation of clinically-
relevant metrics, such as FFR and MBF, from CFD simulations.

Methods
Patient population
We performed simulations on a subset of six patients (Fig. 1) from a cohort
who were scheduled to undergo coronary artery bypass graft (CABG)
surgery, and also underwent coronary CT angiography (CCTA) and
dynamic CTmyocardial perfusion (MPICT) imaging at Stanford University
School of Medicine, Stanford CA, USA as part of an ongoing study
(NCT03894423). This study was approved by the Institutional Review
Board at StanfordUniversity School ofMedicine.Written informed consent
was received prior to patient participation. The exclusion criteria for the
cardiac CT exam were: (1) Age < 40 years; (2) left ventricular ejection
fraction < 30%; (3) repeat CABG; (4) contra-indications to iodine contrast
medium, including eGFR < 45 ml/min, known contrast allergy; (5) contra-
indications to vasodilators, including bronchial asthma, advanced atrio-
ventricular block, sinus node disease, clinically significant carotid artery
narrowing, severe aortic stenosis or left ventricle outflow tract narrowing,
blood pressure < 90mmHg, use of dipyridamole or aminophylline;
(6) conditions technically challenging the examination, including severe
valvular disease, atrial fibrillation and body weight > 100 kg; (7) other
conditions of that would render the examination unsafe, including preg-
nancy, unstable ischemia, severe arrhythmia, heart failure. From the patient
cohort that underwent a cardiac CT exam, the inclusion criteria for this
computational modeling study were the availability of CCTA and MPICT
images of sufficient quality to re-construct the 3D coronary anatomy and
myocardial bloodflow (MBF), aswell as clinicalmeasurements of heart rate,
blood pressure, cardiac output and ejection fractionmeasured at the time of
the CCTA. None of the patients in the cohort included in this study had
previous stents or in-stent restenosis. A summary of the patient data and
angiographic readings are provided in Table 1.

Clinical imaging protocols and processing
MPICT followed by CCTA were performed on a third-generation dual-
source CT scanner (SOMATOMForce, SiemensHealthineers). Hyperemia
was induced by slow bolus injection of 0.4mg regadenoson. A 40-ml bolus

Table 1 | Summary of patient data

Patient BP (mmHg) SV (mL) LVEF LAD stenosis LCX stenosis Diag. stenosis RCA stenosis

1 132/69 66.3 0.68 65% diffuse 65% proximal N.A. 50% proximal

2 137/73 40.4 0.65 65% medial 70% proximal N.A. 55% distal

3 135/80 67.2 0.60 55% diffuse N.A. 55% proximal 45% distal

4 156/72 58.4 0.60 50% proximal 45% med. 70% proximal 75% proximal

5 109/75 80.4 0.60 40% proximal 35% diffuse N.A. 40% proximal

6 162/65 52.1 0.63 50% proximal <30% N.A. 50% medial

The stenosis are reported as percentage diameter stenosis.
BP Systolic/diastolic blood pressure, SV Stroke volume, LVEF LV ejection fraction, LAD Left anterior descending artery, LCX Left circumflex artery, Diag Diagonal branch, RCA Right coronary artery.
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of iopamidol (Isovue, 370mg/ml, Bracco, Italy) was injected at 5.5ml/s
followed by 40ml saline. The dynamic perfusion protocol requires that the
tableposition is repeatedly alternated (shuttlemode) to completely cover the
myocardium and acquire up to 15 data samples during a 30 s breath hold.
Acquisition parameters were 80-kV tube voltage, automated exposure
control (300mAs/rotation at 80 kV as reference), 96 × 0.6-mm detector
collimation, 105-mm z-axis coverage, 250-ms gantry rotation time, and 66-
ms temporal resolution. Reconstructed images with a 3.0-mm slice thick-
ness, and 2.0-mm reconstruction interval were processed on a dedicated
workstation (Syngo.CTMyocardialPerfusion, SiemensHealthineers). Serial
samples were aligned using a motion correction algorithm. The arterial
input function was sampled in the descending aorta. Time-attenuation
curves were created for each voxel within the segmented left ventricle (LV)
myocardium. Using a dedicated parametric deconvolution algorithm based
on a 2-compartmentmodel of intra- and extravascular space, a fit curvewas
created.MBFwas calculated as the ratio between themaximum slope of the
fit curve and the peak arterial input function, and the results were exported
as three-dimensional MBF maps (Fig. 2a). Comprehensive descriptions of
the myocardial perfusion protocol and the calculation of MBF can be
found in66.

A standard CCTA was performed 10min after MPICT by prospective
ECG-triggered axial scan mode. The tube voltage ranged between 100 and
120 kV and the spatial resolution was approximately 0.5 mm in all three
dimensions.Mostpatients received50mgaminophylline after theperfusion
scan, aswell as intravenousmetoprolol if theheart rate exceeded70 bpm.All
patients received sublingual nitroglycerin just before the contrast-enhanced
CT exam.

Since the CCTA and MPICT were performed at mid-diastole and
systole respectively, they were co-registered using the affine registration
procedure implemented in 3D Slicer (www.slicer.org). The LV myocardial
volume was then segmented from the co-registered MPICT image using
thresholding in ParaView (www.paraview.org). It was smoothed and
meshedwith tetrahedral elementsusingMeshmixer (www.meshmixer.com)
and TetGen67, respectively. Finally, the MBF values at each voxel of the
MPICT scan were interpolated on to the nodes of the LVmesh, making sure
the totalMBFwas equal between the two. Note that all the software used for
the processing of these images are freely available, and all exceptMeshmixer
are open-source. Figure 2b shows the 3D volumes of the co-registered LV
and coronary vasculature for patient 1.

Following the construction of co-registered 3D models of the LV
myocardium and coronary arteries, the LV volume was divided into
non-overlapping sub-volumes corresponding to the perfusion territory
of each coronary artery (Fig. 2c). This was done using Voronoi tessel-
lation, where each node in the tetrahedral mesh for the LV volume was
assigned to its closest coronary artery outlet. Therefore, each coronary
artery outlet was associatedwith a distinct region of the LVmyocardium.
Subsequently, the flow-rate associated with each coronary outlet was
estimated by integrating the MBF obtained from MPICT within each
corresponding LV perfusion territory. This resulted in the total flow into
the LV territory associated with each coronary artery. In addition, the
units of MBF, which were expressed in mL/min/100mL in the clinical
measurements, were converted to units of mL/s for consistency with
flow-rate units in the computational models. We note that the LV per-
fusion territories corresponding to each coronary artery can also be
computed based on the distance of each point in the LV to the closest
coronary artery (instead of coronary artery outlet)40,46 as well as weighted
measures of distance49,54. This approach was chosen for simplicity,
however, the framework presented in this work is equally applicable to
any method for computing perfusion regions in the LV. In fact, we have
applied the framework to one case, which is discussed in Supplementary
Section S2 of the Supplementary Information, where the LV perfusion
territories were computed based on the distance of each point in the LV
to the closest coronary artery, rather than just the outlet. The framework
worked as expected and was able to recapitulate clinical measurements
for the patient.

Image-based modeling and coronary flow simulations
We used the open-source SimVascular software68 for segmentation of cor-
onary arteries fromCT angiography images, construction of 3D anatomical
models, and coronary flow simulations. The segmentationswere performed
manually from CT angiography and were informed by quantitative cor-
onary angiography. They were performed by the first author (K.M.) and
supervised by an expert in CT-based cardiac imaging (K.N.). Tetrahedral
finite elementmesheswere created using the open-sourceTetGenpackage67,
which is included with SimVascular. Three dimensional flow simulations
were performed using the svSolver flow solver within SimVascular, which
uses a stabilized finite element method with linear tetrahedral elements for
spatial discretization and generalized-α time-stepping with second-order
time accuracy69,70.

The governing equations for coronary blood flow were the three-
dimesional incompressible Navier-Stokes equations,

∇ � u!¼ 0; ρ
∂ u!
∂t

þ ρ u!�∇ u!¼ �∇pþ ∇ � ðμ∇ u!Þ ð1Þ

where u! and p are the blood flow velocity and pressure, respectively. Blood
was assumed to be a Newtonian fluid with viscosity μ = 0.04 dynes/cm2 and
density ρ = 1.06 g/cm3. The Newtonian fluid assumption is valid because
non-Newtonian effects begin to be apparent only for blood vessels with
diameters below300 μm71,whichwas approximately the limit of the smallest
vessels modeled in this study.

Coronary artery walls were treated as deformable, and fluid-structure
interaction arising from the coupling between blood flow and the artery
walls was handled using the coupled momentum method72. Material
properties for the artery walls were selected based on literature data fol-
lowing previous work73,74. The elastic modulus for the aorta and coronary
arteries were set to 0.25MPa and 1.15MPa, respectively75–77. Wall thick-
nesses were based on published radius-thickness ratios for the aorta76 and
morphometric data for the coronary arteries78. Mesh convergence for the
tetrahedral meshes were established in a recent study using a similar cor-
onary hemodynamics modeling setup74.

Synthetic vascular trees
We augmented our image-based coronary artery anatomical models with
synthetic vascular trees tomodel coronary vasculaturewith diameters below
the imaging resolution of the CCTA. Constrained Constructive Optimiza-
tion (CCO)47 was used to generate synthetic vascular trees that are con-
strained by vascular scaling laws and hemodynamic factors while
minimizing vascular volume. CCO has recently been adapted to generate
multiple non-intersecting trees within non-convex ventricle-like tissue
volumes48, although this process is computationally expensive. In this work
we used an improved open-source implementation of Sexton et al.79 tomore
efficiently generate synthetic vascular trees at the outlet of each coronary
artery that perfused the LV. While the CCO implementation used here
allows the generation of several competing vascular trees within the same
tissue volume, we chose to generate one independent vascular tree within
the LV volume associated with each coronary artery. In our experience, this
approach resulted in the LV being more uniformly vascularized and with
significantly lower computational cost by avoiding the generation of
unphysiological competing tree morphologies from approximately 15
coronary artery outlets.

For each case simulated in this work, we generated synthetic vascu-
lature with a total of 500 outlet branches perfusing the LV (compared to
approx. 16 branches perfusing the LV in the purely image-based anatomical
models). The total number of synthetic outlet branches was divided
amongst the vascular trees appended to each coronary artery outlet basedon
the size of their corresponding LV perfusion volumes. The smallest vessels
produced were approximately 300 μm in diameter. Flow in the synthetic
vasculature was modeled using a lumped-parameter/0D representation of
the vessels, which included resistance, capacitance and inductance tomodel
viscous losses, wall dilation, and fluid inertia respectively. The lumped-
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parameter resistance, capacitance and inductance of each vessel were given
by linearization and Poiseuille flow simplifications of the Navier Stokes
equations80. The lumped-parameter flow in these synthetic vascular trees
was simulated using the open-source svZeroDPlus solver, which is part of
the SimVascular software suite, and was coupled to the hemodynamics in
the 3D image-based anatomical model using a modular implicit coupling
method81.

Coronary flow boundary conditions
We used a closed-loop lumped parameter network (LPN)model to enforce
boundary conditions for the coronary flow simulations at the aortic inlet
and the aortic and coronary outlets of the 3Dmodel74,82,83 (Fig. 2d). The LPN
included specific features to model distal systemic resistances using
Windkessel models84 and the effect of the four heart chambers. It also
captured the distal resistance and intra-myocardial pressure experienced by
coronary arteries, which produces out-of-phase coronary flow with respect
to the cardiac cycle85. Figure 2e shows representative pressure and flow
waveforms for one case. As seen in Fig. 2(d), the LPN boundary conditions
at the coronary artery outlets consisted of three resistance elements – Ra, Rμ
and Rv – tomodel the resistance of small arteries, microvasculature, and the
venous system, respectively. The values of total resistance (Ra+ Rμ+ Rv)
distal to each coronary artery determined the distribution of flow amongst
the arteries in the coronary artery tree. These resistance and capacitance
elements distal to each coronary artery in the model, as well as other
parameters of the LPN, such as the elastance and capacitance of each heart
chamber, the systemic vascular resistances, etc. were tuned to match clini-
cally measured metrics of cardiac function and coronary flow distributions
for each patient (see section vii). As with the lumped parameter repre-
sentation of the synthetic vascular trees discussed in section iv, the closed-
loop LPN boundary conditions were simulated using svZeroDPlus and
coupled with the 3D flow solver using a modular implicit coupling
method86.

Wealso simulated coronaryflowathyperemia to recapitulate common
clinical measurements that assess coronary hemodynamics under stress
(including FFR and MPICT). We simulated hyperemia by scaling the
resistance boundary conditions distal to coronary arteries by a factor of 0.24
compared to baseline resting values87, as commonly done in FFRCT

22.

Myocardial blood flow simulations
Myocardial perfusion in the arterioles and capillaries within the LV myo-
cardium was modeled as flow through a porous material due to the pro-
hibitive computational cost of resolving discrete microvascular blood
vessels49–54. Flow through porousmaterials is described byDarcy’s Law, and
in this work we used a single-compartment Darcy model governed by the
equations,

w!þ K∇p ¼ 0;∇ � w!¼ βpsrcðpsrc � pÞ � βsnkðp� psnkÞ; ð2Þ

where w! and p are the Darcy flow velocity and pressure, respectively. The
permeability of the LV myocardial tissue is given by K. We assumed con-
stant and isotropic permeability for simplicity, as in prior Darcymodels for
myocardial perfusion49,51,54,55, i.e. Kð x!Þ ¼ kI, where I is the identity tensor
and k is the scalar, spatially-constant permeability. We fixed k = 2 ×
10−5 cm2 Pa−1 s−1, which is informed by previous work49,51. Myocardial
perfusion was driven by the coronary flow in the upstream vasculature via
pressure source terms, which are denoted by psrc in Eq. (2). These pressure
sources, corresponding to the outlet of each coronary artery that is perfusing
the LV, were specified as the microvascular pressure in the coronary outlet
boundary conditionmodel (see section v and Pμ in Fig. 2d). Therefore, each
perfusion territory associated with a coronary artery outlet, discussed in
section ii, was assigned a corresponding spatially distributed pressure
source. Moreover, the coupling between the upstream coronary flow and
myocardial bloodflow is one-way. The pressure of the venous return system
is givenbypsnk inEq. (2), and represents a sink formyocardial perfusion.We
assumed psnk = 0 mmHg in this work49. Lastly, the terms βsrc and βsnk

represent the conductance of flow entering and leaving the tissue,
respectively, and were parameterized as follows,

βsrc ¼
QLV

VLV ð�psrc � pcapÞ
; βsnk ¼

QLV

VLV ðpcap � psnkÞ
: ð3Þ

InEq. (3),QLV andVLV are the totalflowperfusing theLVand the volumeof
the LV respectively. The spatially-averaged pressure source (psrc) is denoted
as �psrc and pcap is the target capillary pressure assumed to be
pcap = 15mmHg49,51. Note that for a given tissue volume Vi⊆VLV, such as
one vessel-specific perfusion territory, the MBF within that volume is given
by,

MBFVi
¼

Z
Vi

βpsrcðpsrc � pÞdv: ð4Þ

We simulated perfusion in patient-specific LV volumes segmented
from MPICT, as described in section ii. Unstructured tetrahedral meshes
were generated using the open-source TetGen package67, and pressure
sources (psrc) were imposed from flow simulations in the coronary arteries
for each patient-specific case. A finite element solver for Eq. (2) employing
linear tetrahedral elements was implemented in the open-source svFSI
software, which is part of the SimVascular software suite.We used zero-flux
boundary conditions on the surface of the LVmesh and iterated the steady
state problem to convergence. We note that while the Darcy model was
simulated on the entire LV mesh, we present the results in terms of MBF,
which as shown in Eq. (4) above, is integrated over each vessel-specific
perfusion territory.While the solution for p in Eq. (2) is itself a smooth field,
the results presented int erms of MBF (as in Fig. 8) are not smooth because
psrc is not smooth and depends on each vessel-specific perfusion territory.

Parameter estimation for personalized boundary conditions
We employed a multi-stage surrogate-based optimization procedure to
estimate the parameters of the closed-loop LPN boundary conditionmodel
(discussed in section v) to recapitulate measured clinical data for each
patient. This was performed for purely image-basedmodels as well as those
augmented with synthetic vascular trees. The clinical targets we used were
the vessel-specific flows from MPICT; systolic and diastolic aortic pressure
from blood pressure cuff measurements; left ventricular ejection fraction,
stroke volume, cardiac output and systolic/diastolic ventricular volumes
from echocardiography; and physiological targets derived from literature
including pulmonary pressure and coronary flow waveforms83,88,89. While
the vessel-specificflows fromMPICTweremeasured at hyperemia, the other
clinical targets were measured at rest. This was accounted for in the tuning
procedures detailed below.

We note that the vessel-specific flow and MBF targets from MPICT
were calculated relative to the total LV flow because MPICT is known to
underestimate the absoluteflow12,46. In addition,weonlyhadMBF in theLV.
So for vessels thatwere not perfusing the LV (proximal right coronary artery
branches), we applied Murray’s law boundary conditions. As a basis for
comparison, we also tuned eachmodel tomatch all the above clinical targets
except vessel-specific flows. In these latter models, the distribution of flow
amongst the coronary arteries was prescribed based on their lumen dia-
meters using Murray’s law36,37, as is more conventionally done.

The surrogate model we used for the optimization was a lumped
parameter representation of each patient-specific coronary artery anato-
micalmodel. This was generated using an automatedmethod80 that extracts
the lumen centerlines of all vessels in the anatomy, computes vessel radii by
traversing along the centerlines, and distills this information into a network
of resistance-capacitance-inductance lumped parameter models for each
vessel in the anatomy. As in the lumped-parameter representation of the
synthetic vascular trees discussed in section iv, the resistance, capacitance
and inductance of each vesselwere given by linearization andPoiseuilleflow
simplifications of the Navier Stokes equations80.We henceforth refer to this
as a 0D surrogate model.
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Themulti-stageoptimizationprocedure tunedeachmodel tofirstmatch
patient-specific measurements of cardiac function and then patient-specific
flow distributions informed by MPICT (the latter was not applicable to
Murray’s law-basedmodels). For all the models, the initial guess for the total
vascular resistance for each patient was determined from the clinically
measured average aortic pressure divided by cardiac output. The total cor-
onary flow was given by the morphometric scaling with the LV volume,
QLV ¼ 3:41×V0:75

LV mL/min forbranchesperfusing theLVand0.2 ×QLV for
other branches46,49,90,91. For the models tuned to match the flow distribution
measured by MPICT, the total coronary resistance was initially distributed
amongst the branches of the coronary tree based on the ratio of totalMBF to
vessel-specificMBF for each vessel. On the other hand, for the models tuned
to match flow distributions resulting from Murray’s law, the total coronary
resistance was distributed amongst all coronary branches based on their
diameters scaled to an exponent of 2.637. This was done for coronary arteries
that were image-based as well as outlets of the synthetic vessels. The total
capacitance was set as 0.28 × 10−3 cm5/dynes for aortic branches and 10−6

cm5/dynes for coronary branches based on previous work82. The total capa-
citance was distributed amongst branches to be proportional to their outlet
areas90.When tuning all themodels, the permissible range for eachparameter
was assigned based on physiological values and the initial guess was based on
the maximum posterior of the distribution of parameters computed using
Markov Chain Monte Carlo techniques in our previous work using similar
closed-loop LPN models for coronary hemodynamics83.

Optimizing for cardiac function. In the first stage we optimized the
parameters of the closed-loop system tomatch all the above clinical targets
except the vessel-specific flows. This consisted of 36 parameters governing
the hemodynamics and function of the four heart chambers, the pul-
monary circulation, the intramyocardial pressure experienced by cor-
onary arteries, and the total distal resistance and capacitance at all the
aortic and coronary outlets. For details about the parameters optimized in
this stage, see reference74. This optimization was performed using the
Nelder-Mead method, a deterministic gradient-free optimization
technique92. The convergence tolerance for the optimization was 0.1,
maximum number of iterations was 200, the parameter update step size
was 0.1 of the range for each parameter, and the number of restarts was 50.

Optimizing for blood flow distribution: without synthetic vascu-
lature. The second stage of optimization focused on vessel-specific outlet
boundary conditions. In this stage, we kept the 36 parameters that were
optimized in the first stage fixed, and tuned the outlet resistances
(represented by Ra, Rμ and Rv in Fig. 2d) of all the branches in the cor-
onary tree to match clinically measured flow distributions from MPICT.

For the models that were not augmented with synthetic vascular trees,
this consisted of two parameters for each of the NCT

outlets coronary outlets
perfusing theLV– the total outlet resistance for eachbranch (Ri

a þ Ri
μ þ Ri

v ,
where i ¼ 1; :::;NCT

outlets is the index of the outlet), and the ratio of proximal
vessel to microvascular resistance at each outlet (Ri

a=R
i
μ). The former

determines theflowdistribution in the coronary treewhile the latter dictates
the distribution ofmicrovascular pressure that drivesmyocardial perfusion.
We first used Nelder-Mead optimization to tune the relative distribution of
total resistance amongst all the coronary artery outlets so that the resulting
distribution of flow in the coronary tree matched that measured from
MPICT. This was done using aNCT

outlets-dimensional optimization procedure
that estimated a scaling factor constrained to the range [0.5, 2.0] for the
resistance at eachoutlet, such that the total outlet resistance of themodelwas
kept equal to the value obtained from the first stage of optimization. The
convergence tolerance for the error was set to 0.1, themaximumnumber of
iterations was 200, the parameter update step size was 0.1 of the range, and
the number of restarts was 50.

We then fixed the total resistance of the complete tree as well as the total
resistance at eachoutlet, and estimated the ratio of proximal tomicrovascular
resistance that matched the required distribution of microvascular pressure.
Note that the requiredmicrovascular pressure source (psrc in Eq. (2)) in each

vessel-specific perfusion territory can be computed fromEq. (4). This is given
bypisrc ¼ MBFVi

=ðβsrcViÞ þ pcap, where a guess for all the pressure sources is
required to compute �psrc in βsrc. In addition, the simulated microvascular
pressure at each outlet i in the flow simulation is given by Pi

μ ¼ Pi � QiRi
a,

wherePi andQi are thepressure andflowat outlet i (see Fig. 2d).We therefore
ran a 3D simulation with deformable walls to estimate the outlet pressure Pi

and microvascular pressure Pi
μ at each coronary outlet. For this initial

simulation, we assumed the ratio of proximal tomicrovascular resistancewas
Ri
a=R

i
μ ¼ 0:38 at each outlet, following previous work74,82. This computation

of the pressure loss along each branch, combined with the required pisrc for
each branch, informed a direct update of Ri

a=R
i
μ at each outlet to obtain the

required microvascular pressure. This updated ratio of proximal to micro-
vascular resistance, alongwith theoptimizeddistributionofoutlet resistances,
was then used to run a 3D simulation with deformable walls at hyperemia.
The microvascular pressure obtained at each outlet from this simulation,
along with the required microvascular pressure source for each outlet from
Eq. (4), was then used to inform a second update of the ratio between the
proximal andmicrovascular resistance at each coronary outlet.We note that
while we have discussed the estimation of microvascular resistances in the
context of the outlet boundary condition at each coronary artery above, this
also implicitly estimates βsrc and psrc, which are parameters governing the
myocardial blood flow model in Eq. (2).

Optimizing for blood flow distribution: with synthetic vasculature.
For the models augmented with synthetic vascular trees, a different
approach was employed for tuning the boundary conditions at the out-
lets, since these models consisted of Nsyn

outlets ¼ 500 coronary outlets
(compared to ~16 outlets without synthetic vasculature), rendering the
approach above computationally intractable. Moreover, since the syn-
thetic trees generated byCCOare not patient-specific, we noticed that the
vascular resistance along some paths from the aorta to outlet vessels led to
unphysiological outlet boundary conditions (such as negative resistance)
in order to match clinically measured flow and pressure distributions.
Therefore, we developed a novel iterative approach to personalizing
synthetic vasculature that estimates not only the parameters at the cor-
onary outlets, but also dilates or constricts the synthetic vessels to match
patient-specific flow and pressure targets.

Each iterationof theprocedure consistedof: (1) sub-iterations tomatch
the requiredflowdistributions in the 0D surrogate towithin 5%error,which
involved updating the distal resistance boundary condition at each outlet
vessel and dilating the synthetic vascular trees if unphysiological negative
resistances were required to match the flow targets; (2) a simulation of the
updated surrogatemodel and comparison of the outlet pressure distribution
with that required to match clinically imaged MBF; (3) the dilation or
constriction of all the synthetic vascular trees to obtain the required pressure
distribution if the average pressure error was greater than 5%. The above
steps were iterated upon until both the flow and pressure errors (based on
the 0D surrogate model) were below 5%. Each of these steps is described in
detail below.

With the parameters derived from thefirst stage of optimization,wefirst
ran a0Dsimulationat hyperemia to compute thepressure at all outlets.Using
the aortic pressure and outlet pressures, we estimated the linear vascular
resistance along each path from the aortic inlet to a coronary outlet, given by
Ri
path ¼ ðPaorta � PiÞ=Qi, where Pi and Qi are the pressure and flow at an

outlet synthetic vessel indexed by i. We also computed the resistance of the
paths fromeachoutlet of the image-basedepicardial vessels toall outlets of the
synthetic tree that was appended to that epicardial vessel. This is given by
Ri
path;syn ¼ ðPi

epi � PiÞ=Qi wherePi
epi is thepressure at theoutlet of the image-

based epicardial vessel which is upstream of the synthetic vessel outlet i.
Given the resistance Ri

path along each aorta-to-outlet path and the total
resistance of the model estimated from the first stage of optimization (Rtot),
we calculated the required resistance distal to each outlet as
Ri
out;reqd ¼ RtotQLV=Q

i
reqd � Ri

path, where Q
i
reqd is the target flow through

outlet i, according to MPICT. This informed an updated resistance distal to
each outlet. For some outlets in the model, this estimated outlet resistance
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was negative. This was due to excessive pressure drop along the path from
the aorta to outlet i, i.e. Ri

path was too large. Since each R
i
path consisted of the

sum of resistance from the upstream image-based epicardial vessels and
downstream synthetic vessels, we addressed this by dilating the synthetic
vascular trees. This achieved the required resistance along each path while
maintaining the anatomy of the upstream branches that were based on
patient-specific imaging. For each Ri

out;reqd that was negative, we estimated
the required resistance of the path from the outlet of the corresponding
image-based vessel to the synthetic outlet i, which we denote as ~R

i
path;syn,

such that Ri
out;reqd >0. Note that ~R

i
path;syn<R

i
path;syn, since we are aiming to

decrease Ri
path. Each of these synthetic vessel outlets was then assigned

a radius scaling factor to achieve this reduced resistance, given by
αi ¼ ðRi

path;syn=
~R
i
path;synÞ

1=4
>1. The synthetic trees were then dilated using

the method described below. The above procedure was iteratively per-
formeduntil physiological outlet resistanceswere attained for each synthetic
vessel outlet and the average error in the outlet flow fractions,
ϵflow ¼ P

iðjQi � Qi
reqdj=Qi

reqdÞ=Nsyn
outlets, was less than 5%.

We scaled the radii of synthetic vessels after each outlet vessel was
assigned a radius scaling factor, αi, by traversing up each synthetic tree from
the outlet vessels to the root of the tree. As we traversed up the tree, each
parent vessel was assigned a scaling factor that was the maximum of the
scaling factors of its two daughter vessels. Moreover, the maximum scaling
factor for each vessel was constrained by the radius of its parent vessel. This
ensured the preservation of the morphometric structure of the tree. In this
way, each vessel in every vascular tree was assigned a scaling factor αi by
propagating theoutlet vessel scaling factors up the tree.We thenupdated the
resistance, inductance and capacitance values of all the synthetic vessels
based on the new radius.

Once the outlet boundary conditions were updated through the above
procedure, we tuned the vascular resistance of the synthetic vasculature to
obtain the required microvascular pressure distribution at the coronary
outlets based on theMBF distribution fromMPICT. As discussed in section
vii.2, the targetmicrovascular pressure source at each coronary outlet (psrc in
Eq. (2)) can be estimated from Eq. (4). This is given by
pisrc ¼ MBFVi

=ðβsrcViÞ þ pcap. Therefore, the target pressure at every syn-
thetic vessel outlet with index i can be calculated as Pi

reqd ¼ pisrc þ Qi
reqdR

i
a.

Furthermore, the required vascular resistance along each path from the
aortic inlet to each synthetic vessel outlet canbe calculated from the required
outlet pressure and required outlet flow, Ri

path;reqd ¼ ðPaorta � Pi
reqdÞ=Qi

reqd .
Therefore, we ran a second 0D simulation at hyperemia to estimate
the pressure at all the synthetic vessel outlets. We computed the
average relative pressure error over all the outlets as
ϵpressure ¼

P
iðjPi � Pi

reqdj=Pi
reqdÞ=Nsyn

outlets. If this error was greater than 5%,
we proceeded as follows to update the resistance of synthetic vascular trees.
The 0D simulation again allowed us to calculate the path-specific vascular
resistance from the aortic inlet to each synthetic tree outlet (Ri

path). Similarly,
we calculated the resistance from each image-based epicardial coronary
outlet to the synthetic vessel outlets that were appended to that image-based
vessel (Ri

path;syn). Given the required resistance along each path computed
above (Ri

path;reqd), and the separate contributions to this resistance from
the image-based vessels and synthetic vessels (Ri

path and Ri
path;syn), we

computed the required vascular resistance of the synthetic vessels along
the path from the outlet of the corresponding upstream image-based

vessel to the synthetic outlet i. This resistance, denoted by ~R
i
path;syn, then

informs a radius scaling factor αi ¼ ðRi
path;syn=

~R
i
path;synÞ

1=4
for the each

synthetic vessel outlet i. We constrict/dilate the synthetic vascular trees
using the procedure described above, and then return to the start of the
iteration to estimate new outlet resistances and the flow distribution
resulting from this updated anatomy.

Data availability
All computational models built for this study have been anonymized and
made publicly available through the Vascular Model Repository (www.
vascularmodel.com).

Code availability
The patient-specific modeling pipeline and computational fluid dynamics
solvers are part of the SimVascular open-source project (www.simvascular.
github.io). Image analysis and postprocessing was also performed using the
open-source tools specified in the section titled Clinical imaging protocols
and processing.
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