Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioelectronic interfaces of organic electrochemical transistors

Abstract

Organic electrochemical transistors (OECTs) are electronic devices relying on electronic materials that are stable in aqueous environments. OECTs leverage ionic solutions for their operation, so OECTs are well-suited for interfacing with biological systems for electrophysiology and biochemical sensing, in particular, in point-of-care diagnostics, wearable and implantable technologies, and in organ-on-chip systems. The interface of OECTs with biological systems is a crucial parameter that determines the function and performance of the devices, influencing the design criteria, including the selection of materials and device form factor, geometry and architecture. The selected design features must enable seamless interaction with biological components while ensuring reliable and stable device performance in complex settings. In this Review, we investigate the biological interfaces of OECT-based biosensors, examining their complexity and length scale. We highlight interface designs with biomolecules, such as lipids, proteins and aptamers, as well as in vitro cell culture and the human body. Importantly, we explore strategies to improve each interface type and identify gaps in our current understanding that warrant further investigation.

Key points

  • Optimal bioelectronic interfacing requires efficient information transfer with minimal disruption to biological functions.

  • Organic electrochemical transistors (OECTs) can establish seamless bioelectronic interfaces with biomolecules, cells, lipid bilayers and the body to extract electrophysiological or biochemical signals.

  • OECT performance can be improved by optimizing the gate–electrolyte interface, the channel–electrolyte interface and the electrolyte.

  • Orientation, density and stable immobilization of recognition units and interference blockers on device surfaces are crucial for efficient biochemical sensing.

  • Intimate contact between OECT components and biological systems is the most important feature for efficient signal transduction, both in vivo and in vitro.

  • Standardized fabrication and development protocols are needed to engineer reproducible, stable and low-cost OECTs for widespread diagnostic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organic electrochemical transistors.
Fig. 2: Functionalization of organic electrochemical transistor interfaces for analyte sensing.
Fig. 3: Interfacing organic electrochemical transistors with cells and supported lipid bilayers in vitro.
Fig. 4: Device features for skin interfaces.
Fig. 5: In vivo organic electrochemical transistor interfaces.

Similar content being viewed by others

References

  1. Andreou, C. et al. Resting-state connectivity in the prodromal phase of schizophrenia: insights from EEG microstates. Schizophr. Res. 152, 513–520 (2014).

    Article  Google Scholar 

  2. Stevens, A. & Kircher, T. Cognitive decline unlike normal aging is associated with alterations of EEG temporo-spatial characteristics. Eur. Arch. Psychiatry Clin. Neurosci. 248, 259–266 (1998).

    Article  Google Scholar 

  3. Nishida, K. et al. EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clin. Neurophysiol. 124, 1106–1114 (2013).

    Article  Google Scholar 

  4. Strik, W. K., Dierks, T., Becker, T. & Lehmann, D. Larger topographical variance and decreased duration of brain electric microstates in depression. J. Neural Transm. 99, 213–222 (1995).

    Article  Google Scholar 

  5. Stevens, A., Günther, W., Lutzenberger, W., Bartels, M. & Müller, N. Abnormal topography of EEG microstates in Gilles de la Tourette syndrome. Eur. Arch. Psychiatry Clin. Neurosci. 246, 310–316 (1996).

    Article  Google Scholar 

  6. Kikuchi, M. et al. EEG microstate analysis in drug-naive patients with panic disorder. PLoS ONE 6, e22912 (2011).

    Article  Google Scholar 

  7. Acharya, U. R., Vinitha Sree, S., Swapna, G., Martis, R. J. & Suri, J. S. Automated EEG analysis of epilepsy: a review. Knowl. Based Syst. 45, 147–165 (2013).

    Article  Google Scholar 

  8. Zhai, X., Jelfs, B., Chan, R. H. M. & Tin, C. Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network. Front. Neurosci. 11, 379 (2017).

    Article  Google Scholar 

  9. Fraiwan, L. & Lweesy, K. in 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA) 228–231 (IEEE, 2017).

  10. Jirayucharoensak, S., Pan-Ngum, S. & Israsena, P. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci. World J. 2014, 627892 (2014).

    Article  Google Scholar 

  11. Yao, P. S., Zheng, S. F., Wang, F., Kang, D. Z. & Lin, Y. X. Surgery guided with intraoperative electrocorticography in patients with low-grade glioma and refractory seizures. J. Neurosurg. 128, 840–845 (2018).

    Article  Google Scholar 

  12. Huynh, M. A., Nguyen, T.-H., Nguyen, T.-K. & Nguyen, N.-T. Convergence of implantable bioelectronics and brain–computer interfaces. ACS Appl. Electron. Mater. 5, 5777–5793 (2023).

    Article  Google Scholar 

  13. Yao, G. et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9, 5349 (2018).

    Article  Google Scholar 

  14. Lorach, H. et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 618, 126–133 (2023).

    Article  Google Scholar 

  15. Xu, H. et al. First human results with the 256 channel intelligent micro implant eye (IMIE 256). Transl. Vis. Sci. Technol. 10, 14 (2021).

    Article  Google Scholar 

  16. Battelino, T. et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. 11, 42–57 (2023).

    Article  Google Scholar 

  17. Thiebaud, P., de Rooij, N. F., Koudelka-Hep, M. & Stoppini, L. Microelectrode arrays for electrophysiological monitoring of hippocampal organotypic slice cultures. IEEE Trans. Biomed. Eng. 44, 1159–1163 (1997).

    Article  Google Scholar 

  18. Preininger, M. K. et al. A human pluripotent stem cell model of catecholaminergic polymorphic ventricular tachycardia recapitulates patient-specific drug responses. Dis. Models Mech. 9, 927–939 (2016).

    Google Scholar 

  19. Millard, D. et al. Cross-site reliability of human induced pluripotent stem cell-derived cardiomyocyte based safety assays using microelectrode arrays: results from a blinded CiPA pilot study. Toxicol. Sci. 164, 550–562 (2018).

    Article  Google Scholar 

  20. Conant, G. et al. High-content assessment of cardiac function using heart-on-a-chip devices as drug screening model. Stem Cell Rev. Rep. 13, 335–346 (2017).

    Article  Google Scholar 

  21. Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).

    Article  Google Scholar 

  22. Kukhta, N. A., Marks, A. & Luscombe, C. K. Molecular design strategies toward improvement of charge injection and ionic conduction in organic mixed ionic–electronic conductors for organic electrochemical transistors. Chem. Rev. 122, 4325–4355 (2022).

    Article  Google Scholar 

  23. He, Y., Kukhta, N. A., Marks, A. & Luscombe, C. K. The effect of side chain engineering on conjugated polymers in organic electrochemical transistors for bioelectronic applications. J. Mater. Chem. C 10, 2314–2332 (2022).

    Article  Google Scholar 

  24. Paudel, P. R., Tropp, J., Kaphle, V., Azoulay, J. D. & Lüssem, B. Organic electrochemical transistors – from device models to a targeted design of materials. J. Mater. Chem. C 9, 9761–9790 (2021).

    Article  Google Scholar 

  25. Li, P. & Lei, T. Molecular design strategies for high-performance organic electrochemical transistors. J. Polym. Sci. 60, 377–392 (2022).

    Article  Google Scholar 

  26. Griggs, S., Marks, A., Bristow, H. & McCulloch, I. n-Type organic semiconducting polymers: stability limitations, design considerations and applications. J. Mater. Chem. C 9, 8099–8128 (2021).

    Article  Google Scholar 

  27. Inal, S., Malliaras, G. G. & Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 8, 1767 (2017).

    Article  Google Scholar 

  28. Ji, X., Lin, X. & Rivnay, J. Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing. Nat. Commun. 14, 1665 (2023).

    Article  Google Scholar 

  29. Tan, S. T. M. et al. High-gain chemically gated organic electrochemical transistor. Adv. Funct. Mater. 31, 2010868 (2021).

    Article  Google Scholar 

  30. Pappa, A. M. et al. Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Sci. Adv. 4, eaat0911 (2018).

    Article  Google Scholar 

  31. Tang, T. et al. Functional infectious nanoparticle detector: finding viruses by detecting their host entry functions using organic bioelectronic devices. ACS Nano 15, 18142–18152 (2021).

    Article  Google Scholar 

  32. Xie, K. et al. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. eLife 9, e50345 (2020).

    Article  Google Scholar 

  33. Zhong, Y., Saleh, A. & Inal, S. Decoding electrophysiological signals with organic electrochemical transistors. Macromol. Biosci. 21, e2100187 (2021).

    Article  Google Scholar 

  34. Friedlein, J. T., McLeod, R. R. & Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 63, 398–414 (2018).

    Article  Google Scholar 

  35. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Article  Google Scholar 

  36. Spanu, A., Martines, L. & Bonfiglio, A. Interfacing cells with organic transistors: a review of in vitro and in vivo applications. Lab Chip 21, 795–820 (2021).

    Article  Google Scholar 

  37. Marks, A., Griggs, S., Gasparini, N. & Moser, M. Organic electrochemical transistors: an emerging technology for biosensing. Adv. Mater. Interfaces 9, 2102039 (2022).

    Article  Google Scholar 

  38. Wang, N., Yang, A., Fu, Y., Li, Y. & Yan, F. Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 52, 277–287 (2019).

    Article  Google Scholar 

  39. Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).

    Article  Google Scholar 

  40. Torricelli, F. et al. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Methods Primers 1, 66 (2021).

    Article  Google Scholar 

  41. Sarcina, L. et al. Controlling the binding efficiency of surface confined antibodies through the design of mixed self-assembled monolayers. Adv. Mater. Interfaces 10, 2300017 (2023).

    Article  Google Scholar 

  42. Yeung, S. Y., Gu, X., Tsang, C. M., Tsao, S. W. & Hsing, I. M. Engineering organic electrochemical transistor (OECT) to be sensitive cell-based biosensor through tuning of channel area. Sens. Actuators A Phys. 287, 185–193 (2019).

    Article  Google Scholar 

  43. Sarcina, L. et al. A stable physisorbed layer of packed capture antibodies for high-performance sensing applications. J. Mater. Chem. C 11, 9093–9106 (2023).

    Article  Google Scholar 

  44. Ohayon, D. et al. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat. Mater. 19, 456–463 (2020).

    Article  Google Scholar 

  45. Druet, V. et al. Operation mechanism of n-type organic electronic metabolite sensors. Adv. Electron. Mater. 8, 2200065 (2022).

    Article  Google Scholar 

  46. Zhang, Y. et al. Visualizing the solid–liquid interface of conjugated copolymer films using fluorescent liposomes. ACS Appl. Bio Mater. 1, 1348–1354 (2018).

    Article  Google Scholar 

  47. Ohayon, D. et al. Interactions of catalytic enzymes with n-type polymers for high-performance metabolite sensors. ACS Appl. Mater. Interfaces 15, 9726–9739 (2023).

    Article  Google Scholar 

  48. Koklu, A. et al. Microfluidics integrated n-type organic electrochemical transistor for metabolite sensing. Sens. Actuators B Chem. 329, 129251 (2021).

    Article  Google Scholar 

  49. Song, Y., Wagner, J. & Katz, H. E. The behavior of carboxylated and hydroxylated polythiophene as bioreceptor layer: anti-human IgG and human IgG interaction detection based on organic electrochemical transistors. Electrochem. Sci. Adv. 2, e2100166 (2022).

    Article  Google Scholar 

  50. Song, Y. et al. Nanoscale bioreceptor layers comprising carboxylated polythiophene for organic electrochemical transistor-based biosensors. ACS Appl. Nano Mater. 4, 13459–13468 (2021).

    Article  Google Scholar 

  51. Fenoy, G. E. et al. “Clickable” organic electrochemical transistors. JACS Au 2, 2778–2790 (2022).

    Article  Google Scholar 

  52. Fenoy, G. E. et al. Interface engineering of “clickable” organic electrochemical transistors toward biosensing devices. ACS Appl. Mater. Interfaces 15, 10885–10896 (2023).

    Article  Google Scholar 

  53. Parlak, O., Keene, S. T., Marais, A., Curto, V. F. & Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 4, eaar2904 (2018).

    Article  Google Scholar 

  54. Koklu, A. et al. Microfluidic integrated organic electrochemical transistor with a nanoporous membrane for amyloid-β detection. ACS Nano 15, 8130–8141 (2021).

    Article  Google Scholar 

  55. Macchia, E. et al. A handheld intelligent single-molecule binary bioelectronic system for fast and reliable immunometric point-of-care testing. Sci. Adv. 8, eabo0881 (2022).

    Article  Google Scholar 

  56. Chen, L., Wu, J., Yan, F. & Ju, H. Monose-modified organic electrochemical transistors for cell surface glycan analysis via competitive recognition to enzyme-labeled lectin. Microchim. Acta 188, 252 (2021).

    Article  Google Scholar 

  57. Chen, L. et al. Organic electrochemical transistors for the detection of cell surface glycans. ACS Appl. Mater. Interfaces 10, 18470–18477 (2018).

    Article  Google Scholar 

  58. Peruzzi, C. et al. Interfacing aptamers, nanoparticles and graphene in a hierarchical structure for highly selective detection of biomolecules in OECT devices. Sci. Rep. 11, 9380 (2021).

    Article  Google Scholar 

  59. Ding, L. et al. Turning on high-sensitive organic electrochemical transistor-based photoelectrochemical-type sensor over modulation of Fe-MOF by PEDOT. Adv. Funct. Mater. 32, 2202735 (2022).

    Article  Google Scholar 

  60. Liu, H. et al. Ultrafast, sensitive, and portable detection of COVID-19 IgG using flexible organic electrochemical transistors. Sci. Adv. 7, eabg8387 (2021).

    Article  Google Scholar 

  61. Guo, K. et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng. 5, 666–677 (2021).

    Article  Google Scholar 

  62. Guo, K. et al. SpyDirect: a novel biofunctionalization method for high stability and longevity of electronic biosensors. Adv. Sci. https://doi.org/10.1002/advs.202306716 (2023).

  63. Figueroa-Miranda, G. et al. Polyethylene glycol-mediated blocking and monolayer morphology of an electrochemical aptasensor for malaria biomarker detection in human serum. Bioelectrochemistry 136, 107589 (2020).

    Article  Google Scholar 

  64. Lee, D. et al. Ionic contrast across a lipid membrane for Debye length extension: towards an ultimate bioelectronic transducer. Nat. Commun. 12, 3741 (2021).

    Article  Google Scholar 

  65. de Oliveira Filho, J. I., Faleiros, M. C., Ferreira, D. C., Mani, V. & Salama, K. N. Empowering electrochemical biosensors with AI: overcoming interference for precise dopamine detection in complex samples. Adv. Intell. Syst. 5, 2300227 (2023).

    Article  Google Scholar 

  66. Ramuz, M., Hama, A., Rivnay, J., Leleux, P. & Owens, R. M. Monitoring of cell layer coverage and differentiation with the organic electrochemical transistor. J. Mater. Chem. B 3, 5971–5977 (2015).

    Article  Google Scholar 

  67. Jimbo, Y. et al. An organic transistor matrix for multipoint intracellular action potential recording. Proc. Natl Acad. Sci. USA 118, e2022300118 (2021).

    Article  Google Scholar 

  68. Decataldo, F. et al. Organic electrochemical transistors as versatile tool for real-time and automatized viral cytopathic effect evaluation. Viruses 14, 1155 (2022).

    Article  Google Scholar 

  69. Traberg, W. C. et al. Organic electronic platform for real-time phenotypic screening of extracellular-vesicle-driven breast cancer metastasis. Adv. Healthc. Mater. 12, 2301194 (2023).

    Article  Google Scholar 

  70. Guo, X. et al. Organic electrochemical transistor for in situ detection of H2O2 released from adherent cells and its application in evaluating the in vitro cytotoxicity of nanomaterial. Anal. Chem. 92, 908–915 (2020).

    Article  Google Scholar 

  71. Jackman, J. A. & Cho, N.-J. Supported lipid bilayer formation: beyond vesicle fusion. Langmuir 36, 1387–1400 (2020).

    Article  Google Scholar 

  72. Lieberth, K. et al. Monitoring reversible tight junction modulation with a current-driven organic electrochemical transistor. Adv. Mater. Technol. 6, 2000940 (2021).

    Article  Google Scholar 

  73. Pitsalidis, C. et al. Biomimetic electronic devices for measuring bacterial membrane disruption. Adv. Mater. 30, e1803130 (2018).

    Article  Google Scholar 

  74. Cavassin, P. et al. Organic transistors incorporating lipid monolayers for drug interaction studies. Adv. Mater. Technol. 5, 1900680 (2020).

    Article  Google Scholar 

  75. Krauss, G. et al. Polydiketopyrrolopyrroles carrying ethylene glycol substituents as efficient mixed ion-electron conductors for biocompatible organic electrochemical transistors. Adv. Funct. Mater. 31, 2010048 (2021).

    Article  Google Scholar 

  76. Simon, D. T., Gabrielsson, E. O., Tybrandt, K. & Berggren, M. Organic bioelectronics: bridging the signaling gap between biology and technology. Chem. Rev. 116, 13009–13041 (2016).

    Article  Google Scholar 

  77. Gu, X. et al. Organic electrochemical transistor arrays for in vitro electrophysiology monitoring of 2D and 3D cardiac tissues. Adv. Biosyst. 3, e1800248 (2019).

    Article  Google Scholar 

  78. Gu, X., Yao, C., Liu, Y. & Hsing, I.-M. 16-Channel organic electrochemical transistor array for in vitro conduction mapping of cardiac action potential. Adv. Healthc. Mater. 5, 2345–2351 (2016).

    Article  Google Scholar 

  79. Hempel, F. et al. PEDOT:PSS organic electrochemical transistor arrays for extracellular electrophysiological sensing of cardiac cells. Biosens. Bioelectron. 93, 132–138 (2017).

    Article  Google Scholar 

  80. Liang, Y. et al. Tuning channel architecture of interdigitated organic electrochemical transistors for recording the action potentials of electrogenic cells. Adv. Funct. Mater. 29, 1902085 (2019).

    Article  Google Scholar 

  81. Abarkan, M. et al. Vertical organic electrochemical transistors and electronics for low amplitude micro-organ signals. Adv. Sci. 9, 2105211 (2022).

    Article  Google Scholar 

  82. Yao, C., Li, Q., Guo, J., Yan, F. & Hsing, I.-M. Rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from electrogenic cells. Adv. Healthc. Mater. 4, 528–533 (2015).

    Article  Google Scholar 

  83. Ramuz, M. et al. Optimization of a planar all-polymer transistor for characterization of barrier tissue. ChemPhysChem 16, 1210–1216 (2015).

    Article  Google Scholar 

  84. Du, W. et al. Improving the compatibility of diketopyrrolopyrrole semiconducting polymers for biological interfacing by lysine attachment. Chem. Mater. 30, 6164–6172 (2018).

    Article  Google Scholar 

  85. Bonafè, F. et al. AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors. Nat. Commun. 13, 5423 (2022).

    Article  Google Scholar 

  86. Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3, 422–433 (2003).

    Article  Google Scholar 

  87. Hempel, F. et al. PEDOT:PSS organic electrochemical transistors for electrical cell-substrate impedance sensing down to single cells. Biosens. Bioelectron. 180, 113101 (2021).

    Article  Google Scholar 

  88. Chen, L., Wu, J., Yan, F. & Ju, H. A facile strategy for quantitative sensing of glycans on cell surface using organic electrochemical transistors. Biosens. Bioelectron. 175, 112878 (2021).

    Article  Google Scholar 

  89. Zhang, Y. et al. Supported lipid bilayer assembly on PEDOT:PSS films and transistors. Adv. Funct. Mater. 26, 7304–7313 (2016).

    Article  Google Scholar 

  90. Zhang, Y. et al. Lipid bilayer formation on organic electronic materials. J. Mater. Chem. C 6, 5218–5227 (2018).

    Article  Google Scholar 

  91. Kawan, M. et al. Monitoring supported lipid bilayers with n-type organic electrochemical transistors. Mater. Horiz. 7, 2348–2358 (2020).

    Article  Google Scholar 

  92. Richards, M. J. et al. Membrane protein mobility and orientation preserved in supported bilayers created directly from cell plasma membrane blebs. Langmuir 32, 2963–2974 (2016).

    Article  Google Scholar 

  93. Pappa, A.-M. et al. Optical and electronic ion channel monitoring from native human membranes. ACS Nano 14, 12538–12545 (2020).

    Article  Google Scholar 

  94. Dipalo, M. et al. Membrane poration mechanisms at the cell–nanostructure interface. Adv. Biosyst. 3, e1900148 (2019).

    Article  Google Scholar 

  95. Spanu, A. et al. A three-dimensional micro-electrode array for in-vitro neuronal interfacing. J. Neural Eng. 17, 036033 (2020).

    Article  Google Scholar 

  96. Santoro, F. et al. Revealing the cell–material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano 11, 8320–8328 (2017).

    Article  Google Scholar 

  97. Nikolova, M. P. & Chavali, M. S. Recent advances in biomaterials for 3D scaffolds: a review. Bioact. Mater. 4, 271–292 (2019).

    Google Scholar 

  98. Pitsalidis, C. et al. Transistor in a tube: a route to three-dimensional bioelectronics. Sci. Adv. 4, eaat4253 (2018).

    Article  Google Scholar 

  99. Moysidou, C.-M. et al. 3D bioelectronic model of the human intestine. Adv. Biol. 5, 2000306 (2021).

    Article  Google Scholar 

  100. Del Agua, I. et al. Conducting polymer scaffolds based on poly(3,4-ethylenedioxythiophene) and xanthan gum for live-cell monitoring. ACS Omega 3, 7424–7431 (2018).

    Article  Google Scholar 

  101. Pitsalidis, C. et al. Organic electronic transmembrane device for hosting and monitoring 3D cell cultures. Sci. Adv. 8, eabo4761 (2022).

    Article  Google Scholar 

  102. Wang, L. & Lu, N. Conformability of a thin elastic membrane laminated on a soft substrate with slightly wavy surface. J. Appl. Mech. 83, 041007 (2016).

    Article  Google Scholar 

  103. Ren, G. et al. A laser-induced graphene-based flexible and all-carbon organic electrochemical transistor. J. Mater. Chem. C 11, 4916–4928 (2023).

    Article  Google Scholar 

  104. Kanakamedala, S. K., Alshakhouri, H. T., Agarwal, M. & DeCoster, M. A. A simple polymer based electrochemical transistor for micromolar glucose sensing. Sens. Actuators B Chem. 157, 92–97 (2011).

    Article  Google Scholar 

  105. Gualandi, I. et al. Textile organic electrochemical transistors as a platform for wearable biosensors. Sci. Rep. 6, 33637 (2016).

    Article  Google Scholar 

  106. Dai, Y. et al. Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors. Adv. Mater. 34, e2201178 (2022).

    Article  Google Scholar 

  107. Yang, C.-Y. et al. Low-power/high-gain flexible complementary circuits based on printed organic electrochemical transistors. Adv. Electron. Mater. 8, 2100907 (2022).

    Article  Google Scholar 

  108. Zabihipour, M. et al. High yield manufacturing of fully screen-printed organic electrochemical transistors. npj Flex. Electron. 4, 15 (2020).

    Article  Google Scholar 

  109. Yang, A. et al. Wearable organic electrochemical transistor array for skin-surface electrocardiogram mapping above a human heart. Adv. Funct. Mater. 33, 2215037 (2023).

    Article  Google Scholar 

  110. Zhang, S. et al. Hydrogel-enabled transfer-printing of conducting polymer films for soft organic bioelectronics. Adv. Funct. Mater. 30, 1906016 (2020).

    Article  Google Scholar 

  111. Qing, X. et al. Wearable fiber-based organic electrochemical transistors as a platform for highly sensitive dopamine monitoring. ACS Appl. Mater. Interfaces 11, 13105–13113 (2019).

    Article  Google Scholar 

  112. Wu, H. et al. Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human–machine interfaces. Adv. Sci. 8, 2001938 (2021).

    Article  Google Scholar 

  113. Lee, W. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, eaau2426 (2018).

    Article  Google Scholar 

  114. Wang, J. et al. Nanomesh organic electrochemical transistor for comfortable on-skin electrodes with local amplifying function. ACS Appl. Electron. Mater. 2, 3601–3609 (2020).

    Article  Google Scholar 

  115. Li, Y., Wang, N., Yang, A., Ling, H. & Yan, F. Biomimicking stretchable organic electrochemical transistor. Adv. Electron. Mater. 5, 1900566 (2019).

    Article  Google Scholar 

  116. Li, Y., Zhang, S., Li, X., Unnava, V. R. N. & Cicoira, F. Highly stretchable PEDOT:PSS organic electrochemical transistors achieved via polyethylene glycol addition. Flex. Print. Electron. 4, 044004 (2019).

    Article  Google Scholar 

  117. Lee, H. et al. Ultrathin organic electrochemical transistor with nonvolatile and thin gel electrolyte for long-term electrophysiological monitoring. Adv. Funct. Mater. 29, 1906982 (2019).

    Article  Google Scholar 

  118. Liu, D. et al. Intrinsically stretchable organic electrochemical transistors with rigid-device-benchmarkable performance. Adv. Sci. 9, 2203418 (2022).

    Article  Google Scholar 

  119. Jo, Y. J. et al. Biocompatible and biodegradable organic transistors using a solid-state electrolyte incorporated with choline-based ionic liquid and polysaccharide. Adv. Funct. Mater. 30, 1909707 (2020).

    Article  Google Scholar 

  120. Keene, S. T. et al. Wearable organic electrochemical transistor patch for multiplexed sensing of calcium and ammonium ions from human perspiration. Adv. Healthc. Mater. 8, 1901321 (2019).

    Article  Google Scholar 

  121. Uguz, I. et al. Autoclave sterilization of PEDOT:PSS electrophysiology devices. Adv. Healthc. Mater. 5, 3094–3098 (2016).

    Article  Google Scholar 

  122. Granelli, R. et al. High-performance bioelectronic circuits integrated on biodegradable and compostable substrates with fully printed mask-less organic electrochemical transistors. Small 18, 2108077 (2022).

    Article  Google Scholar 

  123. Campana, A., Cramer, T., Simon, D. T., Berggren, M. & Biscarini, F. Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26, 3874–3878 (2014).

    Article  Google Scholar 

  124. Makadia, H. K. & Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011).

    Article  Google Scholar 

  125. Wu, M. et al. Ultrathin, soft, bioresorbable organic electrochemical transistors for transient spatiotemporal mapping of brain activity. Adv. Sci. 10, 2300504 (2023).

    Article  Google Scholar 

  126. Uguz, I. & Shepard, K. L. Spatially controlled, bipolar, cortical stimulation with high-capacitance, mechanically flexible subdural surface microelectrode arrays. Sci. Adv. 8, eabq6354 (2022).

    Article  Google Scholar 

  127. Lee, W. et al. Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc. Natl Acad. Sci. USA 114, 10554–10559 (2017).

    Article  Google Scholar 

  128. Uguz, I. et al. Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology. Nat. Commun. 15, 533 (2024).

    Article  Google Scholar 

  129. Donahue, M. J. et al. High-performance vertical organic electrochemical transistors. Adv. Mater. 30, e1705031 (2018).

    Article  Google Scholar 

  130. Uguz, I. et al. Complementary integration of organic electrochemical transistors for front-end amplifier circuits of flexible neural implants. Sci. Adv. 10, eadi9710 (2024).

    Article  Google Scholar 

  131. Cea, C. et al. Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics. Nat. Mater. 22, 1227–1235 (2023).

    Article  Google Scholar 

  132. Zhao, Z., Spyropoulos, G. D., Cea, C., Gelinas, J. N. & Khodagholy, D. Ionic communication for implantable bioelectronics. Sci. Adv. 8, eabm7851 (2022).

    Article  Google Scholar 

  133. Wu, X. et al. Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability. Sci. China Chem. 63, 1281–1288 (2020).

    Article  Google Scholar 

  134. Diacci, C. et al. Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. iScience 24, 101966 (2021).

    Article  Google Scholar 

  135. Bischak, C. G., Flagg, L. Q. & Ginger, D. S. Ion exchange gels allow organic electrochemical transistor operation with hydrophobic polymers in aqueous solution. Adv. Mater. 32, e2002610 (2020).

    Article  Google Scholar 

  136. Gentile, F. et al. A biomimetic, biocompatible OECT sensor for the real-time measurement of concentration and saturation of ions in plant sap. Adv. Electron. Mater. 8, 2200092 (2022).

    Article  Google Scholar 

  137. Stavrinidou, E. et al. Electronic plants. Sci. Adv. 1, e1501136 (2015).

    Article  Google Scholar 

  138. Inal, S. Turning tissues into conducting matter. Science 379, 758–759 (2023).

    Article  Google Scholar 

  139. Strakosas, X. et al. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics. Science 379, 795–802 (2023).

    Article  Google Scholar 

  140. Arya, S. S., Dias, S. B., Jelinek, H. F., Hadjileontiadis, L. J. & Pappa, A.-M. The convergence of traditional and digital biomarkers through AI-assisted biosensing: a new era in translational diagnostics? Biosens. Bioelectron. 235, 115387 (2023).

    Article  Google Scholar 

  141. Land, K. J., Boeras, D. I., Chen, X.-S., Ramsay, A. R. & Peeling, R. W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 4, 46–54 (2019).

    Article  Google Scholar 

  142. Tian, X. et al. Pushing OECTs toward wearable: development of a miniaturized analytical control unit for wireless device characterization. Anal. Chem. 94, 6156–6162 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

For this Review, we used large language models, including ChatGPT (OpenAI) and Claude (Anthropic), to correct the grammar and wording of the text. All text in the manuscript was written by the authors, and large language models were used solely for style corrections with no input in the content or meaning.

Author information

Authors and Affiliations

Authors

Contributions

A.S. and S.I. developed the concept of the article. A.S. worked with all authors to write the article. All authors contributed to the article’s research and discussion. S.I. did final edits and revisions with contributions from all authors.

Corresponding author

Correspondence to Sahika Inal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Haungxian Ju and Paschalis Gkoupidenis for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, A., Koklu, A., Uguz, I. et al. Bioelectronic interfaces of organic electrochemical transistors. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00180-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00180-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing