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The application of deep learningmodels to precisionmedical diagnosis often requires the aggregation
of large amounts of medical data to effectively train high-quality models. However, data privacy
protection mechanisms make it difficult to perform medical data collection from different medical
institutions. In autism spectrum disorder (ASD) diagnosis, automatic diagnosis using multimodal
information from heterogeneous data has not yet achieved satisfactory performance. To address the
privacy preservation issue as well as to improve ASD diagnosis, we propose a deep learning
framework using multimodal feature fusion and hypergraph neural networks for disease prediction in
federated learning (FedHNN). By introducing the federated learning strategy, each local model is
trained and computed independently in a distributed manner without data sharing, allowing rapid
scaling ofmedical datasets to achieve robust and scalable deep learning predictivemodels. To further
improve the performancewith privacy preservation, we improve the hypergraphmodel for multimodal
fusion to make it suitable for autism spectrum disorder (ASD) diagnosis tasks by capturing the
complementarity and correlation between modalities through a hypergraph fusion strategy. The
results demonstrate that our proposed federated learning-based prediction model is superior to all
local models and outperforms other deep learning models. Overall, our proposed FedHNN has good
results in the work of using multi-site data to improve the performance of ASD identification.

Autism spectrum disorder (ASD) is a neurodevelopmental disorder
affecting 1 in 44 children1. Patients with ASD are genetically heterogeneous,
present diverse behavioral characteristics and varying degrees of intellectual
performances. Thus, clinical diagnosis ofASDremains challenging.Current
clinical practice mainly relies on subjective personal characteristic (PC)
assessment of the physicians and/or neuroimaging data, e.g., fMRI. PC
assessment includes social interaction, language skills, IQ, and stereotypical
behaviors, whereas Functional connectivity (FC) extracted from fMRI data
reflects the interrelationship and temporal connectivity among different
brain regions.While both are useful to some extent for diagnosis, few studies
have leveraged both data types in clinical diagnosis.

Deep learning has gain tremendous attention in recent years, and
applications of deep learning algorithms (e.g., graph neural networks) for
disease clinical diagnosis has become apopular approach in computer-aided
diagnosis (CADx) studies2 such as Alzheimer’s disease3–6 and Autism7,8.

Recently, a number of deep learning algorithms have been applied to ASD
diagnosis, especially usingMRIdata. For example, Y.Kong et al.9 considered
the connectivity between eachpair of region of interest (ROIs), evaluated on
T1-weightedMRI imageswith adeepneural network classifier.Wang et al.10

used multilayer perceptron and ensemble learning methods with multi-
graph features for ASD identification. Since medical data with different
modalities typically provides more complementary information, multi-
modal data integration has also been attempted for disease diagnosis. To
learn the complex relationships and information from the multi-modal
data, graph structure has been employed in the medical field11,12. For
example,Parisot et al.13 constructed ademographic information graphusing
non-imaging features, and added imaging features for classification.
Hypergraphs, as an extension of general graph, are particularly efficient for
handling multi-relational and high-order relationships. In hypergraphs,
relationships between nodes can be more than just binary, encompassing
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multi-relational aspects, which enhanced capability of hypergraphs better
expresses intricate associations between entities. For instance, Di et al.14

employed hypergraph learning to identify and classify COVID-19 patients,
andXiao et al.15 constructedhypergraph-based representations of fMRIdata
to explore the classification of neurodegenerative diseases. Despite the
advancements for disease diagnosis using multi-modal data, privacy reg-
ulations could be an obstacle when collecting large scale multi-modal data
for model training because the datasets are typically integrated from mul-
tiply institutions. The limitations faced in multimodal deep learning for
ASD diagnosis highlight the demands for more effective solutions to
leverage the benefits of multi-center data but addressing the challenges of
data heterogeneity and privacy concerns. Recently, Federated Learning16–18

has been proposed to address the issues of local data management and
privacy protection by collaboratively trainingmodels with transferring only
model parameters without exchanging the data itself, allowing clinical data
do not have to be stored centrally. Recent studies indicate notable
achievements of federated learning in the fields of medical image diagnosis,
disease prediction, and drug development, etc. For instance, the PriMIA19

framework proposed by Kaissis et al. has successfully realized differential
privacy, secure aggregated federated learning, and encrypted inference to
protect sensitivemedical imaging datawithout requiring data transmission.
Other applications of federated learning in COVID-1920–22 diagnosis also
demonstrates its immense potential.

In this study, we propose a deep learning framework for autism pre-
diction using multimodal feature fusion and hypergraph neural networks
(HGNN) in Federated Learning (FedHNN). FedHNN uses a hypergraph to
fuse functional neuroimaging data with PC data to capture interrelationships
inmultimodal data. Graph structures are powerfully expressive formodeling
relationships between patients23. In multimodal feature fusion, hypergraphs
enable learning multivariate relationships more accurately than ordinary
graph structures, facilitating multimodal fusion and expansion24, and build-
ing networks of relationships between patients more effectively.

We applied FedHNN for ASD diagnosis, and FedHNN demonstrated
superior performance compared to other deep learning models or using
single site dataset. Extension experiments of the model evaluation demon-
strated that FedHNN can effectively be used for privacy-preserving ASD
diagnosis tasks. This study also indicates the high potential of federated
learning in achieving large-scale precision medicine.

Results
Building a privacy-preserving multimodal deep learning
framework
The experimental data used in this study were obtained from the Autism
ImagingData Exchange (ABIDE I)25 dataset. TheABIDEdataset consists of
17 international acquisition sites that publicly share resting-state functional
magnetic resonance imaging (R-fMRI), anatomical andphenotypic datasets
from 1112 subjects, with sample variations in each clinical site. To ensure
that the deep learningmodel can be executed on a single site, the ROIs fMRI
sequences were downloaded from the preprocessed ABIDE dataset, and a
total of 449 subjects (containing 206 ASD subjects and 243 TC subjects)
from four largest sites (New York University (NYU), University of Cali-
fornia, Los Angeles (UCLA), University of Michigan (UM), and University
of Utah School of Medicine (USM)) were selected for this study. The
demographic information of each site is summarized in Table 1.

As shown in Fig. 1, we applied a federated learning framework to train
data collected from different clinical sites with privacy protection. For data
from each clinical site, a local multimodal based HGNN was trained with
feature fusion for PCdata and fMRIdata.Only encryptedmodel parameters
collected from each local model were transmitted to the global model, thus
preserving privacy information of the patient at each clinical site. We
applied this framework to the 4 ABIDE datasets mentioned above. This
frameworkmodel was trained on all samples from the 4 sites, alleviating the
small sample problem faced by training each center dataset independently,
while preserving patient privacy through the federated learning approach.
More details of the model framework can be found in Methods.

Assessment for confounding
We first assessed the differences between the types of data across medical
sites and between subjects with different disease states (Fig. 2). The age
distribution of each site is different. There is no obvious difference between
sites in the three intelligence characteristics FIQ, VIQ, and PIQ, but Autism
patients showed apparently lower mean IQ than normal subjects (Fig. 2d).
Next, we applied UMAP to project phenotypic data and three brain atlas
features separately into a one-dimensional feature space, to assess potential
confounding relationships between disease states, site differences, and dif-
ferent data features. We noticed that the three brain atlas features differed
between each site (Fig. 2e), probably because different medical sites use
scanners from different manufacturers, or the calibration methods and the
specified acquisition protocols differ from site to site. For example,NYU site
is using a 3 Tesla Allegra scanner and UM is using a 3 Tesla GE Signa
scanner. At the NYU site, subjects all completed at least one simulated scan
prior to the scan and most participants were asked to open their eyes and
relax while a white crosshair was projected on the screen against a black
background during the resting-state fMRI scan. whereas at the USM site,
subjects didnotundergoany simulated scanningprocedureprior to the scan
and their images were acquired from participants approximately every
2–3 years. Through multimodal feature fusion, data from different mod-
alities might provide complementary information to each other, and the
federated learning framework also eliminates data differences fromdifferent
medical sites to some extent.

FedHNN using multi-site data outperforms the model using
single-site data
To assess the performance of FedHNN, we randomly split the samples into
training and test sets. Using stratified 5-fold cross-validation, we demon-
strated that our model classified the autism vs healthy individuals with
73.52% accuracy. In addition, we compared the performance of federated
learning with other non-federated learning strategies on the ASD identifi-
cation task. Table 2presents the results of each evaluationmetric obtained in
the test set for the different learning strategies. Among the four single-site
individual models, higher AUCs were obtained in the two site databases
with larger data sizes (NYU and UM) than the other sites with AUC of
0.6900 and 0.7037, whose accuracies were (0.7125, 0.7194), precision
(0.7689, 0.7272), recall (0.7272, 0.8257), specificity (0.6000, 0.5818), and F1-
score (0.7696, 0.7664), respectively. In our case, the proposed FedHNN
obtained anAUCof 0.7110, an accuracyof 0.7352, precisionof 0.7319, recall
of 0.8204, specificity of 0.6028, and F1-score of 0.7598, which outperforms
all the single site trained models. Thus, our proposed federated learning

Table 1 | Data summary of the dataset used in our study

ASD TC Age meanSTD FIQ meanSTD VIQ meanSTD PIQ meanSTD Male Female

NYU 60 100 15.51 (6.66) 110.75 (14.87) 109.99 (14.64) 109.25 (15.07) 125 35

UCLA 46 44 12.90 (2.12) 103.08 (12.87) 103.87 (13.00) 101.94 (13.40) 79 11

UM 58 74 14.09 (3.25) 106.84 (13.96) 110.91 (16.72) 102.95 (16.59) 106 26

USM 42 25 22.74 (8.57) 104.60 (17.55) 101.25 (20.37) 106.66 (16.09) 67 0

In this study, four ABIDEdata sites, includingNYU,UCLA,UM, andUSMare used to develop the FedHNNmodel.Wecalculate the standard deviation (STD) for each phenotypedata. TC typical control, FIQ
Full Intelligence, VIQ Verbal Intelligence, PIQ Performance Intelligence.
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model based on preserving data privacy can improve the learning perfor-
mance of individual sites by extending the amount of training data by
federating each site.

However, the federated learning process requires the individual site to
use private data to train the model and encrypt their trained model para-
meters to transfer to the global model, which will generate some commu-
nication loss. Without using the federated learning strategy to protect the
data privacy, theAll-HNNstrategy combineddata fromall sites and extends
the amount of data, and its AUC result for the test set was 0.7776, whichwas
much higher than the federated learning strategy and the single-site inde-
pendent training strategy. This demonstrates that accurate ASD identifi-
cation needs to be performed on the basis of sharing a large amount of
medical data. The use of federated learning under a privacy-preserving

strategy can also effectively collect data information from each site and
improve the accuracy of ASD identification.

Benchmark against other deep learning strategies
Based on the privacy-preserving strategy, we compared different kinds
of deep learning models to verify that the HGNN-based FedHNN
model proposed in this study can reach the best performance. We use
other different graph learning models and convolutional networks as
different baseline approach based on federated learning strategies and
compare them under the same experimental setup: (1) Graph Con-
volutional Network (GCN)26 (2) GraphAttentionNetwork (GAT)27 (3)
Sample and aggreGatE (GraphSAGE)28 (4) Convolutional Neural
Network (CNN).

Fig. 1 | Themodel framework andworkflow.Multimodal data including fMRI scan
data and phenotype data are used to develop local models for ASD diagnostic tasks.
a Federated Learning Framework. Each local model trains it using protected private
data and communicates with the globalmodel at a specific frequency, uploading only
the encrypted model parameters when communicating (left). The global model uses
the average strategy to update the model parameters and distribute them to each

local model (right). b The local model uses multimodal data to construct hyperedge
groups separately, and generate the hypergraph by connecting the hyperedge groups
(Hypergraph Generation). The hypergraph and the fused node features are jointly
input to the hypergraph neural network for multi-layer hypergraph convolution to
finally obtain the classification results.

https://doi.org/10.1038/s44184-023-00050-x Article
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Fig. 2 | Overview of brain atlas visualization and data distribution variance.
aDifferent brain atlas defines the region of interest (ROI) by the blood oxygenation
level-dependent (BOLD) signal to establish the low-order functional connectivity
(LOFC) matrix. b Visualization of a brain atlas using Automated Anatomical
Labeling (AAL) atlas as an example. c Only 1% of the edge strength was retained to

map the functional brain connectome using the AAL atlas as an example.
d Visualization of differences between sites in terms of age, FIQ, VIQ, and PIQ in
phenotypic data. e Differences in the distribution of different types of data in dif-
ferent centers. Includes three brain atlases (AAL, Harvard-Oxford Atlas (HO), and
Craddock200 (CC200)) and phenotypic data.
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FedHNNbased on theHGNNobtained the best AUC result of 0.7110.
Table 2 presents the results of each evaluationmetric obtained in the test set
of different deep learningmodels based on federated learning strategies. The
results illustrated that compared with ordinary graph structures, hyper-
graphs performed much better at establishing multivariate relationships
between modalities, conveying complex higher-order correlations between
data, and facilitating the fusion and extension of different modalities. The
hypergraph structure can fusemultimodal information into the same graph
structure through its flexible hyper-edges, which allows for more efficient
construction of relational networks between patients. In addition, the
combination of hypergraph structure and hyperedge convolution per-
formed better than other combined models.

Data types and hyperparameters of FedHNN
To evaluate the contribution of multimodal feature fusion to the classifi-
cation results, we testedmodel performance using different combinations of
input data. By comparing the accuracy results we found that the three fMRI
brain atlases used in combinationwith thephenotypic dataobtained thebest
classification performance. All three fMRI brain atlases played important
roles in the ASD identification task compared to the phenotypic data, the
fusionwith non-imaging data improved the classification performance. The
combination of the three brain atlases also yielded better classification
results than a single atlas, suggesting that the different brain atlases may
provide complementary information for ASD diagnosis (Table 3).

Next, we explored the impact of two important hyperparameters on
FedHNN for the ASD identification task: the number of hypergraph

neighbor nodes (kneigs) and the update speedof the globalmodel (pace). To
determine the optimal number of neighbor nodes, we used the hypergraph
structure generated by kneigs = 5 to 25 nearest neighbors (including the
center of prime) to input into the model for training and evaluated its
synthesis results. The best accuracy was achieved when kneigs = 10 for both
NYU and USM sites while kneigs varied from 5 to 25 (Fig. 3c). In addition,
the highest average accuracy was achieved with kneigs = 10 (Fig. 3a). Due to
the high cost of communication between the local model and the global
model, to identify the optimum update rate of the global model, we further
investigated the effect of the size of the pace on the accuracy of the ASD
identification task. The USM site showed significant superiority when
pace = 20, which achieved an accuracy rate of 0.82 (Fig. 3d). Combining the
results of all sites, we chose the hypergraph constructed with a neighbor
node of 10 as the model’s graph input and the communication between the
local and global models was performed every 20 pace to achieve the best
performance in federated learning (Fig. 3a, b).

Discussion
It is still a challenging task to automate ASD diagnosis. In this study, we
demonstrate the possibility of federated learning to combine data from
different sites for automatic/computational ASD diagnosis in a way that
protects data privacy across healthcare institutions. Obtaining sufficient
data remains a major challenge in CADx research, not only in collecting
data, but also requiring collaboration among medical institutions to solve
the problem of medical data annotation. In the setup of federated learning,
participants retain local data to execute distributed computations rather
than transferring data directly to a centralized data warehouse to build
machine learningmodels. Thus, federated learning addresses privacy issues
and encourages multi-institutional collaboration.

We show in a proof of concept that the use of a federated deep learning
model based on hypergraph fusion of multimodal features has high accu-
racy in ASD diagnosis tasks, where the multimodal features are a combi-
nation of multi-scale brain FC data and PC data obtained from ABIDE’s
largeheterogeneousdataset. This dataset collecteddata from17 sites, andwe
only chose the data from the four largest sites for this study to ensure that the
deep learning model could be executed on a single site. The reason why
federated learning outperformed the individual model is because federated
learning ensembled and aggregated multiple local individual models with
privacy-preserving, and thereby trainedonmore diverse and larger datasets.
In the federated learning framework, multiple individual models were first
trained on local data from different sources or devices and then aggregated
by some strategies without leaking privacy. This multi-center data dis-
tribution increased data diversity and scale compared to training on a single
centralized dataset, allowing federated models to capture more compre-
hensive and representative underlying data, thereby have better general-
ization and improved performance. Therefore, federated learning
outperforms the individual model. However, due to the information loss

Table 2 | FedHNN model performance

AUC Accuracy Precision Recall Specificity F1_Score

All HNN 0.7776 0.7794 0.7974 0.7985 0.7569 0.7961

FedHNN 0.7110 0.7352 0.7319 0.8204 0.6028 0.7598

Single NYU 0.6900 0.7125 0.7689 0.7272 0.6000 0.7696

Single
UCLA

0.6880 0.6889 0.6499 0.7917 0.5844 0.7077

Single UM 0.7037 0.7194 0.7272 0.8257 0.5818 0.7664

Single USM 0.6790 0.7010 0.6686 0.6000 0.7583 0.5733

Fed GCN 0.6892 0.7012 0.6881 0.7846 0.5938 0.7192

Fed GAT 0.7033 0.7276 0.7523 0.7468 0.6601 0.7332

Fed
GraphSAGE

0.6487 0.6417 0.6605 0.6841 0.6135 0.6536

Fed CNN 0.6893 0.7049 0.7232 0.7244 0.6547 0.7101

Shows the performance of our proposed FedHNN model on four site data. For each strategy and
deep learning model, we report the AUC results, accuracy, precision, recall, specificity, and F1
scores for all tasks.

Table 3 | Performance of different data type combinations

AUC Accuracy Precision Recall Specificity F1_Score

AAL 0.6646 0.6879 0.6668 0.8028 0.5265 0.7178

CC200 0.6591 0.6822 0.6455 0.7857 0.5326 0.7005

HO 0.6497 0.6785 0.6699 0.8132 0.4865 0.7128

phenotypic 0.5809 0.6095 0.5995 0.6986 0.4633 0.6177

AAL + phenotypic 0.6667 0.6986 0.6866 0.8052 0.5285 0.7267

CC200+ phenotypic 0.6766 0.6978 0.6783 0.7997 0.5539 0.7166

HO+ phenotypic 0.6554 0.6943 0.7086 0.7567 0.5549 0.7091

AAL+CC200+HO 0.7013 0.7307 0.7301 0.8047 0.5986 0.7526

AAL+CC200+HO+ phenotypic 0.7110 0.7352 0.7319 0.8204 0.6028 0.7598

Shows the performance of our proposed FedHNNmodel for different combinations of data types.We report the results of three different brain atlases combinedwith phenotypic data for the assessment of
metrics.

https://doi.org/10.1038/s44184-023-00050-x Article
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during the aggregation of local individual models, the model trained on the
directly aggregated data from all sites without protecting privacy outper-
form the federated learning.

The number of participants selected for medical analysis in this study
wasmuch fewer than in any other federated learning applications, this may
play a role, especially when using the averaging strategies to update model
parameters. Moreover, we found that compared with the “All” strategy
(training with all data stored centrally), adding the federated learning
strategy will reduce the ASD identification accuracy to some extent, this is
probably due to the fact that the update strategy used by the currentmodel is
not optimal. In the future, combining with more efficient model update
strategies may improve the effectiveness of local and global model com-
munication and decrease the loss of intercommunication16,29.

In conclusion, the FedHNN model proposed in this study can be
effectively performed inASDdiagnosis tasks, which enables the collaborative
training frommultiple sites to solve the data isolation and privacy preserving
challenges when training accurate deep learning models. The proposed
method could be applied to many applications. For example, the proposed
method can facilitate the clinical diagnosis of various diseases such as
Depression, Alzheimer, Covid-19, etc. In the field of clinical diagnosis, data
isolation and the emphasis on data privacy have emerged as prominent
challenges. Traditional centralized data analysis methods may suffer from
data security, privacy protection, and data sharing. In this context, our pro-
posed approach potentially introduced an innovative solution to the disease
clinical diagnosis. By enabling collaborative training across multiple institu-
tions without sharing the data directly, the proposed method with federated
learning ingeniously addresses the concerns associated with sensitive clinical
data sharing. As a result, it holds the potential for novel research experiments
and commercial opportunities, ultimately contributing to the enhancement
of global patient care. Therefore, this study particularly addressed the chal-
lenges in the scenarios where data is sensitive to share and privacy regulation
limits the development of large artificial intelligence models.

Methods
Federated learning process
During the model training, we set up a central server as the global model to
calculate the updated model weight information, and all different medical
sites used the same deep learning framework to accomplish the same task.
We trained each local model on every single site and updated the model
weight information to the global model with a certain frequency. The
weights shared by every site were encrypted with attached random noise to

protect the data information from being leaked by inverse processing. The
global model aggregated the parameters from all local models and updated
the processed weights to individual medical sites. In this case, each local
model continued to perform internal optimization based on the updated
parameter information.

As shown in Fig. 1. Formally, we set S (S = 4 in this study)medical sites
for using in federated learning, with Ns as the number of patients in each
data site s. At the beginning of each federated training round epoch, each
local model was randomly initialized with model parameters wð0Þ

s , which is
the locally weighted factor. Define R as the number of optimization itera-
tions of the local model, each local site s trained the optimization model
parameters wðrÞ

s within r rounds using local data Xs and uploaded the
encrypted model parameters ews ¼ ws þ εs to the global model with a fixed
frequency pace. The global model collected the model parameters which
were uploaded by all local sites and calculated them using the averaging
strategy30, then deploys the updated weights �w, which is shown in Eq. (1) to
each local model, and then each local model continued to perform local
optimization in the next round r+ 1. Repeat the above process until the
global model converges and returns.

�w ¼
PS

s¼1ews

S
ð1Þ

Network architecture
The complete framework of our proposed localmodel in FedHNN is shown
in Fig. 1b.We adoptedHGNNwhichwas improved byGCNas a local deep
learning framework in each local model. As a representation learning
method, HGNN uses the hypergraph structure with a more powerful
representation for modeling. We improved the hypergraph model for the
ASD recognition task by using a feature fusion strategy based on HGNN
usingdifferentmodal features obtained in thepreprocessing step to generate
hyperedges.

In each local model, we define the hypergraph G¼ðV;E;WÞ which
includes a vertex setV, a hyperedge setE, and each hyperedgewas assigned
a weight byW, which is a diagonal matrix of edge weights. Different from
GCN, which uses the adjacency matrix A to represent the graph structure,
HGNN uses the incidence matrix H (size: V×E) to represent the

Fig. 3 | The impact of hyperparameters of
FedHNN. a–d Investigating the effect of neighbor
nodes kneigs and communication speed pace on the
accuracy of ASD identification task. The effect of the
two variables on the aggregate accuracy of all sites is
represented with box plots. a, bWe investigate the
effect of different kneigs and pace on each site’s
accuracy, represented by histograms (c, d).
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hypergraph structure, where the entries are defined as

h v; eð Þ ¼ 1; if v 2 e

0; if v=2e

�
ð2Þ

For each site, we generated the multimodal data X ¼
½X1;X2; . . . ;XC� 2 Rn× din after data preprocessing,whereC is the number
of data modalities and $d_{in}$ is the input dimension of data X to be fed
into the model.

As shown in the figure of model framework (Fig. 1), we constructed a
hyperedge structure group (hypergraph) for each modality, and then
concatenated the hyperedge groups to generate the multi-modality
hypergraph. We adopted the following steps to construct each hyper-
graph for each modality: (1) we represented each sample/patient into an
embedding vector, and the embedding vector is the representation of a
modality; (2) the Euclidean distance was applied to calculate the distance
between representation vectors of every two samples as the similarity of the
two samples; (3) during the hypergraph construction, each vertex in the
hypergraph represents one sample, and each vertex connects to its kneigs
nearest neighbors (defined by the top kneigs similar samples in terms of the
distance) to generate each hyperedge e 2 E. As a result, there are n
hyperedges, and eachhyperedge connects kneigs vertices in the hypergraph.
Compared with the general graph structure, the constructed hypergraph
structure has the special ability to describe and mine nonlinear high-order
relationships between data samples, which makes it more flexible when
dealingwithmultimodal and heterogeneous data, and it ismore convenient
for the integration and expansion of multi-modality. Therefore, the con-
structed hypergraph enables the model to better capture the similarity and
correlations among samples from the multi-modality data.

Upon constructing the hypergraph, we used Eq. 2 to obtain the inci-
dencematrixHi 2 Rn× n. The element at the ith row and jth column in the
matrix is 1, indicating that vertex vi and vertex vj belong to the same
hyperedge and thus have a connection. Other elements in thematrix are set
to 0, representing no connection between the corresponding vertices. Then
the fused H¼ H1;H2;;HC

� �
can be obtained by concatenating each inci-

dence matrix to execute the hypergraph convolution operation, which can
be formulated by

Y ¼ D
�1

2
v HWD�1

e HTD
�1

2
v XΘ ð3Þ

whereDe andDvdenote the diagonalmatrices of edegree and vertex degree,
with each edge degree defined as δðeÞ ¼ P

v2V hðv; eÞ and each vertex
degree νdefined as d vð Þ ¼ P

e2E ω eð Þhðv; eÞ, with the role ofDe andDv can
be simply summarized as thenormalized incidencematrixH.Θdin × dout is the
trainable parameter, which can extract dout-dimensional feature from initial
X. Yn× dout is the output after the convolution operation, which can be used
for classification.

The complete hypergraph convolution layerwas obtained by the above
hypergraph convolution operation plus a nonlinear activation function,
which can be formulated as

X lþ1ð Þ ¼ σ D
�1

2
v HWD�1

e HTD
�1

2
v X lð ÞΘ lð Þ

� �
ð4Þ

whereXðlþ1Þ is the outputof the lth layerandσ is theRELU functionused for
nonlinear activation.

In the GCN approach, the graph structure is usually constructed by
using single modal features. It is because the ordinary graph structure uses
the adjacencymatrix as the input for graph learning, which largely limits the
number of edges. However, in multimodal feature fusion, its complex het-
erogeneous relationships make ordinary graph structures often lose a lot of
information when they are constructed. The hypergraphmodel used in this
study can perform node-edge-node transformation by taking advantage of
the property of having a higher-order correlation between data. The
hypergraph structure allows better characterization, enables more accurate

modeling of multivariate relationships, and facilitates the fusion and
extension of multimodalities, thus building the relationship network
between patients more efficiently. Therefore, we used hypergraph to fuse
functional neuroimaging data as well as PC data with each other, which
could achieve more accurate ASD identification.

Data processing
In this study, the fMRI scan data were obtained from the Configurable
Connectome Analysis Pipeline (CPAC)31 in the Preprocessed Connectome
Project, which includes AAL atlas32, Harvard-Oxford (HO) atlas33, and
Craddock200 (CC200) atlas34. Each of the three atlases defines a different
ROI and uses BOLD signal imaging that can indirectly reflect the meta-
bolismof brain activity. ThePearson correlation coefficient (PCC) is usually
used to assess the synchronization of two signals: if the synchronization of
BOLDsignal changes in twobrain locations is high, then a strong functional
connection exists between the two locations.We visualize the brain regions
are defined by the AAL atlas as well as the set of functional brain connec-
tions that retain only 1% of edge strength (Fig. 2b, c).

In the local model, we form a symmetric LOFC matrix (Fig. 2a) by
making PCC between any two ROI timeseries pairs of the BOLD signals of
the brain locations defined by the three atlases and extract its upper triangle
as the original feature representation of this atlas.

PCC ri; rj
� �

¼
E rirj
� �

� E ri
� �

E rj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ri2
� �� E2 ri

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ri2
� �� E2 rj

� �r ð5Þ

where ri and rjdenote respectively the time series of brain regions i and j, and
E(∙) denotes the mathematical expectation.

In addition, the five phenotypic data, including gender, age, FIQ, VIQ
andPIQ, are extracted in this study35. Theprocessedphenotypic data are used
togetherwith the original feature representation,which are obtained from the
mentioned three brain atlases as the feature representation for the next input.

Training strategy and data splitting
We evaluate the model using a stratified 5-fold cross-validation approach.
The data from all sites are randomly split into 5 equal parts, using 4 folds for
training and the remaining one-fold for testing. The performancemetrics of
all strategies are reported as the mean of 5 cross-validations. The proposed
model FedHNN applies two layers of HGNN and uses dropout to avoid
overfitting. In each round of collaborative training, the local model is
optimized by using an internal dataset. We applied backpropagation to
update the parameters and minimize a cross-entropy loss function with a
learning rate of 1e-5. The hypergraph model can perform node-edge-node
transform, which can better refine the features using the hypergraph
structure24.

Data availability
All datasets used in this study are publicly available at http://preprocessed-
connectomes-project.org/abide/.
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