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Artificial intelligence applications in extreme environments place high demands on hardware
robustness, power consumption, andspeed.Recently, diffractive neural networks havedemonstrated
superb advantages in high-throughput light-speed reasoning. However, the robustness and lifetimeof
existing diffractive neural networks cannot be guaranteed, severely limiting their compactness and
long-term inference accuracy. Here, we have developed a millimeter-scale and robust bilayer-
integrated diffractive neural network chip with virtually unlimited lifetime for optical inference. The two
diffractive layers with binary phasemodulation were engraved on both sides of a quartz wafer. Optical
inference of handwritten digital recognition was demonstrated. The results showed that the chip
achieved 82% recognition accuracy for ten types of digits. Moreover, the chip demonstrated high-
performance stability at high temperatures. The room-temperature lifetime was estimated to be
1.84×1023 trillion years.Our chip satisfies the requirements for diffractive neural network hardwarewith
high robustness, making it suitable for use in extreme environments.

Over the years, artificial intelligence (AI) methods have been widely used in
recognition1, autonomous driving2, scientific research3–5, human-computer
interaction6, and robotics7.With the gradual development ofAI capabilities,
AI methods are expected to replace manual approaches in extreme envir-
onments, such as inclement weather, the deep sea, and space. Neuro-
morphic hardware is important for the development of AI approaches. For
applications in extreme environments, low energy consumption, high
robustness, and high speed are important evaluation criteria for neuro-
morphic hardware. Light is an ideal information carrier because of light-
speed wireless passive propagation characteristics, which can help greatly
increase the calculation speedwhile reducing the energy consumption to the
level of femtojoules-per-bit8, and can be used in various calculations, like
complex-valued calculations9, matrix multiplication10,11 and convolution
calculations12,13. Compared with electronic parameters (mobility or carrier
number), optical parameters (refractive index or transmittance) ofmaterials
are generally less sensitive to changes in temperature and humidity.
Therefore, photonic components show great potential for use in extreme
environments.

Recently, a wave-based optical neural network, the diffractive neural
network (DNN)14, was reported. DNNs have demonstrated superior per-
formance in various AI tasks, such as image recognition14–20, optical
computing21, phase retrieval22, adaptive focusing23, and terahertz pulse

shaping24. In contrast to waveguide-based optical neural networks25–28,
DNNs mimic the human nervous system in three-dimensional (3D)
domains. This feature is realized through the diffraction of waves, thus
enabling direct parallel processing of optical image data without converting
the data to sequential inputs29. This feature enables DNNs to more quickly
recognize target objects in extreme environments.

However, because of structural and material limitations, existing
DNNs cannot be used in extreme environments. DNNs are composed of
cascaded diffractive layers, and currently, 3D printing is widely used to
construct DNNs17,21,22,24,30–33. However, high robustness and long lifetimes
cannot be guaranteed for DNNs made of organic materials. More impor-
tantly, the diffractive layers in DNNs are usually spatially separated and
operate in the terahertz band21,24,30–33. As a result, DNNs are typically on the
centimeter scale and cannot be integrated on-chip. However, DNNs inte-
grated on Si wafers have been reported34–37. With this method, the three-
dimensional networks are designed in two dimensions, thus losing the
unique parallel processing advantage for 2D optical images. Therefore, the
implementation of a 3D-integrated DNN made with stable materials is
highly desirable for applications in extreme environments.

Here, we report an on-chip bilayer DNN for optical inference with
virtually unlimited lifetime. Based on double-sided lithography, the two
binary phase-modulated diffractive layers in the DNN chip were surface
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engraved on both sides of a single-crystal quartz substrate. Therefore, the
inputwave travels through the quartz during the computing.More than one
million neurons were achieved in each layer. Handwritten digit recognition
experiments show that the recognitionaccuracy for ten types of handwritten
digits (0~9) is 82%. The consistency and robustness of this chip in fabri-
cation and test sessions are analyzed. The adaptability of this chip to other
tasks, including fashion product recognition and phase imaging, has also
been verified through simulations. Moreover, the lifetime of the DNN chip
was measured. After accelerated aging at high temperatures, the DNN still
demonstrates high performance, and the recognition accuracy for two types
of digits can be maintained at 100%. The lifetime at room temperature was
estimated to be 1.84 × 1035 years. This DNN chip strategy satisfies themass-
fabrication requirements for DNN hardware with high robustness and can
be used for various AI tasks in extreme environments.

Results
Figure 1a shows the schematic of the handwritten digit recognition taskwith
the bilayer DNN chip working at a wavelength of 532 nm. The information
carried by the neuronswas encodedby the phase values and reflected via the
pixel heights, which determined the interference of the secondary waves
(Fig. 1b). Thus, through the propagation and diffraction of the coherent
waves from the input layer to the DNN and finally to the output layer, a
feedforward optical neural network was constructed (Fig. 1c). The DNN
inference results are displayedby the output layer through the light intensity
distribution. Notably, different from the DNNs with separated layers, the
signal transmission between the two diffractive layers occurs within the
quartz substrate. Therefore, this integration method can ensure the long-
term stability of the layer spacing and the diffractive medium, which
guarantees the calculation accuracy. Figure 1d shows a digital image of the
DNN chip. The diffractive layers are approximately 8.2mm× 8.2mm
in size.

TensorFlow-based DNN training
Matrix multiplication is the main mathematical operation used in artificial
neural networks. The multiplication of the input and weight matrices of
each artificial neural layer reflects the biological signal transmission between
neurons through synapses. In DNNs, matrix multiplication operations are
implemented optically through the transmission and coherent super-
position of the incident coherent waves between the diffractive layers.
Therefore, when designing a DNN, a light propagation model between the
diffractive layers must be constructed.

Here, we used angular spectrum diffraction to simulate the propaga-
tion of the incident light (Supplementary Note 1)38. The Fourier transform
used in angular spectrum diffraction is suitable for training DNNs with
many neurons. Figure 2a illustrates the forward propagation model and
error backpropagationmodel used in the training process. The training was
implemented with the TensorFlow 2.0 framework (Google Inc.). We used
the Modified National Institute of Standards and Technology (MNIST)39

handwritten digit database for training. To fabricate the proposed chips, the
phase valueswere trained andbinarized (SupplementaryNote 2).A training
set of 1000 imageswas used for theDNN training. Based on the principles of
DNN, larger training sets can also be used, but accordingly, the training time
will increase dramatically. It takes more than 50 h to train a DNN with the
same parameters using the fullMNISTdataset.More importantly, as shown
in Supplementary Fig. 1, the phase distribution resulting from using the full
MNIST dataset has a higher frequency compared to a smaller dataset. This
will lead to a significant increase in the difficulty of alignment in the optical
setup. Therefore, considering the above two factors, we chose a training set
of 1000 images.

In addition, the amplitude field of the ten regions was optimized to
follow a Gaussian distribution. The area detecting a Gaussian distribution
tends to exhibit a more concentrated intensity compared to a typical uni-
form distribution area, thereby increasing the maximum light intensity

Fig. 1 | Bilayer diffractive neural network (DNN)
integrated on a quartz substrate. a Schematic of the
handwritten digit recognition task with the bilayer
DNN. The optical images of the handwritten digits
are generated in the input layer. The DNN inference
results are displayed by the output layer through the
spatial light intensity distribution. The 10 light spots
correspond to the digits 0-9. The prediction result is
reflected by the light intensity comparison.
b Schematic of light propagation in the quartz plate.
The information carried by the neurons is encoded
by the phase values and reflected through the pixel
heights. c Schematic diagram mathematically
describing the physical calculation process of the
DNN chip. The optical images of the handwritten
digits are generated in the input layer and regarded
as the secondary wave source. Before the optical
signals are passed to the neurons in the 1st diffractive
layer, the coherent superposition of the signals is
obtained. Then, the phase values φ carried by the
neurons are transferred through the light field. The
different colors of the neurons represent distinct
phase modulations. In our experiment, the dif-
fractive layers were designed with binary phase
modulation. Finally, after the light undergoes the
same physical process in the 2nd diffractive layer,
the output results are generated in the output layer.
d Digital image of the DNN chip. Each layer con-
tains 1024 × 1024 neurons, and the neuron size is
8 μm× 8 μm. Scale bar, 1 cm.
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density in these regions. Consequently, the camera can capture effective
signalsmore easily, allowing it to operate with shorter exposure time and/or
under a lower-laser-power configuration. Thus, the noise in the recorded
images can be reduced.

Analysis of the training results
Supplementary Fig. 2a shows the binary phase distributions obtained in
each diffractive layer. Supplementary Fig. 2b illustrates the confusionmatrix
of the recognition results based on the training set. The results show that the
recognition accuracy is 96.1%, with a loss of approximately 0.198. Com-
pared with multilevel phase modulation, we found that binary phase
modulation does not appear to affect the accuracy of the DNN. The
simulation results presented in Supplementary Table 1 show that the
accuracy of the bilayer DNN with binary or 256-level phase modulation
differs by only 0.2%.

Figure 2b shows the simulated inference results for 10 typical hand-
written digit images. The light spots corresponding to the input digits have
the strongest intensity (Fig. 2c), indicating that the DNN successfully

recognized the input digit. In addition, it was observed that the digital
images are present in theoutput layer, indicating that the incident light is not
fully modulated by the DNN. This could be due to the binary phase mod-
ulation exhibited by the diffractive layers, leading to a decrease in diffraction
efficiency. As a result, the zero-order diffraction, which is represented by the
digital image, is visible on the output layer. To resolve this issue, the loss
function can be modified (refer to Supplementary Fig. 3). However, as
constraints increase, the accuracy of DNNs decreases as well, which is
contrary to the expected results. Therefore, in our case, the diffraction
efficiency and recognition accuracy appear to be two trade-off parameters.
Thus, we chose to guarantee a high accuracy and did not change the loss
function.

Importantly, we used a commercial single-crystal quartz wafer as the
substrate. Because the thickness of the quartz wafer is 500 μm, the layer
spacing is fixed at 500 μm. Therefore, the neurons in the DNN are not fully
connected. Supplementary Fig. 4 shows that one neuron in the 1st layer is
connected to approximately 7 × 7 = 49 neurons in the 2nd layer through
zero-order diffraction. Although theDNN is not fully connected, the bilayer

Fig. 2 | Simulated results of the bilayer diffractive neural network (DNN) chip.
a Training flowchart of the DNN. b Light intensity distribution in the output layer.
The light spots in the 10 circled areas represent the handwritten digits from 0 to 9.

The color bar shows the normalized light intensity. c Normalized light intensity in
the 10 circled areas shown in (a).
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DNN still exhibits significantly better performance than the monolayer
DNN.We also trained amonolayer DNN, and its recognition accuracy was
only 91.2%, with a loss of approximately 0.437 (Supplementary Table 2).
The neural network training process can be simply regarded as the opti-
mization of the weightmatrices. Therefore, we analyzed the influence of the
layer number on the DNNperformance based on the degrees of freedom of
the weight values (Supplementary Note 3 and Supplementary Fig. 5). The
results show that increasing the layer number increases the degrees of
freedom of the weight values, thereby increasing the accuracy of the DNN.
For a DNN that is not fully connected, improving the neural connections
between layers can increase accuracy. This can be achieved by increasing
layer spacing or reducing neuron size (Supplementary Fig. 6). The under-
lying reason can also be explained by the increase in degrees of freedom of
the weight values (Supplementary Note 4).

Performance characterization of the bilayer DNN
Weused double-sided photolithography followed by dry etching to engrave
theDNNon the surfaces of the quartz plate (“Methods” section). Due to the
difference in the refractive indices of quartz and air, pixels with different
heights distinctly modulate the phase of the incident light. Supplementary
Figs. 7 and 8 show the scanning electron microscopy (SEM) and optical
images of the obtained diffractive layer. The diffractive layer pattern is well
fabricated on the quartz surface. Plasma dry etching can achieve high-
precision engraving with an error of tens of nanometers. Supplementary
Fig. 9 shows the height profile of the diffractive layer. The etching depth is
approximately 284 nm,which is close to the phasemodulation of π/2 for the
532 nm laser.

Figure 3a shows the optical setup. The laser power was adjusted by a
half-wave plate and a polarized beam splitter. We used lenses L1 and L2 to
form a 4f system for beam expansion. We adopted a double Fourier
transform to generate optical digit images via phase-only spatial light
modulation40. Then, we filtered out the 0th-order and -1st-order diffraction
patterns through spatial filtering, preserving only the 1st-order diffraction
pattern for the DNN test. The positions of the input layer, the DNNs chip,
and the output layer are shown in Fig. 3b. The dashed orange line following
Lens-4 (L4) depicts the conjugate plane of the spatial light modulation. An
initial input, represented by an amplitude-only digit pattern ‘7’, propagates
across a 5 cm free space and serves as the input for the bilayer DNN chip.
Subsequently, after traversing approximately 16.4 cm, the output intensity
fieldwith the ‘7’ area brightest is capturedby aComplementaryMetalOxide
Semiconductor (CMOS) camera. Figure 3c shows the experimental results
of the 10 typical handwritten digit images.Whenadigital image is input into
theDNN, the corresponding light spot has the largest intensity (Fig. 3d).We
also noted that the unmodulated digit image is obtained, which is consistent
with the simulation results. Since the images in Fig. 3c are small, a few
enlarged images of the results are shown in Supplementary Fig. 10. Except
for the unmodulated digit image, the noise outside the target detection
regions is very low, which demonstrates the effects of optimizing the output
amplitude field and using many neurons in the design.

Figure 4 shows the confusionmatrices of the recognition results based
on the test set. Figure 4a shows the simulation results for 1000 images, with
the DNN achieving an accuracy of 85.4%. Figure 4b presents the experi-
mental results for 50 images, with the DNN achieving an accuracy of 82%.
The accuracy difference between the experimental and simulation results
may be due to chip fabrication andmeasurement errors. The accuracy is not
high, mainly because the number of diffractive layers is only two, and the
neurons are not fully connected. Simulations show that under the existing
bilayer integration configuration of the chip, subsequently reducing the
neuron size or increasing the layer spacing can improve the performance
(Supplementary Fig. 6). Correspondingly, these optimizations require
improvements in fabrication processes. We compare our DNN chip with
other reported works in terms of fabrication, integration, robustness, and
performance. As shown in Supplementary Table 3, despite some perfor-
mance differences, our chip shows high robustness and advances in 3D
integration compared to other methods.

To verify the chip’s capability to perform other AI tasks, we trained the
DNN using the Fashion-MNIST dataset41 with the same chip parameters.
The Fashion-MNIST dataset comprises 10 categories of fashion products,
which presents greater complexity compared to the MNIST dataset. Sup-
plementary Fig. 11 shows that the DNN chip can achieve approximately
92.2% and 80.1% accuracy for the training set and the test set, respectively.
Meanwhile, we also tried a non-recognition AI task with potential practical
applications: phase imaging. Phase is invisible, and extracting phase infor-
mation from light has important applications in wavefront shaping,
biological detection, and other fields. In our simulation, the input digital
image is phase information (Supplementary Fig. 12a). From the result
(Supplementary Figs. 12b, c), we can see that the DNN can directly convert
the input phase to intensity information to realize phase imaging. These
results indicate that this DNNchip strategy can be used for various AI tasks.

Robustness studies are crucial for chips.We analyze the impact of errors
that may occur during fabrication and testing on the performance of DNNs.
Alignment of the diffractive layers inDNN is often technically challenging. In
our chip, we achieve this through double-sided photolithography, which
typically has an overlay accuracy of about 1~2 μm. Based on the simulation
results presented in Fig. 5a, b, it can be concluded that alignment errors may
cause a decrease in the accuracy of DNN. However, this decrease is slow
within the rangeof 1~2pixels (8~16 μm).Therefore, it canbe inferred that the
overlay error of double-sided photolithography has minimal impact on the
performance of the DNN chip, and the fabrication process is capable of
ensuring high consistency. Then, the thickness of the substrate affects the
layer spacing ofDNN.We simulated this impact on the accuracy ofDNN.As
illustrated in Fig. 5c, the accuracy gradually decreases with the thickness
deviation, but the rate is slow. Even with a thickness error of ±50 μm (about
10%), the accuracy only decreases by about 2%.Next, we simulated the effects
of wavelength shift in the chip’s test session. The DNN chip was designed
using binary phase modulation of 0 and π/2, which represents height
distributions of 0 and 289 μm for a quartz substrate. Although variations in
the incident wavelength only lead to slight changes in phase modulation
(Fig. 5d), they can cause a significant decrease in accuracy (Fig. 5e). This is
because that the detecting area undergoes magnification or demagnification
owing to changes in the numerical aperture. Figure 5f displays intensity
patterns at three distinct operating wavelengths, and it is noticeable that the
location of the intensity peak shifts. This will lead to a change of the total light
intensity in the detection area (white circle area), resulting in recognition
errors.However, in the experiment,we cancalibrate thepositionof theoutput
layer to accommodate this change, as well as the positions of the detection
areas. In this way, the chip can still demonstrate adaptability to function
effectively at other wavelengths. Finally, the test’s error also encompasses the
misalignment between the input layer and the DNN. As depicted in Fig. 5g,
the accuracy of DNNs decreases as the input layer’s position shifts. Thus, it is
crucial to guarantee a minimal alignment error between the input layer and
DNNs. For our chip, thedesignofDNNswithbinaryphasemodulationhelps
reduce the difficulty of alignment (“Methods” section).

Lifetime analysis of the DNN integrated on the quartz substrate
Because of the high melting point and high stability of quartz, the quartz-
based optical element has an extremely long and even unlimited lifetime42.
The reduction in the accuracy of the DNN during accelerated aging was
studied. We designed and fabricated several bilayer DNN chips that
recognize only two digits (0 and 1), and the accuracy reached 100% (Sup-
plementary Fig. 13). Then, we placed the DNN chip in a box furnace for 2 h
at 1400 °C in an air atmosphere. As shown in Fig. 6a, after annealing, the
roughness of the surface of the DNN sample increased. The surface
roughness of theDNNwasRa = 0.97 nmbefore annealing andRa = 20.1 nm
after annealing, thereby increasing the noise in the output layer (Fig. 6b).
However, since the prediction results were obtained by comparing the total
intensity in the target regions, we found that the increased noise did not
affect the recognition results (Fig. 6c), and the DNN accuracy was still
100% for 50 handwritten digit images. After annealing, the mean profile
spacingRsm is onlyhundredsof nanometers,which ismuch smaller than the
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neuron size in the DNN (8 × 8 μm2). Therefore, the phase modulation shift
in a neuron caused by the increased roughness after annealing is approxi-
mately 0. In our experiment, the degradation of the DNN samples at high
temperatures ismainly due to the reactionbetween the quartz and theAl2O3

boat at high temperatures, resulting in the formation of Al2O3·SiO2
43.

Increasing the annealing time to 3 h completely damaged the samples; the
sample shattered and could not be used for handwritten digital recognition.

The estimated lifetime of a device is typically determined based on the
Arrhenius equation42:

1
τ
¼ k ¼ A expð�Ea=kBTÞ ð1Þ

where k is the decay rate, A is the frequency factor, kB is the Boltzmann
constant, Ea is the activation energy and T is the absolute temperature. The
room-temperature lifetime of a sample can be estimated by extrapolating
the lifetime at high temperature to room temperature. We define the time
for the DNN sample to be completely damaged as its lifetime. Therefore, as
shown in Fig. 6d, the lifetime of theDNNchip at room temperature (300 K)
is estimated to be 5.81 × 1042 s (1.84 × 1023 trillion years). Even at a
temperature of 500 K, the lifetime is still 7.71 × 1023 s (2.44 × 104 trillion
years). The ultralong lifetimeof the quartz-basedDNNensures that the chip
can operate stably and reliably for a very long time. In addition to high
temperatures, we also analyze the impact of other extreme environments on
the chip (see Supplementary Note 5). Moreover, unexpected damage,
beyond conventional aging, may occur during long-term chip operation.

Fig. 3 | Experimental inference results of the bilayer diffractive neural network
(DNN) chip. a Schematic of the optical setup. We adopted a double Fourier
transform to generate optical digit images via phase-only spatial light modulation.
PBS: polarized beam splitter. HWP: half-wave plate. BS: beam splitter. SLM spatial
light modulation. CMOS complementary metal oxide semiconductor. b Schematic

of the positions of the input layer, DNNs chip, and output layer in the optical path.
c Recorded light intensity distribution in the output layer by a CMOS camera. The
color bar shows the normalized light intensity. dNormalized light intensity in the 10
circled areas shown in (c).
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We simulated the loss of neuron information resulting from severe damage
or wear. Supplementary Fig. 14 shows that the DNN chip can maintain its
highest performance when the damaged area is below 20%. This is also a
guarantee for the long-term reliable operation of our chip.

Discussion
In this work, a bilayer DNN chip was integrated on a quartz plate. Our
approach based on semiconductor manufacturing technology establishes a
more commercial and mature integration solution for DNNs with 3D

Fig. 4 | Confusion matrices for the simulation and experimental results based on the test set. Pct. percentage. a Simulation results. A total of 1000 different handwritten
digit images were used. b Experimental results. Fifty different handwritten digit images were used.

Fig. 5 | Robustness analysis of the diffractive neural network (DNN) chip in
fabrication and test sessions. a Schematic of the DNN model for the overlay error
simulation. Δx and Δy represent the overlay errors in the x and y directions
respectively. bThe simulated accuracy changes with overlay error for the training set
and test set. c The simulated accuracy changes with the thickness of the quartz
substrate. d Phase modulation is different at different working wavelengths. e The
simulated accuracy changes with working wavelength shift. f Magnified output

intensity pattern of the ‘7’ channel at 517 nm, 532 nm, and 547 nm, respectively.
Scale bar, 200 μm. The white circle denotes the target detection area. The red dashed
circle denotes the actual detection area required for different working wavelengths.
The peak moves closer to the center of the output layer with smaller wavelengths
(517 nm) and conversely shifts away from the center with larger wavelengths
(547 nm). g The simulated accuracy changes with the alignment error of the input
layer and the DNN chip in the x direction.
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structures. We present an in-depth analysis of the effect of increasing the
number of layers and layer spacing on the DNN performance. The
robustness of the chip in fabrication and testing is analyzed by simulations.
The quartz-based DNN is verified to have an ultralong lifetime and high-
performance stability. Thus, it is suitable for long-term operation in various
extreme environments, such as strong radiation environments (outer space)
and high-pressure environments (deep sea). Other tasks demonstrated
based on DNN, including but not limited to beam shaping24, logical
computing21, and data downscaling44, could also be theoretically performed
using our chip design. This expands the range of potential applications.

We note that non-fully connection constrains the performance of
DNN. Therefore, reducing the neuron size or designing wafers with better
thickness are important directions for improvement. Additionally, the
number of layers in a DNN chip can restrict accuracy improvement. To
increase the number of layers, existing bonding techniques can be utilized.
Bonding technology allows for the joining of multiple substrates. Laser
bonding techniques may be a viable solution for quartz substrates45,46. The
process can fuse specific areas of quartz, allowing for the selective bondingof
two quartz plates. Combined with the double-sided photolithography to
realize the alignment of diffractive layers, it is feasible to achieve more
diffractive layers. Currently, the lack of nonlinear activation functions
between thediffractive layers is a commonbottleneck forDNNs, resulting in
lower performance compared to deep neural networks. Therefore, it is
urgent to solve the problem of inserting nonlinear optical layers between
diffractive layers. Our strategy offers a solution by providing the possibility
to insert a nonlinear active layer between the diffractive layers. Due to the
high stability of quartz, it is possible todeposit nonlinear absorbingmaterials
on its surface. This allows the absorption coefficient of the material to be
incorporated into the design of theDNN, resulting in a truly deepDNN. For
this purpose, some advanced nonlinear materials, such as two-dimensional
materials47 and perovskite materials48, can be considered.

Finally, to further achieve the integration of theDNN system, there are
pioneering endeavors to learn from.TheDNNschips can be integratedwith
camera chips22,49. In addition, researchers have recently reported the inte-
gration of aDNNchip and an electrical neural network chip, demonstrating
an analog programmable optoelectronic chip44. Besides, we can also con-
sider building a 3D-integrated DNN system based on the vertical-cavity
surface-emitting lasers (VCSELs)29. VCSELs are micron-sized on-chip light
sources that emit light perpendicular to the substrate50, so VCSEL can be

used to generate optical images by constructing a two-dimensional
addressable array. The DNNs can be directly integrated on the surface of
VCSELs through heterogeneous bonding51. The detector array can also be
integrated on DNNs with a similar method. In this case, it is technically
possible to implement a fully system-integrated DNN chip.

Methods
Fabrication of the bilayer DNN
Phasemodulation in the diffractive layer is achieved by etchingpixelswith
different depths on the quartz wafer based on the equation φ(λ) = 2π(n-1)
h/λ52, whereφ(λ) is the target phasemodulation of light with a wavelength
of λ, n is the refractive index (1.46) of quartz and h is the etching depth.
The fabrication process of the diffractive layer is shown in Supplementary
Fig. 15. The etching process is based on the conventional semiconductor
manufacturing process. The photolithography equipment is a SUSSMA6
UV lithography machine. Dry etching was carried out with a SENTECH
inductively coupled plasma etching system with SF6 gas flow. When
fabricating the diffractive layer on the back side of the quartz wafer,
double-sided photolithography technology was used to align the two-
sided pattern.

Characterization and annealing of the DNN
The SEM images were acquired with ZEISS Gemini SEM 300 equipment.
The height profile of the DNN sample surface was obtained with a Bruker
step meter. The AFM images were acquired with a Bruker Dimension Icon
microscope. The sample was annealed in an HF-Kejing KSL-1700X box
furnace in an air atmosphere.

Alignment of the input layer and DNNs
In our experiment, we were able to observe the unmodulated optical digital
image and the ten light spots generated by the diffraction of DNNs simul-
taneously on the CCD camera due to binary phase modulation. The digital
image indicates the position of the input layer, while the ten light spots
indicate the position of the DNNs. Therefore, alignment was achieved by
observing their relative positions on the CMOS camera.

Data availability
Thedata that support thefindings of this study are available on request from
the corresponding authors.

Fig. 6 | Lifetime analysis of the diffractive neural
network (DNN) integrated on the quartz sub-
strate. a Atomic force microscope (AFM) images of
the DNN sample before and after annealing. Scale
bars, 2 μm. bOutput images of the DNN chip before
and after annealing. The color bar shows the nor-
malized light intensity. c Normalized light intensity
in the 2 circled areas shown in (b). d Arrhenius plot
of the DNN decay rate. The blue dots represent the
experimental results. The orange dots represent the
calculated results obtained from the fitting line.
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