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Limited generalizability of multivariate
brain-based dimensions of child
psychiatric symptoms

Check for updates

Bing Xu 1,2, Lorenza Dall’Aglio 1,2, John Flournoy3, Gerda Bortsova4, Brenden Tervo-Clemmens 5,
Paul Collins6, Marleen de Bruijne 4,7, Monica Luciana6, Andre Marquand8,9, Hao Wang 10,
Henning Tiemeier 1,11 & Ryan L. Muetzel 1,12

Multivariate machine learning techniques are a promising set of tools for identifying complex brain-
behavior associations. However, failure to replicate results from these methods across samples has
hampered their clinical relevance. Here we aimed to delineate dimensions of brain functional
connectivity that are associated with child psychiatric symptoms in two large and independent
cohorts: theAdolescentBrainCognitiveDevelopment (ABCD) Study and theGenerationRStudy (total
n = 6935). Using sparse canonical correlations analysis, we identified two brain-behavior dimensions
in ABCD: attention problems and aggression/rule-breaking behaviors. Importantly, out-of-sample
generalizability of these dimensions was consistently observed in ABCD, suggesting robust
multivariate brain-behavior associations. Despite this, out-of-study generalizability in Generation R
was limited. These results highlight that the degrees of generalizability can vary depending on the
external validation methods employed as well as the datasets used, emphasizing that biomarkers will
remain elusive until models generalize better in true external settings.

Psychiatric neuroimaging has sought to illuminate the neurobiological
underpinnings of psychiatric disorders over the past few decades, providing
a unique opportunity to study child and adolescent neurodevelopment as a
key risk window for the emergence of mental health problems1. Brain-
behavior association studies represent a promising approach to explore
individual brain variability that predicts behavioral phenotypes2–4. To date,
however, clinical translation of brain-behavior predictions has been
immensely challenging: rigorously validated and generalizable neurobio-
logical biomarkers that are able to guide clinical practice remain elusive5–9.
Several features of the literature may account for this difficulty, such as
insufficient statistical power (e.g., limited sample size), substantial variability
across methodologies, and a heavy reliance on univariate analysis techni-
ques that could fail to map the likely multidimensional neural bases of

psychiatric disorders8,10,11. Inherent heterogeneity and high comorbidity of
psychiatric disorders exacerbate the problem, rendering it difficult to isolate
the most relevant neural features of interest. This is especially the case for
children and adolescents who usually present less clearly defined psycho-
pathology and heterotypic continuity of symptoms and phenotypes12.

Multivariate analyses within machine learning frameworks may per-
mit the detection of associations that have proved to be elusive4,13. Several
aspects of multivariate techniques make them an appealing choice for
studying psychopathology through neuroimaging. First, multivariate
methods are less hampered by the small effect sizes that univariate analysis
of psychiatric neuroimaging studies typically observe8,10,11, resulting in
greater statistical power and the potential for better reproducibility of brain-
behavior associations4. Second, multivariate methods with a data-driven
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nature can shed light on transdiagnostic brain-behavior associations. Dis-
tinct diagnoses may not directly map on specific underlying pathophy-
siology, as shared brain structures and functional connectivity have been
observed across different diagnostic categories14–16. Multivariate methods
can capture variations across brain and behaviors and identify coherent and
specific brainmechanisms that cut across different diagnoses. This offers the
potential for parsing possible sources of comorbidity and heterogeneity.

Given these promising features, studies of multivariate brain-behavior
associations have emerged. Multivariate studies have either adopted a
multiple-to-one approach (e.g., support vectormachine family) usingmany
brain features to predict cognition or diagnoses of disease, or multiple-to-
multiple (doubly) approaches that can assess the covariation ofmanyneural
phenotypes (e.g., brain activity across regions) andmanybehavioral features
simultaneously3. One widely used doubly multivariate method in neuroi-
maging is canonical correlation analysis (CCA), a technique that aims to
identify the common variation across phenotypes and dissect their complex
relationships into a small number of distinct components3. One identified
component is referred as a canonical variate, which for example captures a
dimension that simultaneously links multiple brain features to multiple
behaviors. Several studies have implemented CCA to depict transdiagnostic
brain-symptom dimensions. For instance, Xia et al.17 applied sparse cano-
nical correlation analysis (SCCA) to link a broad array of psychiatric
symptoms to resting-state functional connectivity patterns in adolescents
(age 8 to 22 and beyond, n = 999). Different dimensions of brain con-
nectivity that are correlated with distinct sets of psychopathology were
characterized, including mood, psychosis, fear, and externalizing
behaviors17. This approach can identify neurally informed dimensions of
psychopathology in the general population, transcending different domains
of psychiatric problems and including the continuum of symptoms. This is
complementary to an approach using diagnostic categorizations in a clinical
sample, which has been questioned by its validity and extent of utility due to
high heterogeneity within one disorder and comorbidity across diagnosed
disorders9. Moreover, subthreshold cases which are also important for
understanding psychiatric disorders18, are not considered in the categor-
ization approach. This is especially concerning for children, whose symp-
toms of psychopathology are widely recognized as dimensional19. The
current study, therefore, adopted the dimensional approach in the general
population in order to delineate neurobiological structures of child psy-
chiatric problems.

Despite an increasing number of doubly multivariate studies being
conducted, the replicability and generalizability of the techniques have come
under heavy scrutiny20,21. One of the key elements that is largely missing
from previous work, is robust external validation in a fully independent
dataset (i.e., not a hold-out subsample from the samedataset). This has been
widely implemented in the validation of prediction models in medical
research22,23 and recommended as a necessary step in prediction models24.
While several non-psychiatric neuroimaging studies have established more
standardized analysis pipelines25–27, most multivariate psychiatric neuroi-
maging studies have not generally adopted these stringent external valida-
tion strategies2,17,28–30.

Within the machine learning framework, an algorithm is fitted to
training data and themodel performance is subsequently tested on test data
that is unseen and independent from the training process. This two-step
procedure, in many cases embedded within a cross-validation framework,
ensures the external validity (generalizability) of results2,17,31. In most
existing studies, various forms of cross-validation have been implemented
by sampling the test dataset randomly from a pool of data obtained from a
single studywith precisely the same imaging and assessment protocols. This
means the data are often highly homogenous in many respects, including
participant sampling and data collection protocols. This step of internal
validation is a reasonable start, however, understanding the real-world
generalizability of a model requires a different dataset that is fundamentally
distinct from the data used to train the model. This means the model must
be robust to sampling and methodological differences, which is a necessity
for population-level model generalizability13. Without this crucial step of a

proper generalizability test, clinical utility will likely remain challenging.
Even when care is taken to utilize a proper external dataset for testing,
several problemsmay still exist, such as small sample sizes leading to a high
potential of overfitting, and a lack of a rigorous and standardized analysis
pipeline32.

The current study aims to address these gaps by leveraging two large
population-based neurodevelopmental cohorts, the Adolescent Brain
Cognitive Development (ABCD) Study (n = 4892) and the Generation R
Study33,34 (n = 2043), in order to delineate robust and generalizable multi-
variate associations between resting-state functional magnetic resonance
imaging (rs-fMRI) connectivity and child psychiatric symptoms. The
ABCD study is a large, multisite study of neurodevelopment in the US.
TheGenerationRStudy (GenR) is a prospective, prenatal birth cohort in the
Netherlands. As childhood and adolescence are periods of marked brain
development35 during which psychiatric problems emerge or exacerbate36,
understanding how neural mechanisms are linked to psychopathology
during this time is crucial. By leveraging two large population-based sam-
ples, we were able to capture the continuum of psychiatric symptoms
transdiagnostically. This enabled us to depict the brain-based dimensions of
child psychopathology. Using the ABCD study as the discovery set, we
applied a multivariate analysis technique, sparse canonical correlation
analysis (SCCA), under a rigorous multiple hold-out framework32,37 to
identify linked brain-behavior dimensions. Importantly, the trained model
in ABCD was applied and evaluated in a completely independent, external
dataset (GenR) to test the out-of-study generalizability of the results. We
highlight the importance of model generalizability in the context of psy-
chiatric neuroimaging and offer several insights as to why the identification
of biomarkers through these techniques remains a challenge.

Methods
This study was not pre-registered.

Study population
This study is embedded in two prospective cohorts of child development,
the ABCD study34 and the Generation R Study33.

The ABCD study assesses brain development from pre-adolescence to
adulthood, which was conducted across 21 study sites within the United
States. Ethical approval was received from the institutional review boards of
the University of California (San Diego) and each ABCD site, adhering to
their Institutional Review Board approved protocols, state regulations, and
local resources. Informed consent has been received from the included
participants.Childrenat ages9–11were recruited as baseline and the sample
is epidemiologically-informed34. In the ABCD cohort, resting-state func-
tional magnetic resonance imaging (rs-fMRI) was obtained through the
ABCD-BIDSCommunity Collection (ABCC), a community-sharedABCD
neuroimaging dataset that is continually updated (https://collection3165.
readthedocs.io). Both the rs-fMRIdata and the behavioral assessments (data
release 4.0) were retrieved from the baseline visit data of children aged 9–11
years old.Details of the study design and inclusion and exclusion criteria are
detailed in previous reports34.Of the 9441 childrenwhose rs-fMRIdatawere
available, we excluded 3720 children who failed the quality control of the
resting-state connectivity data (see below), 220 children with incidental
findings, and 14 children with any missingness in behavioral measures and
covariates. For families with multiple participants, one twin or sibling was
randomly included (595 excluded). Accordingly, data from 4892 partici-
pants, of which around 7.6% had clinically relevant total problem symptom
scores, were available for analysis in ABCD.

The Generation R Study is a population-based birth cohort in Rot-
terdam, the Netherlands. Ethical approval was obtained through the
Medical Ethics Committee of Erasmus MC, University Medical Centre
Rotterdam. Informed consent has been received from the included parti-
cipants. Rs-fMRI data and behavioral assessments were obtained as part of
the age-10 data collection which began in 201333. Among the 3992 children
who were scanned with MRI, 3289 rs-fMRI scans were available. We
excluded children as a result of the image quality assurance protocol (see
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below, n = 780), and children with higher than 25% missing values in the
behavioral assessments (n = 358). After randomly including one twin or
sibling (n = 108), 2043 participants (around 5.1% were clinically relevant)
were included in the final sample for analysis.

Child psychiatric symptoms
Child psychiatric symptoms were assessed using the Child Behavioral
Checklist (school-age version)38,39 in both cohorts. The CBCL is a 113-item
caregiver report with eight syndrome scales (anxious/depressed, with-
drawn/depressed, somatic, social, aggressive, rule-breaking, thought, and
attention problems), assessing child internalizing and externalizing pro-
blems. Internalizing problems reflect a variety of inner-directed symptoms,
such as anxiety, withdrawal, or depression, while externalizing problems

incorporate outer-directed symptoms, such as aggression and rule-breaking
behaviors40. The CBCL was administered in both cohorts and the primary
caregivers answered 113 items on a three-point Likert scale (not true,
somewhat true, very true) for problems in the past six months. The current
analyses relied on raw scores from the CBCL, as is recommended by the
instrument authors to preserve the full range of variation39. Items belonging
to a given syndrome scale were summed. In the case of missing items, if the
missingness was less than 25%, a sum score was created accounting for
missing items. Higher scores representmore problems. The raw sum scores
of each syndrome scale were within the normal range both in ABCD and
GenR. For the detailed statistics for the eight syndrome scales in ABCD and
Generation R, see Supplementary Table 9 and Table 1.

fMRI image acquisition and preprocessing
Rs-fMRI data in the ABCD datasets were acquired from 3-Tesla scanners
from three manufacturers (Siemens Prisma, Philips, and General Electric
(GE) 750) across 21 study sites. For detailed MRI acquisition parameters,
please see Supplementary Table 1. In GenR, rs-fMRI imaging data were
collected on a single-site 3 Tesla GE Discovery MR750w MRI System
scanner. Details of the MRI acquisition parameters are presented in Sup-
plementary Table 2.

TheBIDSdatawere preprocessedwith the fMRIPrep pipeline41 both in
ABCC (version 20.2.0) and GenR (version 20.2.7). Briefly, structural MRI
data first underwent intensity normalization to account for B1-inhomo-
geneity and brain extraction, followed by nonlinear registration to MNI
space and FreeSurfer processing. Functional MRI data then underwent
volume realignmentwithMCFLIRT (FSL). BOLDrunswere then slice-time
corrected with 3dTshift (AFNI), followed by co-registration to the corre-
sponding T1w reference. Data were ultimately resampled to FreeSurfer
fsaverage5 surface space. Of note, the first 5-minute run of resting-state data
in ABCD was extracted to further optimize comparability with GenR
(5min 52 s).

Parcellation and whole-brain connectivity estimation
The connectivity estimation procedure was identical in ABCD and GenR
and was performed using Python (version 3.9.0). Whole-brain functional
connectivitymatriceswere calculated andmapped onto theGordon cortical
parcels42 and FreeSurfer subcortical segmentation43, yielding 349 distinct
parcels consisting of 333 cortical and 16 subcortical regions. Briefly, after
removing the first 4 volumes from each dataset to ensuremagnetic stability,
the BOLD signals were averaged across all voxels in each cortical and
subcortical region. Then the extracted time series were adjusted for CSF and
white matter signals (plus their temporal derivatives and quadratic terms),
low-frequency temporal regressors for high-pass temporal filtering, and 24
motion regressors (6 basemotion parameters+ 6 temporal derivatives+ 12
quadratic terms). Pearson correlation was applied to estimate the temporal
dependence between the residualized regional time series and the estimated
connectivity was Fisher z-transformed, resulting in a symmetric 349 × 349
functional connectivity matrix for each participant.

Quality controls of the scans
In the ABCC datasets, only data that passed the initial acquisition Data
Analysis Imaging Center (DAIC) quality control were included. Briefly, at
the timeof scanning, quality controlwas performedby scanoperatorswith a
binary pass or fail. In our study, participants were further excluded based on
the ABCD recommended guidelines (imgincl_rsfmri_include = 1), which
involve raw and postprocessing quality control, passed FreeSurfer QC, had
more than 375 rs-fMRI frames after censoring, and other cut-off scores (see
ABCDRecommended Imaging Inclusion), 1310participantswere excluded
due poor quality.We additionally excluded 2410 participants with excessive
motion (mean framewise displacement (FD) higher than 0.25mm)44, and
220 participants with clinically relevant incidental findings.

InGenerationR, the following exclusion criteriawere applied to screen
eligible participants: (1) scans with major artifacts (e.g., dental retainers, or
other scan-related artifacts), (2) scans lacking whole-brain coverage (e.g.,

Table 1 | Descriptive statistics of the discovery set (example)
and the external validation set

Discovery set External validation set

ABCD n = 4892 Generation R n = 2043

ABCDTraining ABCDTest

N 4230 662 N 2043

Age
(years), M(SD)

10.0 (0.6) 10.0 (0.6) Age
(years), M(SD)

10.1 (0.6)

Sex Sex

Female (%) 48.9 48.5 Female (%) 52.4

Race/ethni-
city (%)

Nation of
birth (%)

White 58.3 48.8 Dutch 66.1

African
American

12.0 11.2 Non-Dutch
European

17.3

Hispanic 19.3 15.1 Non-European 16.6

Asian 1.5 5.9

Others 8.9 18.0

Parental education (%) Maternal edu-
cation (%)

Low 4.8 5.1 Low 2.8

Medium 38.1 39.1 Medium 34.5

High 57.1 55.8 High 62.7

Child Behavior Checklist (CBCL), M(SD) Child Behavior Checklist
(CBCL), M(SD)

Anxious/
depressed

2.5(3.1) 2.8(3.3) Anxious/
depressed

2.2(2.6)

Withdrawn/
depressed

1.0(1.6) 1.2(1.8) Withdrawn/
depressed

1.1(1.6)

Somatic 1.5(2.0) 1.6(1.9) Somatic 1.5(1.9)

Social 1.5(2.1) 1.6(2.3) Social 1.5(2.1)

Aggressive 3.0(4.2) 3.3(4.2) Aggressive 2.7(3.5)

Rule-breaking 1.0(1.7) 1.2(1.9) Rule-breaking 0.9(1.4)

Thought
problems

1.5(2.1) 1.8(2.3) Thought
problems

1.5(2.0)

Attention
problems

2.6(3.3) 3.0(3.4) Attention
problems

2.9(3.0)

Internalizing
scores

5.0(5.5) 5.6(5.9) Internalizing
scores

4.7(5.0)

Externalizing
scores

4.1(5.6) 4.5(5.7) Externalizing
scores

3.6(4.6)

Total scores 16.9(17.2) 19.1(18.0) Total scores 16.6(15.1)

Note. Values are frequencies for categorical variables and means and standard deviations for
continuous variables. The descriptive statistics for ABCD were based on one of the 30 train-test
splits, other splits showed similar statistics.
Mmean, SD standard deviation.
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missing large portions of the cerebrumor cerebellum from thefield of view),
and (3) scans with excessive motion (mean framewise displacement (FD)
higher than 0.25mm or having more than 20% of the volumes with an FD
higher than 0.2 mm)44. Moreover, the accuracy of co-registration was
visually inspected bymerging all co-registered images into a single 4DNifti
image and scrolling through the images. 583 scans with poor quality were
excluded in total.

Covariates
In ABCD, child age, sex, race/ethnicity, parental education, and data col-
lection site were used as covariates. Demographic information (child age,
sex, race/ethnicity, and parental education) were assessed by caregiver-
report questionnaires. The original 21-category parental education was
recoded into three categories to make it comparable with Generation R: 1st
to 12th grade, high school/GED/college, and Bachelor’s degree or higher.

InGenerationR, similar covariateswere included except for study sites,
including age of children when undergoing the MRI scanning, sex, child
national origin, and maternal education. All the information was obtained
from questionnaires completed by caregivers. Child national origin was
defined based on the birth country of the parents and was coded into three
categories: Dutch, non-Dutch European, and non-European. Maternal
education, an indicator of socioeconomic status, was recoded into three
categories:maximumof three years secondary school,more than three years
general secondary school; intermediate vocational training, and Bachelor’s
degree or higher45. Missing values were imputed by using Expectation-
Maximization imputation as the proportion of missing values was smaller
than 1% of the current Generation R data set46.

Child cognitive ability
Child cognitive ability data was retrieved from NIH Toolbox age-corrected
standard scores of fluid intelligence (adaptive problem-solving), crystallized
intelligence (knowledge acquisition from experience), total cognition scores
(overall cognition composite scores), and matrix reasoning scaled scores
(non-verbal reasoning) from theWechsler Intelligence Scale forChildren-V
(data release 4.0)47,48.

Analysis framework
The current study implemented a multiple hold-outs framework that aims
to increase the generalizability of the analysis and inspect potential sampling
bias of training and hold-out datasets32.We used ABCD as the discovery set
(n = 4892), in which all analyses were conducted (trained) and tested. The
ABCD discovery set was randomly split into a training set consisting of
18 sites (ABCDTraining) and a test set consisting of 3 sites (ABCDTest). In this
way, subjects in the ABCDTraining and ABCDTest sets were ensured to be
entirely from different sites, approaching the true out-of-sample setting
(Fig. 1). To reduce sampling biases, the split procedure was repeated 30
times, resulting in 30pairs of independent train-test sets. This is suggested as
a multiple hold-out framework32,37, which can examine and reduce possible
fluctuation of results in different training and hold-out sample split.
Importantly, all the analyses in ABCDTraining sets and ABCDTest sets were
fully separated to protect the results fromdata leakage (Fig. 1), including the
residualization of brain data, weighted PCA, and SCCAmodel. Specifically,
the residualization was separately done in ABCDTraining sets and ABCDTest

sets, and theweightedPCAwasfirst implemented inABCDTraining sets, then
the PCA eigenvectors retrieved from ABCDTraining set were applied to
ABCDTest set to derive brain PCs. Next, the SCCA model was trained in
ABCDTraining set, where the penalty parameters of the SCCA models were
selected in 100 further random splits of training (80% of ABCDTraining set)
andvalidation sets(20%ofABCDTraining set).Afterfitting themodelwith the
optimal hyperparameters in the ABCDTraining set, the out-of-sample model
generalizability was evaluated by projecting the CBCL and brain PCs
loadings trained in ABCDTraining set to ABCDTest set. In the final step,
Generation R, which has ascertained a large early adolescent sample with
very similar measures, was used as an independent external validation set
(n = 2043). We characterized two approaches of external validation (see

Out-of-study generalizability test in Generation R), allowing us to estimate
the out-of-study generalizability of the findings fromABCD.Moreover, we
did several explorations of the identified brain canonical variates in ABCD.
First, we tested whether the identified brain canonical variates were asso-
ciated with child cognitive ability at the age of 10. Second, we investigated
whether we could find distinct subgroups/clusters of children based on the
identified brain canonical variates.

Dimensionality reduction
Prior to SCCA analysis, the upper triangle of the 349 × 349 functional
connectivity matrix was flattened, resulting in 60,726 connectivity features
for each participant. Connectivity values were residualized to ensure the
above-mentioned covariates did not influence the results17. As the high-
dimensional nature of the connectivity features could lead to considerable
overfitting in SCCA, weighted principal component analysis (PCA) was
applied to reduce the connectivity features into principal components (PCs)
that aggregated the information of the data49. This PCA-CCA framework
has been used extensively and has shown good performance16,50.

While traditional PCA only considers the structure of the brain data,
the weighted PCA uses the relationship between the brain and behavioral
data indimensionality reduction to identify a relatively small number ofPCs
carrying information from the phenotypes of interest49. This ensures the
variability in the functional connectivity datamost related to behavioral and
emotional problemswill be captured in the PCs. To achieve this, we rescaled
the connectivity data according to a rank-based weighting scheme, which
depends on the sum of CBCL scores. The weight assigned to each subject
was determined by the rank of their total CBCL score. The rank-based pre-
weights were calculated as follows:

~wi ¼ lnn� lnri

Where n is the number of data points and r is the ranking. We normalized
the pre-weights by wi ¼ ~wi=

P
~wi, and the original connectivity data was

demeaned and adjusted with the corresponding normalized weights. We
then submitted the adjusted connectivity matrix to PCA, and the
eigenvectors (variable loadings) of PCAwere extracted andmultiplied with
the original connectivity matrix, resulting in a new, dimensionally reduced
weighted connectivity matrix. To further protect against overfitting in
subsequent analyses, a selection of PCs was made, namely the first 100
principal components16.

Sparse canonical correlation analysis
To delineatemultivariate relationships between functional connectivity and
child psychiatric problems, we applied sparse CCA (SCCA), an unsu-
pervised learning technique that can simultaneously evaluate the relation-
ships between two sets of variables from different modalities3. SCCA
imposes both l1-norm and l2-norm penalty terms, an elastic net regular-
ization combining the LASSO and ridge penalties, to high-dimensional
datasets and achieves sparsity of the solution51. This method is more stable,
more robust to deviation from normality, and does not have the main
constraint of classic CCA: the number of observations should be larger than
the number of variables17. Specifically, given two matrices, Xn× p and Yn× q,
where n is the number of participants, p and q are the number of variables
(e.g., CBCL scores and brain PCs, respectively), SCCA aims to find u and v
(canonical loadingmatrices) that maximize the covariance between Xu and
Yv. Xu and Yv are canonical variates that are the low dimensional repre-
sentation of brain and behavioral measures.

Selection of penalty parameters
Using the extracted 100 components after dimensionality reduction,wefirst
determined the optimal penalty parameters before fitting the SCCA. In
order to identify the best set of penalty parameters for the SCCA of func-
tional connectivity and behavioral features, we used a repeated resampling
procedure of the ABCDTraining set32,37 (Fig. 1). Specifically, we first split
the ABCDTraining set further into penalty parameter training (80%) and
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Fig. 1 | Multivariate brain-behavior associations analysis pipeline. a ABCD was
the discovery set and Generation R as the external validation set. The discovery set
was divided into training and test sets 30 times, resulting in 30 train-test pairs in
ABCD. The eigenvectors of PCA from the ABCDTraining set were applied to
ABCDTest set to calculate the principal components, then the canonical loadings
obtained from the ABCDTraining set were projected to ABCDTest set to compute the
out-of-sample generalizability. Similarly, weight vectors of SCCA from the

ABCDTraining set were then directly applied to Generation R to assess the out-of-
study generalizability of the model. We also implemented the qualitative replication
approach, in which we train the CCA model independently in Generation R and
compare the results across the two cohorts. Note that the sample size in ABCD is an
example from one train-test split. b Out-of-sample generalizability within ABCD
and out-of-study generalizability in Generation R.
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validation set (20%) 100 times, resulting in 100 pairs of training and vali-
dation sets. Next, a grid search between 0 and 1 with increments of 0.1 was
used to determine the combination of penalty parameters (l1 and l2) that
show the best performance17. For each combination of penalty parameters,
we fitted the SCCA model in the training set, projected the canonical
loadings extracted from the training set (u and v) on the validation set, and
then calculated the canonical correlations. The optimal combination of
penalty parameters was chosen based on the highest first canonical corre-
lation of the validation set averaged across 100 splits. To improve the
interpretability of the behavioral loadings, the penalty parameter for
behavioral measures (eight CBCL syndrome scores) was constrained to be
larger than 0.5.

Fitting SCCA model and significance test
After the selection of optimal penalty parameters, the SCCA model was
fitted to ABCDTraining set with the chosen parameters. The resulting weight
vectors (canonical loadings) fromABCDTraining setwere thenprojectedonto
brainPCs andCBCL scores ofABCDTest set (afterfirst deriving brainPCs in
the ABCDTest set by applying the eigenvectors of the weighted PCA from
ABCDTraining set). This process yielded the canonical correlations in the
ABCDTest set, reflecting the within-cohort out-of-sample generalizability of
the SCCAmodel. To determine the statistical significance of each canonical
correlation, a permutation testing procedure was applied both in the
ABCDTraining and ABCDTest sets. In the permutation test, the rows of the
behavioral data were shuffled to disrupt the relationship between the brain
connectivity features and the behavioral features, while the brain con-
nectivity matrix held constant20. We performed 2000 permutations, build-
ing anull distributionof each canonical correlation.Thep-value (two-sided)
of the permutation test is defined as the number of null correlations that
exceeded the correlations estimatedon theoriginal, un-shuffleddataset. The
same set of penalty parameters was used in each permutation. False Dis-
covery Rate (FDR) was used for multiple testing correction. Only canonical
variates surviving permutation testing (p < 0.05) were selected for further
analysis.

Stability of SCCAmodel
The classical CCA has been found to be unstable at times and fails to
converge when the samples-to-feature ratio is small52. To investigate the
sampling variability of the canonical loadings and inspect the features that
consistently contributed to each canonical variate in the SCCAmodel, 1000
bootstrapping subsamples (sample with replacement) were generated. The
distribution of canonical loadings in this procedure allows us to inspect the
stability and sampling variability of the SCCAmodel. This was done in one
randomly selected train-test split. As arbitrary axis rotation could be
induced by bootstrapping, leading to the changes in the order of canonical
variates and the signs of the canonical weights, we matched the order of
canonical variates based on the CBCL loadings we derived we derived from
the original datasets17.

Associations with cognitive ability
To further validate the canonical variates we found, we tested whether the
identified brain canonical variate scoreswere associatedwith child cognitive
ability at the age of 9 to 10 in the ABCD cohort. The brain canonical variate
scores were computed by multiplying the raw brain PCs with the derived
brain canonical loadings. We separately modeled the relationship between
each canonical variate score of brain connectivity and the cognitive ability of
the participants with linear regression models adjusted for all covariates.

Out-of-study generalizability in Generation R
CCA is vulnerable to overfitting and the external validity of the canonical
variates should be carefully investigated32,52. In the current study, we tested
the external validity of the findings from the ABCD discovery set in an
independent dataset: Generation R. We utilized two approaches to test the
external validity: the qualitative replication and the gold-standard general-
izability test. Qualitative replication means repeating the analyses in

different settings and observing the similarities of findings across studies,
while generalization means the same statistical model successfully makes
predictions in different populations. Replication provides evidence of
important correlations, and further generalizability tests are conducted to
provide a realistic possibility for extending these discoveries into clinical
applications. In the qualitative replication, the SCCA model was indepen-
dently trained on Generation R, yielding another set of canonical loadings.
To evaluate generalizability, we multiplied the input data of GenR with the
canonical loadings derived from ABCD. The derived canonical variate
scores were then correlated with the canonical variate scores trained in
GenR (input data of GenRmultiplied with loadings trained in GenR) using
Pearson’s correlation. This was also done in a reverse direction, where we
multiplied the input data of ABCD with canonical loadings derived from
GenR and calculated their correlations with the canonical variate scores
trained in ABCD53. The significance of correlations was determined by
permutation tests (n = 5000) and significance in both directions was con-
sidered as generalizable53. Similar to what is described above for the out-of-
sample generalizability test in ABCD, in another, more standard practice in
machine learning studies, the gold-standard generalizability test, we pro-
jected the SCCA canonical loadings of ABCDTraining directly on brain PCs
and CBCL scores of Generation R. The canonical correlations were ulti-
mately calculated and assessed with permutation testing.

Sensitivity analysis
We conducted several sensitivity analyses to ensure our results were not
biased by the analytical approach we selected. First, we implemented 5-fold
cross-validation (18 sites for training and 3 sites for testing) without any
repeated study sites in the five ABCDTest sets. This aimed to rule out the
possibility that repeated study sites in the original 30 ABCDTest sets might
inflate the results in ABCD. Second, we performed a standard PCAwithout
the weighting scheme before SCCA to test whether the overfitting was the
result of the weighted PCA. Third, we applied traditional CCA after a
standard PCA to see how the sparsity of the model influenced the results.
Fourth, we included different numbers of brain principal components to
inspect possible fluctuation of results due to the dimensionality of brain
data, which might be one of the reasons for overfitting. Fifth, we used the
non-harmonized brain data to investigate the potential impact of the pre-
processing procedure on the generalizability of results.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Atotal of 6935 (see “Methods” for inclusion criteria) resting-state functional
MRI scans from the multisite ABCD Study (ages 9-to-11 years from
21 study sites) and the single-site GenR Study (ages 9-to-12 years) were
summarized using the 349 region Gordon parcellation42. After several
salient functional MRI confounders were regressed out (e.g., motion, see
“Methods”), functional time courses from the different regions (333 cortical,
16 subcortical) were used to construct connectivity matrices for each indi-
vidual by correlating the time courses pair-wise across all regions. To
mitigate possible overfitting problems, the connectivitymatrices underwent
dimensionality reduction by principal component analysis (PCA) with a
weighting scheme (see “Methods”). Psychiatric symptoms of children were
assessed using the Child Behavioral Checklist (CBCL, school-age version)34,
a caregiver report with eight syndrome scales (anxious/depressed, with-
drawn/depressed, somatic, social, aggressive, rule-breaking, thought, and
attention problems). To improve the generalizability of the results, the
ABCD sample was randomly split into a training set consisting of 18 sites
(ABCDTraining) and a test set consisting of 3 sites (ABCDTest). The split
procedure was repeated 30 times to reduce sampling bias, resulting in 30
pairs of independent train-test sets. Importantly, the analyses in
ABCDTraining and ABCDTest sets were fully separated to help minimize the
potential for data leakage (Fig. 1). Generally, ABCDTraining and ABCDTest
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sets were matched on age, sex, race/ethnicity/parental education, and psy-
chiatric symptoms (Table 1).

Initial derivation of brain-behavior dimensions in ABCD
Using ABCDTraining set (18 of the 21 ABCD study sites) to train the model
(repeated 30 times), three brain-symptom dimensions (canonical variates)

were identified from the functional connectivity data (100 principal com-
ponents, with averaged explained variance of 61.9% across 30 train-test
splits) and the psychiatric symptom data (raw sum scores of the 8 CBCL
syndrome scales) using an elastic net combining LASSO and ridge penalties
withinSCCA(r1 = 0.23, r2 = 0.22, r3 = 0.20,ps < 0.001; correlations averaged
across 30 splits, see Fig. 2a, Supplementary Table 3).

Fig. 2 | Two associated dimensions of brain connectivity and CBCL scores
in ABCD. a The canonical loadings of CBCL syndrome scores of the first three
canonical correlations in the ABCDTraining sets. The loadings were averaged across
30 train-test splits. Green represents CV1, yellow represents CV2, and blue repre-
sents CV3. b The median (center line), 25th percentile and 75th percentile (box
limits) of thefirst three canonical correlations across 30 train-test splits inABCDand
Generation R. The orange boxplots are for ABCDTraining sets, the yellow boxplots are
for ABCDTest sets, and the purple boxplots are for Generation R. c Covariance

explained in the training and test sets (example from one train-test split). The
number of canonical variates in the ABCDTraining set that was put into the permu-
tation test was selected based on the ones that were larger than the mean covariance
explained. d Permutation tests in the ABCDTest sets (example from one split). The
first canonical variate was largely generalizable in ABCDTest set across the 30 train-
test splits, the second to a less extent, and the third was not generalizable. The red
dotted lines represent the canonical correlations in the unshuffled data. CV1:
canonical variate 1, CV2: canonical variate 2, CV3: canonical variate 3.
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Out-of-sample generalizability of brain-behavior dimensions
in ABCD
Next, to ascertain the out-of-sample generalizability of the model,
the remaining 3 ABCD study sites (ABCDTest set, repeated 30 times) were
used. By applying the eigenvectors of the weighted PCA from the
ABCDTraining set along with the resulting weight vectors (canonical load-
ings) from the SCCA of the ABCDTraining set, the model parameters were
effectively projected onto the functional connectivity data and psychiatric
symptom data from the ABCDTest set. This ‘gold standard’ process for
evaluating out-of-sample model performance yielded canonical correla-
tions in the ABCDTest set. Overall, we found evidence that the first cano-
nical correlation was robustly identified across train-test splits, the second
to a lesser extent, and the third failed to be validated, in the ABCDTest sets.
Specifically, the first dimension was validated across 24 out of 30 splits
(r1 = 0.12, ps < 0.05, Supplementary Table 3). This brain-symptom
dimension captured the correlates between attention problems and con-
nectivity patterns in connectivity networks involved in higher-order
functions (salience, cingulo-opercular, and frontoparietal network)54,
visual-spatial attention network (parietal occipital, medial parietal)55,
motor networks, and default mode network (Fig. 3a, c). The second
dimension was only evident in 12 out of 30 splits (r2 = 0.07, ps < 0.05,
Supplementary Table 3). This linked dimension delineated a relationship
between aggressive and rule-breaking behaviors and connectivity patterns
in similar networks involved in higher-order and visual-spatial attention
functions, with a larger contribution from subcortical areas and motor
networks (Fig. 3b, d). Interestingly, across two linked dimensions, the
salience, parietal occipital, motor, and cingulo-opercular networks were
overlapped. The third dimension was only observed in 5 of the 30 splits
(r3 = 0.05, ps > 0.05; all three presented correlations were averaged across
30 splits, and p-values were corrected for multiple testing using the false
discovery rate), and thus was not considered a stable, internally valid
dimension. Interestingly, when splitting the ABCD sample into train/test
sets differently (i.e., allowing all study sites to be represented in both
training and testing sets), the first two canonical variates were more stable
and demonstrated a smaller decrease in the magnitudes of canonical
correlations from training to test sets (Supplementary Table 4). These
results suggest the SCCA will likely be more prone to overfitting when
training and testing sets contain data from all ABCD study sites.

Stability of the brain-based dimensions of child psychiatric
symptoms in ABCD
To further interpret the characteristics of each canonical variate and the
stability of canonical loadings, 1000bootstrap subsampleswere generated to
identify the CBCL syndrome scores and brain PCs that are consistently
heavily loaded for different canonical variates (see “Methods”). The varia-
bility of the first three canonical correlations, CBCL canonical loadings and
brain connectivity canonical loadings are presented in Fig. 4. Importantly,
the three canonical correlations decreased considerably in the ABCDTest set
compared to the ABCDTraining set (Fig. 4c). While relatively stable con-
tribution from the CBCL syndrome scores was observed, the instability of
rs-fMRI canonical loadings manifested through more variability and less
clear patterns in the canonical loadings for brain PCs (Fig. 4a, b). Thus,
despite being robust, the dimensions were to some extent overfit in the
ABCDTraining sets.

Out-of-study generalizability in a fully independent sample
Although the ABCD Study is a multisite study, it is a highly harmonized
dataset in the context of the imaging and behavioral data, and also
likely has sampling characteristics that are specific and uniform across
sites. Thus, to test the out-of-study generalizability of the results
we obtained in ABCD, we use the Generation R Study (GenR) as an
independent external validation set. The GenR is a single-site population-
based birth cohort in Rotterdam, theNetherlands33, which has ascertained
a large, early adolescent sample with very similar measures as the
ABCD Study. The resting-state connectivity data from ABCD and GenR

were highly harmonized by undergoing the same preprocessing pipeline
and methods of calculating connectivity matrices (see “Methods”).
We included 2043 children at the age of 10 with good-quality resting-
state connectivity data and less than 25% missingness in the CBCL
assessment. We characterized two approaches of external validation. One
approach is the more commonly used qualitative replication28,29, where a
new SCCA model was independently trained on Generation R and the
similarities of results between cohorts were compared. Another is the
gold-standard generalizability test, where we projected the SCCA
model weights of the ABCDTraining set onto the first 100 brain PCs
(explained variance 61.8%) and CBCL syndrome scores of Generation R
(see “Methods”).

In the gold-standard generalizability test, we only observed the first
canonical correlations survived permutation testing in 1 of the 30 train-test
splits (Supplementary Table 3). All other canonical correlations did not
survive inGenRwhenweused the SCCAmodels thatwere trained inABCD
(r1 = 0.03, r2 = 0.03, r3 = 0.02, ps > 0.05; correlations averaged across 30
train-test splits, Fig. 2b, Table 2).These results arehighly consistentwhenwe
performed a standard PCA without the weighting scheme before SCCA
(SupplementaryTable 5),whenweapplied traditionalCCAwithout sparsity
(Supplementary Table 6), when we put different numbers of brain PCs (i.e.,
50 and 200) in the model (Supplementary Tables 7 and 8, Supplementary
Fig. 1), and when we implemented the model using non-harmonized brain
data (Supplementary Table 10).

In the other, more commonly used qualitative replication in doubly
multivariate studies17,28,53, a new SCCAmodel was trained in Generation R,
yielding another set of canonical loadings. The correlations between the two
sets of canonical loadings (those fromABCDandGenR)were considered as
a proxy for out-of-study generalizability (see details in “Methods”). Tomake
the results more comparable, we trained the SCCAmodel in Generation R
using the same sparsity parameters that were most selected in ABCD. After
the permutation test, four significant canonical variates were identified in
Generation R. Specifically, three similar canonical correlations were also
observed in Generation R (Fig. 5a, b), showing cross-cohort correlations of
r = 0.96–0.97 (p < 0.001) for the CBCL canonical variate scores of attention
problems, r = 0.92–0.94 (p < 0.001) for aggressive and rule-breaking beha-
viors, and r = 0.83–0.84 (p < 0.001) for anxious and withdrawn behaviors.
Several of the most important brain connectivity networks involved were
overlappedwithABCD(Supplementary Fig. 2). For instance, both inABCD
andGenR, the salience,parietal occipital, andmotornetworkswere themost
crucial contributors to the association of attention problems and brain
connectivity. Similarly, the motor, auditory networks, and subcortical areas
contributedmost to the correlates of aggressive and rule-breaking behaviors
andbrain connectivity.However, the contributionsof othernetworks, or the
collective effects of all the networks, were not the same across the two
cohorts (Supplementary Fig. 2c, d), suggesting that variability in the brain
phenotypes is underlying the poor out-of-study generalizability. The
remaining canonical correlation found inGenerationRwas related to social
and anxious problems anddid not overlap considerablywith those observed
in ABCD.

Further exploration of brain canonical variates
Being a popular dimensionality reduction or multimodal fusion method
inneuroimaging studies, thebrain canonical variate scores fromSCCAare
often used further as the input for other statistic models or clustering
algorithms3,56. In thefinal step,wefirst exploredwhether the two identified
brain canonical variates are associated with the cognitive ability of chil-
dren at 10 years old in ABCD. Cognitive ability data was retrieved from
NIH Toolbox age-corrected standard scores of fluid intelligence, crys-
tallized intelligence, total cognition scores, and matrix reasoning scaled
scores (non-verbal reasoning) from the Wechsler Intelligence Scale for
Children-V (data release 4.0)47,48. We separately modeled the relationship
between each canonical variate of brain connectivity and the cognitive
ability of the participants with linear regression models adjusted for all
covariates. The results showed that the first brain connectivity canonical
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variates (attention problems) were associated with fluid and crystallized
intelligence, and total cognition scores, while the second brain canonical
variate score (aggressive/rule-breaking behaviors) was only associated
with crystallized intelligence and total cognition scores (Table 3). We also
examined thepossibility ofmeaningful clustering solely basedon thebrain
canonical variates we found, frequently referred to as ‘biotypes’ (see
SupplementaryMethods).We did not find distinct clusters with disparate
clinical profiles along the twobrain canonical dimensions (Supplementary
Fig. 3, Supplementary Table 11).

Discussion
Several studies have highlighted the intriguing potential of multivariate
brain-behavior associations, but the lack of replicability of results has
hampered the identification of robust neurobiological mechanisms under-
lying psychiatric problems4,20. To improve the robustness and general-
izability of brain-behavior associations in a fully independent sample,which
is largely sub-optimally done or absent in previous research in multivariate
psychiatric neuroimaging literature, the present study implemented the
SCCA method and tested out-of-sample generalizability in one cohort

Fig. 3 | Resting-state connectivity modules involved in the two identified asso-
ciations in ABCD. a, b The top 20% of the connectivity patterns that contributed
most for each of canonical variate. The outer labels represent the names of network
modules. The thickness of the chords showed the importance of different network
modules. The contribution of each connectivity feature was determined by com-
puting the correlations between the raw connectivity features and the canonical
variate scores of the brain connectivity extracted from the SCCA model (calculated

by canonical loadings averaged across 30 train-test splits multiplied with the brain
PCs of the whole sample of ABCD), indicating the importance of each connectivity
feature. After calculating the contribution of each connectivity feature, we sum-
marized the contributions based on pre-assigned network modules and calculated
the within and between-network loadings. c, d The connectivity patterns associated
with the first two canonical variates. This was based on the z-scores of the within-
and between-network loadings we calculated.
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evaluated out-of-study generalizability in a fully external cohort. Robust
multivariate brain-psychiatric symptom associations in children were
observed, however, a gold-standard test of the generalizability of thefindings
in another cohort was largely negative. While these results reinforce pre-
vious work demonstrating the potential for brain-based dimensions of
psychiatric problems, they also highlight the problem of the generalizability
of findings in psychiatric neuroimaging studies, especially in the general
population.

In ABCD, we identified two brain-symptom dimensions that were
consistently validated in the out-of-sample test sets, indicating robust
within-study (internally valid) multivariate brain-symptoms associations.
The first brain-symptom dimension mapped on attention problems,
reflecting hyperactive and inattentive behaviors57. Several connectivity
networks loading highly on this dimension, such as salience, parietal occi-
pital, and medial parietal networks, have been shown to be involved in
attention deficit hyperactivity disorder (ADHD) across studies58,59. These
networks have been implicated in deficits of top-down executive control,
attention, and spatial working memory in children with ADHD55,58–60. The
second brain-based dimension was centered on aggressive and rule-
breaking behaviors. Several similar connectivity networks observedwith the
first dimension were observed with the second. The motor and visual net-
work, which were involved in the hyperactivation of the motor system and
the tracking of external stimuli61,62, played a more important role here.
Overall, the first two brain-symptomdimensions reflect differences in brain
connectivity that are related to child externalizing problems.

The two identified brain-based dimensions were further validated by
their associations with child cognitive ability, which is in line with results in
behavioral studies showing associations between externalizing problems
and measured intelligence63. Throughout the two dimensions, the motor,
parietal occipital, cinguloopercular, and saliencenetworkswere consistently
involved, indicating shared patterns of functional connectivity across dif-
ferent symptom-defined profiles. The specific patterns alongside the com-
mon (shared) patterns of functional connectivity across three dimensions
might implicate a similar general-psychopathology-factor structure of child
psychopathology identified by both clinical and genetic measures64,65 or
could reflect non-specificity in brain-behavior associations. Indeed, another
study also observed an association between the default mode network and
the general psychopathology(p) factor in children66. This work, therefore,
adds a piece to solving the puzzle of high comorbidity and heterogeneity of
child psychiatric problems.

While we discovered two brain-symptom dimensions in ABCD, the
out-of-study generalizability in Generation R presented a complex challenge.
Psychiatric neuroimaging studies employ varying approaches to test gen-
eralizability, and thus demonstrate varying degrees of external validity. One
approach consists of repeating the analysis pipeline and training a newmodel
in data that were previously ‘unseen’ by the doubly multivariate algorithm,
and thencorrelating themodelweights across studies.This is often referred as
‘replication’, in a test set from the same large participant pool or an external
dataset. Similarities of behavioral orbrain loadings areusuallyused to indicate
a successful replication17,28. In the present study, we observed highly similar
behavioral dimensions when training the SCCA model independently in
Generation R. The robust dimensions observed in the discovery set (ABCD),
alongside the similar behavioral dimensions observed in the qualitative
replication, lend support for the internal validity of the brain-behavior
dimensions. Therefore, the results are convincing in the general context of
underlying dimensional neurobiology. However, even though this route of
replication is a valuable way to demonstrate whether the brain-behavior
associations exist froman empirical perspective, precisely howone candefine
a successful replication based on the qualitative or quantitative similarities
between results remains a non-trivial challenge for the field.

Importantly, the more robust, gold-standard generalizability test,
where the weight coefficients of the SCCA model from the discovery set
(ABCD) are projected to the independent sample (Generation R), was not

Table 2 | Failed gold-standard generalizability test in
Generation R

Canonical correlations ABCD Generation R

training set test set

r1 0.23 0.12* 0.03

r2 0.22 0.07* 0.03

r3 0.20 0.05 0.02

Note. Canonical correlations in ABCD were averaged across the 30 train-test splits.
r1: *p < 0.05 in 24 train-test splits. r2: *p < 0.05 in 12 train-test splits.
r1 Generation R: p < 0.05 in 1 train-test split.

Fig. 4 | Stability of canonical correlations and canonical loadings in ABCD
(example). a The variability for the canonical loadings of CBCL syndrome scores
across 1000 bootstrap subsamples. The center line is median, the upper quantile is
75% and the lower quantile is 25%. b The variability for the canonical loadings of
brain PCs across 1000 bootstrap subsamples. The PCs presented here were selected

based on the intersection of top 10 most important PCs for the first three canonical
variates. cThe variability of thefirst three canonical correlations inABCDTraining and
ABCDTest set. The black dot ismean, and the vertical black line is standard deviation.
Note that the bootstrap subsampling is conducted in one of the 30 train-test splits.
CV1: canonical variate 1, CV2: canonical variate 2, CV3: canonical variate 3.
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successful. It is clear that the common, yet suboptimal, practices of repli-
cation mentioned above provide an important role in uncovering the
etiology of psychiatric problems17. Nevertheless, the primary goal of
machine learning models is to identify brain biomarkers that can improve
the diagnoses, treatment, and prevention of psychiatric disorders in the
broad population, not only for one specific group. A more ideal approach
could be similar to the risk calculator developed in medical research67, a
more standardized protocol in genetic association studies68, or some pre-
diction pipelines developed in non-psychiatric studies25. The common
characteristic of these examples is that model weights (‘gold-standard’) are
applied to different populations with diverse backgrounds, which creates a
high demand for the model as well as the identification of common bio-
markers. If model performance varied across some groups (e.g., sex, age,
cultural backgrounds), the important predictors could be included in the
extension and further validation of models to create a more generalizable,
clinically useful model.

In our study, the lack of this gold-standard generalizability in an
external, independent sample suggests limited external validity, meaning
that the dimensions cannot be applied to other datasets as potential bio-
markers in the general population. This is certainly a concerning observa-
tion, given the two cohorts utilized in this study represent the largest studies
of neurodevelopment in the world and are uniquely positioned to conduct
suchmultivariate analyses. In the subsequent paragraphs, we will delve into
potential explanations for why this step remains so challenging for psy-
chiatric neuroimaging as applied to the general population, and then pro-
vide recommendations on how to improve out-of-study generalizability.

First, the multivariate CCA method is highly prone to overfitting and
instability20,69 and requires a large sample size to obtain sufficient statistical
power52. In our study, the sample size of Generation R (n = 2043)might not
be large enough to capture the associations that we found in ABCD. Yet,
Generation R is a larger sample compared with the ABCD test set
(n ~ 1000), where we successfully validated the associations. Second,

focusing on the general population might dilute the associations. The vast
majority of previous studies drew from clinical samples with specific diag-
noses, such as major depression and psychosis2,56. Since healthy individuals
are overrepresented in population-based samples, the effect sizes will likely
be smaller than in clinical samples and may be more difficult capture70.
However, the utility of a dimensional assessment of symptoms is well-
known and has several advantages to problems in clinical, case-control
designs, which are also prone to overfitting and bias71. Third, resting-state
fMRI data has intrinsic high inter-individual variability and smaller effect
sizes at the individual level than other brainmeasures in psychiatry72. Thus,
extracting clinically important signals on an individual basis is difficult, and
generalizability across cohorts could be especially challenging. This can be
seen from our results: the psychopathology profiles were relatively stable
within ABCD as well as across cohorts, but the brain phenotypes associated
with the behavioral profiles were highly unstable.

Another possible explanation is that brain-behavior associations differ
across populations and cultures due to unconsidered confounders. Model
failures are usually interweaved with other factors7, such as differences in
reporting preference and symptom presentation in diverse populations,
which may correspond to divergent neurobiological underpinnings. The
internally valid associations in ABCD could be cohort-specific effects that
are not entirely consistentwithGenerationR.Although the eight-syndrome
structure of CBCL was shown to be stable across different societies73,74, our
results could reflect, to some extent, the different brain-symptom con-
struction across cultures.

Given these challenges, we recommend that future studies test results in
a fully external validationdataset fromadifferentpopulation/cohortusing the
gold-standard generalizability test. Leave-site-out cross-validation can be an
alternative if external validation in another study is not possible in practice,
although this is not optimal as the true out-of-study generalizability. More-
over, except for data harmonization, hidden confounders across sites or
studies should be considered. This could be discerned by assessing the

Table 3 | Associations between the two brain canonical variate scores and cognitive ability (n = 3968)

Fluid intelligence Crystallized intelligence Matrix reasoning Total cognition

B (95% CI) P B (95% CI) P B (95% CI) P B (95% CI) P

CV1 −0.04 [−0.07, −0.01] 0.01 −0.04 [−0.07, −0.01] 0.003 −0.001 [−0.03, 0.03] 0.93 −0.05 [−0.08, −0.02] <0.001

CV2 −0.03 [−0.06, 0.00] 0.05 −0.04 [−0.07, 0.02] 0.003 0.003 [−0.03, 0.03] 0.82 −0.05 [−0.08, −0.02] 0.002

Separate linear regression analysis of cognitive ability and the two brain canonical variate scores. Betas are standardized. All the models were adjusted for child age, child sex, race/ethnicity, parental
education, and scanning sites. After excluding the participantswithmissing values in any of the four cognitive abilities, the final sample size of this analysis is 3968.CV1: brain canonical variate 1, CV2: brain
canonical variate 2.

Fig. 5 | CBCL canonical loadings in ABCD and Generation R in qualitative
replication. a The canonical loadings of CBCL syndrome scores in ABCD, averaged
across 30 train-test splits. b The canonical loadings of CBCL syndrome scores in

Generation R. CV1: canonical variate 1, CV2: canonical variate 2, CV3: canonical
variate 3, CV4: canonical variate 4.

https://doi.org/10.1038/s44271-024-00063-y Article

Communications Psychology | (2024)2:16 11



distribution of important potential confounders across sites or studies, and
decisions could bemade on whichmodels and predictors to use accordingly.
Recent advances in methods of accommodating site variations might also
considerably boost generalizability and improve the site differences75.

Limitations
Using the largest multicohort study investigating the multivariate brain-
behavior associations in pre-adolescence, the enhanced statistical power
allowed us to examine whether robust associations can be detected and
generalized in the general population. Despite the strengths, a few limitations
should be noted. First, we only applied SCCA in our analysis, other doubly
multivariate methods, such as Partial Least Squares (PLS), were not exam-
ined. However, CCA is one of the most widely used techniques, and other
multivariate methods have been found to be sensitive to similar problems of
generalizability5,21,53. Second, the conclusions drawn from the current study
mightnot generalize to clinical samples.Although similarpoorout-of-sample
multivariate associations were seen in clinical samples21, prediction models
built in clinical studies might bemore robust due to potentially larger effects.
Yet, biomarkers emerging fromthe general population are useful in screening
high-risk individuals, prevention, and health education, which are also
important in health care practices. Third, the limited generalizability in the
current study came from the failure to generalize in one specific dataset. We
did not comprehensively testmultiple datasets. Fourth,we did not investigate
the specific causes underlying the difference between different sites and
cohorts, which should be further investigated in future studies.

Conclusions
In summary, the utilization of SCCA enabled us to discover robust brain-
symptom associations in ABCD but limited external validity in Generation
R. Overall, the results offer substantial room for optimism about using
multivariatemethods in brain-behavior association studies.Nonetheless,we
strongly suggest that future studies test the generalizability of results in a
fully external validationdatasetusing gold-standard tests. In thisway,we are
able to provide insights into how the results vary across contexts and
populations and evaluate the full picture of model performance. To achieve
the ultimate goal of clinical utility, transparently reporting and sharing the
analysisworkflows, collaborations across labs, and anopendiscussion about
how to define good external validity can facilitate the robustness of scientific
endeavors in brain-behavior association studies.

Data availability
The ABCD data reported in this paper are openly available upon approval
from the NDA Data Access Committee (https://nda.nih.gov/). The ABCD
data came from ABCD collection 3165 (ABCD-BIDS Community Collec-
tion (ABCC), https://collection3165.readthedocs.io) and the Annual
Release 4.0 (10.15154/1523041). According to local, national, and European
Union regulations and the informed consent status of the participants, the
GenerationRdatasetsmaybemadeavailable upon request to theDirector of
the Generation R Study, Vincent Jaddoe (v.jaddoe@erasmusmc.nl). The
group-level numerical data underlying figures and tables in the manuscript
are publicly available in the following Open Science Framework (OSF)
repository: https://osf.io/8e3nf/.

Code availability
All analysis code is publicly available in the following GitHub repository:
(https://github.com/EstellaHsu/Brain_dimensions_ABCD_GenR), https://
doi.org/10.5281/zenodo.10513071.

Received: 3 May 2023; Accepted: 8 February 2024;
Published online: 28 February 2024

References
1. Paus, T., Keshavan, M. & Giedd, J. N. Why do many psychiatric

disorders emerge during adolescence? Nat. Rev. Neurosci. 9,
947–957 (2008).

2. Moser, D. A. et al. Multivariate associations among behavioral,
clinical, and multimodal imaging phenotypes in patients with
psychosis. JAMA Psychiatry 75, 386 (2018).

3. Wang, H.-T. et al. Finding the needle in a high-dimensional haystack:
canonical correlation analysis for neuroscientists. NeuroImage 216,
116745 (2020).

4. Marek, S. et al. Reproducible brain-wide association studies require
thousands of individuals. Nature 603, 654–660 (2022).

5. Tian, Y. & Zalesky, A. Machine learning prediction of cognition from
functional connectivity: are featureweights reliable?NeuroImage245,
118648 (2021).

6. Whelan, R. &Garavan,H.Whenoptimismhurts: inflated predictions in
psychiatric neuroimaging. Biol. Psychiatry 75, 746–748 (2014).

7. Greene, A. S. et al. Brain–phenotype models fail for individuals who
defy sample stereotypes. Nature 609, 109–118 (2022).

8. Button, K. S. et al. Power failure: why small sample size
undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14,
365–376 (2013).

9. Insel, T. et al. Research domain criteria (RDoC): toward a new
classification framework for research on mental disorders. Am. J.
Psychiatry 167, 748–751 (2010).

10. Habeck, C. & Stern, Y. & the Alzheimer’s Disease Neuroimaging
Initiative. Multivariate data analysis for neuroimaging data: overview
and application to Alzheimer’s disease. Cell Biochem. Biophys. 58,
53–67 (2010).

11. Habeck, C. G. Basics of multivariate analysis in neuroimaging data. J.
Vis. Exp. JoVE https://doi.org/10.3791/1988 (2010).

12. Bednarz, H. M. & Kana, R. K. Advances, challenges, and promises in
pediatric neuroimaging of neurodevelopmental disorders. Neurosci.
Biobehav. Rev. 90, 50–69 (2018).

13. Rosenberg,M. D. & Finn, E. S. How to establish robust brain–behavior
relationships without thousands of individuals. Nat. Neurosci. 25,
835–837 (2022).

14. Goodkind, M. et al. Identification of a common neurobiological
substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

15. Sha, Z., Wager, T. D., Mechelli, A. & He, Y. Common dysfunction of
large-scale neurocognitive networks across psychiatric disorders.
Biol. Psychiatry 85, 379–388 (2019).

16. Smith, S. M. et al. A positive-negative mode of population covariation
links brain connectivity, demographics and behavior. Nat. Neurosci.
18, 1565–1567 (2015).

17. Xia, C. H. et al. Linked dimensions of psychopathology and
connectivity in functional brain networks. Nat. Commun. 9,
3003 (2018).

18. Krueger, R. F. & Bezdjian, S. Enhancing research and treatment of
mental disorderswith dimensional concepts: towardDSM‐Vand ICD‐
11.World Psychiatry 8, 3–6 (2009).

19. Hudziak, J. J., Achenbach, T. M., Althoff, R. R. & Pine, D. S. A
dimensional approach to developmental psychopathology. Int. J.
Methods Psychiatr. Res. 16, S16–S23 (2007).

20. Dinga, R. et al. Evaluating the evidence for biotypes of depression:
methodological replication and extension of. NeuroImage Clin 22,
101796 (2019).

21. Ji, J. L. et al. Mapping brain-behavior space relationships along the
psychosis spectrum. eLife 10, e66968 (2021).

22. Siontis, G. C. M., Tzoulaki, I., Castaldi, P. J. & Ioannidis, J. P. A.
External validation of new risk prediction models is infrequent and
reveals worse prognostic discrimination. J. Clin. Epidemiol. 68,
25–34 (2015).

23. Carrión, R. E. et al. Personalized prediction of psychosis: external
validation of the NAPLS-2 psychosis risk calculator with the EDIPPP
project. Am. J. Psychiatry 173, 989–996 (2016).

24. Scheinost, D. et al. Ten simple rules for predictive modeling of
individual differences in neuroimaging. NeuroImage 193,
35–45 (2019).

https://doi.org/10.1038/s44271-024-00063-y Article

Communications Psychology | (2024)2:16 12

https://nda.nih.gov/
https://collection3165.readthedocs.io
https://osf.io/8e3nf/
https://github.com/EstellaHsu/Brain_dimensions_ABCD_GenR
https://doi.org/10.5281/zenodo.10513071
https://doi.org/10.5281/zenodo.10513071
https://doi.org/10.3791/1988


25. Shen, X. et al. Using connectome-based predictive modeling to
predict individual behavior from brain connectivity. Nat. Protoc. 12,
506–518 (2017).

26. Avery, E. W. et al. Distributed patterns of functional connectivity
predict working memory performance in novel healthy and memory-
impaired individuals. J. Cogn. Neurosci. 32, 241–255 (2020).

27. Kardan, O. et al. Differences in the functional brain architecture of
sustained attention and working memory in youth and adults. PLOS
Biol. 20, e3001938 (2022).

28. Linke, J. O. et al. Shared and anxiety-specific pediatric
psychopathology dimensions manifest distributed neural correlates.
Biol. Psychiatry 89, 579–587 (2021).

29. Buch, A. M. Molecular and network-level mechanisms explaining
individual differences in autism spectrum disorder.Nat. Neurosci. 26,
650–663 (2023).

30. Xiao, X. et al. Brain functional connectome defines a transdiagnostic
dimension shared by cognitive function and psychopathology in
preadolescents. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.
2023.08.02 (2023).

31. Bzdok, D. & Meyer-Lindenberg, A. Machine learning for precision
psychiatry: opportunities and challenges. Biol. Psychiatry Cogn.
Neurosci. Neuroimaging 3, 223–230 (2018).

32. Mihalik, A. et al. Multiple holdouts with stability: improving the
generalizability of machine learning analyses of brain–behavior
relationships. Biol. Psychiatry 87, 368–376 (2020).

33. Kooijman, M. N. et al. The Generation R Study: design and cohort
update 2017. Eur. J. Epidemiol. 31, 1243–1264 (2016).

34. Garavan,H. et al. Recruiting theABCDsample: design considerations
and procedures. Dev. Cogn. Neurosci. 32, 16–22 (2018).

35. Lenroot, R. K. & Giedd, J. N. Brain development in children and
adolescents: insights from anatomical magnetic resonance imaging.
Neurosci. Biobehav. Rev. 30, 718–729 (2006).

36. Solmi, M. et al. Age at onset of mental disorders worldwide: large-
scale meta-analysis of 192 epidemiological studies.Mol. Psychiatry
27, 281–295 (2022).

37. Monteiro, J. M., Rao, A., Shawe-Taylor, J. & Mourão-Miranda, J. A
multiple hold-out framework for Sparse Partial Least Squares. J.
Neurosci. Methods 271, 182–194 (2016).

38. White, T. et al. Paediatricpopulationneuroimagingand theGeneration
R Study: the second wave. Eur. J. Epidemiol. 33, 99–125 (2018).

39. Achenbach, T.M. &Rescorla, L. A.Manual for theASEBASchool-Age
Forms & Profiles (University of Vermont, 2001).

40. Willner, C. J., Gatzke-Kopp, L. M. & Bray, B. C. The dynamics of
internalizing and externalizing comorbidity across the early school
years. Dev. Psychopathol. 28, 1033–1052 (2016).

41. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for
functional MRI. Nat. Methods 16, 111–116 (2019).

42. Gordon, E. M. et al. Generation and evaluation of a cortical area
parcellation from resting-state correlations. Cereb. Cortex 26,
288–303 (2016).

43. Fischl,B. et al.Wholebrain segmentation.Neuron33, 341–355 (2002).
44. Parkes, L., Fulcher, B., Yücel, M. & Fornito, A. An evaluation of the

efficacy, reliability, and sensitivity of motion correction strategies for
resting-state functional MRI. NeuroImage 171, 415–436 (2018).

45. Muetzel, R. L. et al. Frequent bullying involvement and brain
morphology in children. Front. Psychiatry 10, 696 (2019).

46. Musil,C.M.,Warner,C.B., Yobas,P.K.&Jones,S. L.Acomparisonof
imputation techniques for handling missing data.West. J. Nurs. Res.
24, 815–829 (2002).

47. Akshoomoff, N. et al. Viii. Nih toolbox cognition battery (cb):
composite scores of crystallized, fluid, and overall cognition.Monogr.
Soc. Res. Child Dev. 78, 119–132 (2013).

48. Luciana, M. et al. Adolescent neurocognitive development and
impacts of substance use: overview of the adolescent brain cognitive

development (ABCD) baseline neurocognition battery. Dev. Cogn.
Neurosci. 32, 67–79 (2018).

49. Raponi, E.,Wang,H.,Bujny,M.,Boria,S. &Doerr,C.HighDimensional
Bayesian Optimization Assisted by Principal Component Analysis
169–183 (2020).

50. McCabe, S. D., Lin, D.-Y. & Love, M. I. Consistency and overfitting of
multi-omics methods on experimental data. Brief. Bioinform. 21,
1277–1284 (2020).

51. Witten, D. M., Tibshirani, R. & Hastie, T. A penalized matrix
decomposition,withapplications to sparseprincipal componentsand
canonical correlation analysis. Biostatistics 10, 515–534 (2009).

52. Helmer, M. et al. On Stability of Canonical Correlation Analysis and
Partial Least Squareswith Application to Brain-behavior Associations.
https://doi.org/10.1101/2020.08.25.265546 (2020).

53. Voldsbekk, I. et al. Delineating disorder-general and disorder-specific
dimensions of psychopathology from functional brain networks in a
developmental clinical sample. Dev. Cogn. Neurosci. 62,
101271 (2023).

54. Sripada, C. et al. Prediction of neurocognition in youth from resting
state fMRI. Mol. Psychiatry 25, 3413–3421 (2020).

55. Lauritzen, T. Z., D’Esposito,M.,Heeger, D. J. &Silver,M. A. Top-down
flow of visual spatial attention signals from parietal to occipital cortex.
J. Vis. 9, 1–14 (2009).

56. Drysdale, A. T. et al. Resting-state connectivity biomarkers define
neurophysiological subtypes of depression. Nat. Med. 23,
28–38 (2017).

57. Achenbach, T. M., Ivanova, M. Y., Rescorla, L. A., Turner, L. V. &
Althoff, R. R. Internalizing/externalizing problems: review and
recommendations for clinical and research applications. J. Am. Acad.
Child Adolesc. Psychiatry 55, 647–656 (2016).

58. Cai, W., Griffiths, K., Korgaonkar, M. S., Williams, L. M. & Menon, V.
Inhibition-related modulation of salience and frontoparietal networks
predicts cognitive control ability and inattention symptoms in children
with ADHD.Mol. Psychiatry 26, 4016–4025 (2021).

59. Castellanos, F. X. & Aoki, Y. Intrinsic functional connectivity in
attention-deficit/hyperactivity disorder: a science in development.
Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1, 253–261 (2016).

60. Cai, W., Chen, T., Szegletes, L., Supekar, K. & Menon, V. Aberrant
time-varying cross-network interactions in children with attention-
deficit/hyperactivity disorder and the relation to attention deficits.
Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 263–273 (2018).

61. Sripada, C. et al. Disrupted network architecture of the resting brain in
attention-deficit/hyperactivity disorder: Disrupted Network
Architecture in ADHD. Hum. Brain Mapp. 35, 4693–4705 (2014).

62. Castellanos, F. X. & Proal, E. Large-scale brain systems in ADHD:
beyond the prefrontal–striatal model. Trends Cogn. Sci. 16,
17–26 (2012).

63. Kavish, N., Helton, J., Vaughn,M.G. &Boutwell, B. B. The association
of externalizing and internalizing problems with indicators of
intelligence in a sample of at-risk children. Intelligence 80,
101448 (2020).

64. Michelini, G. et al. Delineating and validating higher-order dimensions
of psychopathology in the Adolescent Brain Cognitive Development
(ABCD) study. Transl. Psychiatry 9, 261 (2019).

65. Neumann, A. et al. Single nucleotide polymorphism heritability of a
general psychopathology factor in children. J. Am. Acad. Child
Adolesc. Psychiatry 55, 1038–1045.e4 (2016).

66. Karcher, N. R., Michelini, G., Kotov, R. & Barch, D. M. Associations
between resting-state functional connectivity and a hierarchical
dimensional structure of psychopathology in middle childhood. Biol.
Psychiatry Cogn. Neurosci. Neuroimaging 6, 508–517 (2021).

67. Collins, G. S. & Altman, D. G. An independent external validation and
evaluation of QRISK cardiovascular risk prediction: a prospective
open cohort study. BMJ 339, b2584 (2009).

https://doi.org/10.1038/s44271-024-00063-y Article

Communications Psychology | (2024)2:16 13

https://doi.org/10.1016/j.biopsych.2023.08.02
https://doi.org/10.1016/j.biopsych.2023.08.02
https://doi.org/10.1101/2020.08.25.265546


68. Choi, S. W., Mak, T. S.-H. & O’Reilly, P. F. Tutorial: a guide to
performing polygenic risk score analyses. Nat. Protoc. 15,
2759–2772 (2020).

69. Zhuang, X., Yang, Z. & Cordes, D. A technical review of canonical
correlation analysis for neuroscience applications.Hum. Brain Mapp.
41, 3807–3833 (2020).

70. Calem, M., Bromis, K., McGuire, P., Morgan, C. & Kempton, M. J.
Meta-analysis of associations between childhood adversity and
hippocampus and amygdala volume in non-clinical and general
population samples. NeuroImage Clin. 14, 471–479 (2017).

71. Kukull, W. A. & Ganguli, M. Generalizability: the trees, the forest, and
the low-hanging fruit. Neurology 78, 1886–1891 (2012).

72. Finn, E. S. Is it time to put rest to rest? Trends Cogn. Sci. 25,
1021–1032 (2021).

73. Rescorla, L. A., Althoff, R. R., Ivanova, M. Y. & Achenbach, T. M.
Effects of society and culture on parents’ ratings of children’s mental
health problems in 45 societies. Eur. Child Adolesc. Psychiatry 28,
1107–1115 (2019).

74. Ivanova, M. Y. et al. Testing the 8-syndrome structure of the child
behavior checklist in 30 societies. J. Clin. Child Adolesc. Psychol. 36,
405–417 (2007).

75. Bayer, J.M.M. et al.AccommodatingSiteVariation inNeuroimagingData
Using Normative and Hierarchical Bayesian Models. http://biorxiv.org/
lookup/doi/10.1101/2021.02.09.430363 (2021).

Acknowledgements
Data used in the preparation of this article were obtained from the
Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://
abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite,
longitudinal study designed to recruit more than 10,000 children age 9–10
and follow them over 10 years into early adulthood. The ABCD Study® is
supportedby theNational InstitutesofHealth andadditional federal partners
under award numbers U01DA041048, U01DA050989, U01DA051016,
U01DA041022, U01DA051018, U01DA051037, U01DA050987,
U01DA041174, U01DA041106, U01DA041117, U01DA041028,
U01DA041134, U01DA050988, U01DA051039, U01DA041156,
U01DA041025, U01DA041120, U01DA051038, U01DA041148,
U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of
supporters is available at https://abcdstudy.org/federal-partners.html. A
listing of participating sites and a complete listing of the study investigators
can be found at https://abcdstudy.org/consortium_members/. ABCD
consortium investigators designed and implemented the study and/or
provided data but did not necessarily participate in the analysis or writing of
this report. This manuscript reflects the views of the authors and may not
reflect the opinions or views of the NIH or ABCD consortium investigators.
The Generation R Study is supported by Erasmus MC, Erasmus University
Rotterdam, the Rotterdam Homecare Foundation, the Municipal Health
Service Rotterdam area, the Stichting Trombosedienst &
Artsenlaboratorium Rijnmond, the Netherlands Organization for Health
Research and Development (ZonMw), and the Ministry of Health, Welfare
and Sport. Neuroimaging data acquisition was funded by the European
Community’s 7th Framework Program (FP7/2008-2013, 212652,

Nutrimenthe). Netherlands Organization for Scientific Research (Exacte
Wetenschappen) and SURFsara (Snellius Compute Cluster, www.surfsara.nl)
supported theSupercomputing resources.AuthorsaresupportedbyanNWO-
VICI grant (NWO-ZonMW: 016.VICI.170.200 to H.T.) for H.T., B.X., and the
Sophia Foundation S18-20, and Erasmus MC Fellowship for R.L.M.

Author contributions
Based on the CRediT role taxonomy (https://credit.niso.org/):
conceptualization (B.X., J.F., H.T., and R.L.M.), data collection (B.X., L.D.A.,
P.C., M.L., H.T. and R.L.M.), data curation (B.X., P.C., M.L., and R.L.M.),
formal analysis (B.X.), funding acquisition (H.T. and R.L.M.), investigation
(B.X.), methodology (B.X., G.B., H.W., H.T. and R.L.M.), project
administration (B.X.,H.T., andR.L.M.), resources (R.L.M.), software (B.X. and
L.D.A.), supervision (H.T. and R.L.M.), validation (B.X.), visualization (B.X.),
writing—original draft (B.X.), writing—review and editing (B.X., L.D.A., J.F.,
G.B., B.T.C., P.C., M.B., M.L., A.M., H.W., H.T. and R.L.M.).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44271-024-00063-y.

Correspondence and requests for materials should be addressed to
Henning Tiemeier.

Peer review information Communications Psychology thanks the
anonymous reviewers for their contribution to the peer review of this work.
Primary Handling Editor: Antonia Eisenkoeck. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024, corrected publication 2024

https://doi.org/10.1038/s44271-024-00063-y Article

Communications Psychology | (2024)2:16 14

http://biorxiv.org/lookup/doi/10.1101/2021.02.09.430363
http://biorxiv.org/lookup/doi/10.1101/2021.02.09.430363
https://abcdstudy.org
https://abcdstudy.org
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/consortium_members/
http://www.surfsara.nl
https://credit.niso.org/
https://doi.org/10.1038/s44271-024-00063-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Limited generalizability of multivariate brain-based dimensions of child psychiatric symptoms
	Methods
	Study population
	Child psychiatric symptoms
	fMRI image acquisition and preprocessing
	Parcellation and whole-brain connectivity estimation
	Quality controls of the scans
	Covariates
	Child cognitive ability
	Analysis framework
	Dimensionality reduction
	Sparse canonical correlation analysis
	Selection of penalty parameters
	Fitting SCCA model and significance�test
	Stability of SCCA�model
	Associations with cognitive ability
	Out-of-study generalizability in Generation�R
	Sensitivity analysis
	Reporting summary

	Results
	Initial derivation of brain-behavior dimensions in�ABCD
	Out-of-sample generalizability of brain-behavior dimensions in�ABCD
	Stability of the brain-based dimensions of child psychiatric symptoms in�ABCD
	Out-of-study generalizability in a fully independent�sample
	Further exploration of brain canonical variates

	Discussion
	Limitations
	Conclusions
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




