Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterizing the phenotypic and genetic structure of psychopathology in UK Biobank

A Publisher Correction to this article was published on 09 July 2024

This article has been updated

Abstract

Mental health conditions are characterized by higher-order transdiagnostic factor structures, which may contribute to the high levels of comorbidity observed in psychopathology. However, the phenotypic and genetic structures of various psychopathology diagnoses may differ, raising questions about the validity and utility of these factors. Here we study the phenotypic and genetic factor structures of ten psychiatric conditions using UK Biobank and public genomic data. Although the factor structure of psychopathology was generally genetically and phenotypically consistent, conditions related to externalizing (for example, alcohol use disorder) and compulsivity (for example, eating disorders) exhibited cross-level disparities in their relationships with other conditions, possibly due to environmental influences. Domain-level factors, especially thought disorder and internalizing factors, were more informative than a general psychopathology factor in genome-wide association and polygenic index analyses. Collectively, our findings enhance the understanding of comorbidity and shared etiology, highlight the intricate interplay between genes and environment, and offer guidance for psychiatric research using polygenic indices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the data and models tested in the present study.
Fig. 2: Comparison of phenotypic and genetic correlations among ten psychiatric conditions.
Fig. 3: Cross-level comparison of the phenotypic and genetic factor structure of psychopathology.
Fig. 4: Comparison of p-factor effects relative to domain-level factor effects.

Similar content being viewed by others

Data availability

No new data were gathered for this study; instead, data from pre-existing studies or cohorts were utilized. The essential dataset needed to understand, replicate, and expand on the findings, specifically the GWAS summary statistics for the psychopathology GWAS, are available at an Open Science Framework repository (https://osf.io/unkym/). The UK Biobank and the Mass General Brigham Biobank have access restrictions in place to safeguard participant privacy. The UK Biobank data are accessible to researchers with an ongoing application in the UK Biobank (https://www.ukbiobank.ac.uk/). This study was conducted on the basis of the UK Biobank application 46007. We used reference data from the 1000 Genomes phase 3 (version 5) (https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html) and HapMap 3 (revision 2) (https://mathgen.stats.ox.ac.uk/impute/data_download_hapmap3_r2.html). Publicly available GWAS summary statistics included in the meta-analyses include alcohol use disorder (https://pubmed.ncbi.nlm.nih.gov/29058377/), anorexia (https://doi.org/10.1176/appi.ajp.2017.16121402), generalized anxiety (https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2733149), bipolar disorder (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956732/), depression (https://www.nature.com/articles/s41588-018-0090-3), suicide attempt (https://pubmed.ncbi.nlm.nih.gov/30116032/), obsessive–compulsive disorder (https://pubmed.ncbi.nlm.nih.gov/28761083/), panic disorder (https://www.nature.com/articles/s41380-019-0590-2), post-traumatic stress disorder (https://pubmed.ncbi.nlm.nih.gov/28439101/), and schizophrenia (https://pubmed.ncbi.nlm.nih.gov/28439101/). Cortical maps were obtained from the neuromaps toolbox (https://www.nature.com/articles/s41592-022-01625-w). Gene expression datasets from GTEx8 and Brainspan are available through FUMA (https://fuma.ctglab.nl/).

Code availability

The code for the present study is available on OSF (https://osf.io/unkym/). This wraps fastGWA-GLMM from the GCTA tool (version 1.94.1) (https://yanglab.westlake.edu.cn/software/gcta/#fastGWA-GLMM), Genomic SEM (version 0.0.5) (https://github.com/GenomicSEM/GenomicSEM), METAL (version 2020-05-05) (https://genome.sph.umich.edu/wiki/METAL_Documentation), PRS-CS (version October 20, 2019) (https://github.com/getian107/PRScs), sBayesR (version 2.05) (https://cnsgenomics.com/software/gctb/#Overview), plink package (version 1.5.1) (https://www.cog-genomics.org/plink/1.9/rserve), and R (version 4.1.0) (https://cran.rstudio.com/). Bioannotation analyses were conducted using FUMA (version 1.3.5e) (https://fuma.ctglab.nl/).

Change history

References

  1. Kessler, R. C., Chiu, W. T., Demler, O. & Walters, E. E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 617–627 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Klein Hofmeijer-Sevink, M. et al. Clinical relevance of comorbidity in anxiety disorders: a report from the Netherlands Study of Depression and Anxiety (NESDA). J. Affect. Disord. 137, 106–112 (2012).

    Article  Google Scholar 

  3. Investing in Mental Health (WHO, 2003); https://apps.who.int/iris/bitstream/handle/10665/42823/9241562579.pdf

  4. Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    Article  PubMed  Google Scholar 

  5. Kotov, R. et al. The Hierarchical Taxonomy of Psychopathology (HiTOP): a dimensional alternative to traditional nosologies. J. Abnorm. Psychol. 126, 454–477 (2017).

    Article  PubMed  Google Scholar 

  6. Beam, E., Potts, C., Poldrack, R. A. & Etkin, A. A data-driven framework for mapping domains of human neurobiology. Nat. Neurosci. 24, 1733–1744 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dalgleish, T., Black, M., Johnston, D. & Bevan, A. Transdiagnostic approaches to mental health problems: current status and future directions. J. Consult. Clin. Psychol. 88, 179–195 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee, P. H. et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482.e11 (2019).

    Article  Google Scholar 

  9. Grotzinger, A. D. et al. Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. Nat. Genet. 54, 548–559 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mallard, T. T., Grotzinger, A. D. & Smoller, J. W. Examining the shared etiology of psychopathology with genome-wide association studies. Physiol. Rev. 103, 1645–1665 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smoller, J. W. et al. Psychiatric genetics and the structure of psychopathology. Mol. Psychiatry 24, 409–420 (2019).

    Article  PubMed  Google Scholar 

  12. Polderman, T. J. C. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    Article  PubMed  Google Scholar 

  13. Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 10, 2417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jones, H. J. et al. Investigating the genetic architecture of general and specific psychopathology in adolescence. Transl. Psychiatry 8, 145 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. The Brainstorm Consortium et al. Analysis of shared heritability in common disorders of the brain. Science 360, eaap8757 (2018).

  16. Caspi, A. et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119–137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lahey, B. B. et al. Measuring the hierarchical general factor model of psychopathology in young adults. Int. J. Methods Psychiatr. Res. 27, e1593 (2018).

    Article  PubMed  Google Scholar 

  18. Markon, K. E. Modeling psychopathology structure: a symptom-level analysis of Axis I and II disorders. Psychol. Med. 40, 273–288 (2010).

    Article  PubMed  Google Scholar 

  19. Markon, K. E. Bifactor and hierarchical models: specification, inference, and interpretation. Annu. Rev. Clin. Psychol. 15, 51–69 (2019).

    Article  PubMed  Google Scholar 

  20. Sprooten, E., Franke, B. & Greven, C. U. The P-factor and its genomic and neural equivalents: an integrated perspective. Mol. Psychiatry 27, 38–48 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carey, C. E. et al. Principled distillation of multidimensional UK Biobank data reveals insights into the correlated human phenome. Preprint at medRxiv https://doi.org/10.1101/2022.09.02.22279546 (2022)

  22. Caspi, A. et al. Longitudinal assessment of mental health disorders and comorbidities across 4 decades among participants in the Dunedin Birth Cohort Study. JAMA Netw. Open 3, e203221 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Caspi, A. & Moffitt, T. E. All for one and one for all: mental disorders in one dimension. Am. J. Psychiatry 175, 831–844 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D. & Zald, D. H. Validity and utility of the general factor of psychopathology. World Psychiatry 16, 142–144 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lahey, B. B., Moore, T. M., Kaczkurkin, A. N. & Zald, D. H. Hierarchical models of psychopathology: empirical support, implications, and remaining issues. World Psychiatry 20, 57–63 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Watts, A. L., Greene, A. L., Bonifay, W. & Fried, E. I. A critical evaluation of the p-factor literature. Nat. Rev. Psychol. 3, 108–122 (2024).

    Article  Google Scholar 

  27. van Bork, R. et al. Latent variable models and networks: statistical equivalence and testability. Multivar. Behav. Res. 56, 175–198 (2019).

    Article  Google Scholar 

  28. Waldman, I. D. et al. Recommendations for adjudicating among alternative structural models of psychopathology. Clin. Psychol. Sci. 11, 616–640 (2023).

    Article  Google Scholar 

  29. Watts, A. L., Lane, S. P., Bonifay, W., Steinley, D. & Meyer, F. A. C. Building theories on top of, and not independent of, statistical models: the case of the p-factor. Psychol. Inq. 31, 310–320 (2020).

    Article  PubMed  Google Scholar 

  30. Clapp Sullivan, M. L. et al. Beyond the factor indeterminacy problem using genome-wide association data. Nat. Hum. Behav. 8, 205–218 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vandekerckhove, J., Matzke, D. & Wagenmakers, E.-J. Model comparison and the principle of parsimony. In The Oxford Handbook of Computational and Mathematical Psychology (eds. Busemeyer, J. R., Wang, Z., Townsend, J. T. & Eidels, A.) 300–319 (Oxford Univ. Press, 2015).

  32. Sodini, S. M., Kemper, K. E., Wray, N. R. & Trzaskowski, M. Comparison of genotypic and phenotypic correlations: Cheverud’s conjecture in humans. Genetics 209, 941–948 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Willis, J. H., Coyne, J. A. & Kirkpatrick, M. Can one predict the evolution of quantitative characters without genetics? Evolution 45, 441–444 (1991).

    Article  PubMed  Google Scholar 

  34. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Karlsson Linnér, R. et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat. Neurosci. 24, 1367–1376 (2021).

    Article  PubMed  Google Scholar 

  37. Williams, C. M. et al. Guidelines for evaluating the comparability of down-sampled GWAS summary statistics. Behav. Genet. 53, 404–415 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mallard, T. T. et al. Multivariate GWAS of psychiatric disorders and their cardinal symptoms reveal two dimensions of cross-cutting genetic liabilities. Cell Genomics 2, 100140 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Markello, R. D. et al. neuromaps: structural and functional interpretation of brain maps. Nat. Methods 19, 1472–1479 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Karlson, E. W., Boutin, N. T., Hoffnagle, A. G. & Allen, N. L. Building the Partners HealthCare Biobank at Partners Personalized Medicine: informed consent, return of research results, recruitment lessons and operational considerations. J. Pers. Med. 6, 2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cheverud, J. M. A comparison of genetic and phenotypic correlations. Evolution 42, 958–968 (1988).

    Article  PubMed  Google Scholar 

  43. Turkheimer, E., Pettersson, E. & Horn, E. E. A phenotypic null hypothesis for the genetics of personality. Annu. Rev. Psychol. 65, 515–540 (2014).

    Article  PubMed  Google Scholar 

  44. Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 exomes. Nature 614, 492–499 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xie, C. et al. A shared neural basis underlying psychiatric comorbidity. Nat. Med. 29, 1232–1242 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Taylor, J. J. et al. A transdiagnostic network for psychiatric illness derived from atrophy and lesions. Nat. Hum. Behav. 7, 420–429 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grotzinger, A. D. et al. Multivariate genomic architecture of cortical thickness and surface area at multiple levels of analysis. Nat. Commun. 14, 946 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat. Genet. 52, 437–447 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bulik-Sullivan, B. K. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Abdellaoui, A., Smit, D. J. A., Brink, W., van den, Denys, D. & Verweij, K. J. H. Genomic relationships across psychiatric disorders including substance use disorders. Drug Alcohol Depend. 220, 108535 (2021).

    Article  PubMed  Google Scholar 

  55. Thorp, J. G. et al. Symptom-level modelling unravels the shared genetic architecture of anxiety and depression. Nat. Hum. Behav. 5, 1432–1442 (2021).

    Article  PubMed  Google Scholar 

  56. Abdellaoui, A. The evolutionary dance between culture, genes, and everything in between. Behav. Brain Sci. 45, e153 (2022).

    Article  PubMed  Google Scholar 

  57. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  59. Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166, 400–424 (2018).

    Article  PubMed  Google Scholar 

  60. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Williams, C. M. et al. High intelligence is not associated with a greater propensity for mental health disorders. Eur. Psychiatry 66, e3 (2023).

    Article  Google Scholar 

  62. R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  63. Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research (Northwestern Univ., 2021).

  64. Finch, W. H. Using fit statistic differences to determine the optimal number of factors to retain in an exploratory factor analysis. Educ. Psychol. Meas. 80, 217–241 (2020).

    Article  PubMed  Google Scholar 

  65. Fabrigar, L. R., Wegener, D., MacCallum, R. C. & Strahan, E. J. Evaluating the use of exploratory factor analysis in psychological research. Psychol. Methods 4, 272–299 (1999).

    Article  Google Scholar 

  66. Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article  Google Scholar 

  67. Kolenikov, S. & Bollen, K. A. Testing negative error variances: is a Heywood case a symptom of misspecification? Sociol. Methods Res. 41, 124–167 (2012).

    Article  Google Scholar 

  68. Kline, R. B. Principles and Practice of Structural Equation Modeling 4th edn (Guilford Publications, 2015).

  69. Marsh, H. W., Hau, K.-T. & Wen, Z. In search of golden rules: comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Struct. Equ. Model. 11, 320–341 (2004).

    Article  Google Scholar 

  70. Jiang, L., Zheng, Z., Fang, H. & Yang, J. A generalized linear mixed model association tool for biobank-scale data. Nat. Genet. 53, 1616–1621 (2021).

    Article  PubMed  Google Scholar 

  71. Yang, J., Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. GCTA-GREML accounts for linkage disequilibrium when estimating genetic variance from genome-wide SNPs. Proc. Natl Acad. Sci. USA 113, E4579–E4580 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. de la Fuente, J., Davies, G., Grotzinger, A. D., Tucker-Drob, E. M. & Deary, I. J. A general dimension of genetic sharing across diverse cognitive traits inferred from molecular data. Nat. Hum. Behav. 5, 49–58 (2021).

    Article  PubMed  Google Scholar 

  75. McArdle, J. J. & Goldsmith, H. H. Alternative common factor models for multivariate biometric analyses. Behav. Genet. 20, 569–608 (1990).

    Article  PubMed  Google Scholar 

  76. Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat. Commun. 10, 5086 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hu, L. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Model. 6, 1–55 (1999).

    Article  Google Scholar 

  80. Boutin, N. T. et al. The evolution of a large biobank at Mass General Brigham. J. Pers. Med. 12, 1323 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wei, W.-Q. et al. Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. PLoS ONE 12, e0175508 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zheutlin, A. B. et al. Penetrance and pleiotropy of polygenic risk scores for schizophrenia in 106,160 patients across four health care systems. Am. J. Psychiatry 176, 846–855 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Carroll, R. J., Bastarache, L. & Denny, J. C. R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics 30, 2375–2376 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. NeuroImage 178, 540–551 (2018).

    Article  PubMed  Google Scholar 

  85. Seidlitz, J. et al. Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97, 231–247.e7 (2018).

    Article  PubMed  Google Scholar 

  86. Váša, F. et al. Adolescent tuning of association cortex in human structural brain networks. Cereb. Cortex 28, 281–294 (2018).

    Article  PubMed  Google Scholar 

  87. Walters, R. K. et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 21, 1656–1669 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Meier, S. M. et al. Genetic variants associated with anxiety and stress-related disorders: a genome-wide association study and mouse-model study. JAMA Psychiatry 76, 924–932 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Forstner, A. J. et al. Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression. Mol. Psychiatry 26, 4179–4190 (2021).

    Article  PubMed  Google Scholar 

  90. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Duncan, L. et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am. J. Psychiatry 174, 850–858 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Arnold, P. D. et al. Revealing the complex genetic architecture of obsessive–compulsive disorder using meta-analysis. Mol. Psychiatry 23, 1181–1188 (2018).

    Article  Google Scholar 

  94. Duncan, L. E. et al. Largest GWAS of PTSD (N = 20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry 23, 666–673 (2018).

    Article  PubMed  Google Scholar 

  95. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Erlangsen, A. et al. Genetics of suicide attempts in individuals with and without mental disorders: a population-based genome-wide association study. Mol. Psychiatry 25, 2410–2421 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the UK Biobank staff, researchers, and volunteers. Funding: ANR-17-EURE-0017 (F.R.), ANR-10-IDEX-0001-02 PSL (F.R.), NIH T32HG010464 (T.T.M.), and NIH K08MH135343 (T.T.M.).

Author information

Authors and Affiliations

Authors

Contributions

C.M.W., H.P., F.R., and T.T.M. designed the study. T.G. conducted the polygenic score analyses with PRS-CS. Y.H.L. conducted the phenome-wide association analyses. J.S. conducted the correlational analyses of cortical maps. C.M.W. conducted all other analyses. T.W. and T.T.M. provided statistical guidance. C.M.W., J.W.S., F.R., T.G., and T.T.M. guided interpretation of key findings. All named authors reviewed, edited, and approved the submission.

Corresponding author

Correspondence to Camille M. Williams.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Wei Cheng, Jeggan Tiego, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34 and Sections 1–14.

Reporting Summary

Supplementary Data 1

Supplementary Tables 1–17.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, C.M., Peyre, H., Wolfram, T. et al. Characterizing the phenotypic and genetic structure of psychopathology in UK Biobank. Nat. Mental Health 2, 960–974 (2024). https://doi.org/10.1038/s44220-024-00272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00272-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing