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Nano scale instance-based learning using
non-specific hybridization of DNA sequences
Yanqing Su 1,5, Wanmin Lin1,5, Ling Chu1, Xiangzhen Zan1, Peng Xu1,2,3✉, Fengyue Zhang4✉, Bo Liu4 &

Wenbin Liu 1,2✉

DNA, or deoxyribonucleic acid, is a powerful molecule that plays a fundamental role in storing

and processing genetic information of all living organisms. In recent years, scientists have

harnessed hybridization powers between DNA molecules to perform various computing tasks

in DNA computing and DNA storage. Unlike specific hybridization, non-specific hybridization

provides a natural way to measure similarity between the objects represented by different

DNA sequences. We utilize such property to build an instance-based learning model which

recognizes an object by its similarity with other samples. The handwriting digit images in

MNIST dataset are encoded by DNA sequences using a deep learning encoder. And the

reverse complement sequence of a query image is used to hybridize with the training

instance sequences. Simulation results by NUPACK show that this classification model by

DNA could achieve 95% accuracy on average. Wet-lab experiments also validate the pre-

dicted yield is consistent with the hybridization strength. Our work proves that it is feasible to

build an effective instance-based classification model for practical application.
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DNA has been well known to play an essential role in
storing and transmitting genetic information to sustain
the development, growth, and function of all living

organisms. From the perspective of information processing, DNA
molecules have three unique properties: high density, long dur-
ability, and low energy consumption1. These advantages have
attracted scientific communities to explore new nanoscale para-
digms to cope with the challenges confronted by electronic
information technologies. In the past 30 years, DNA computing
and DNA storage have been two emerging disciplines in this
field2. DNA computing was initially proposed to solve a famous
combinatorial optimization problem: TSP (Traversal Salesman
Problem)3. However, studies in this direction were frustrated by
the exponential amounts of DNA sequences produced.

Later, researchers turned towards DNA SDR (Strand Dis-
placement Reaction) and algorithmic self-assembly, which could
autonomously process information encoded in the input DNA
sequences4–7. The programmability and biocompatibility of such
complex molecular machines and systems have potential appli-
cations in biosensing8,9, drug delivery10, disease diagnostics11,12,
and pattern recognition13. In 2011, Qian et al. implemented a
neural network-like computation using DNA seesaw gates which
could perform weight multiplication, integration, and threshold-
ing. They demonstrated that such a neural network-like gate
could simulate a Hopfield memory to perform four 4-bit pattern
classifications13. In 2017, Cherry et al. further designed a more
extensive neural network to recognize 10 × 10 patterns for
handwritten digits ‘1’ to ‘9’ in the MNIST dataset14. The classi-
fication process was actually to match the sequences of two
images pixel by pixel. Xiong et al. implemented a CNN (Con-
volutional Neural Networks) via a DNA switching gate archi-
tecture, where the CNN was first trained in silico, and then the
obtained weights were encoded in the hairpin stem of each DNA
switching gate. They demonstrated that it could classify up to
thirty-two 12 × 12 patterns15. Lopez et al. implemented a linear
SVM classifier based on a novel class of DNA probes that directly
take the disease-related RNA transcripts as inputs. They validated
such SVMs in two applications: one for early cancer diagnostics
and another for differentiating viral and bacterial respiratory
infections16. Yin et al. implemented a DNA-framework-based
classifier based on programmable atom-like nanoparticles to
perform prostate cancer taxonomy using multidimensional
datatypes including mRNA, miRNA, protein and small
molecule17.

As remarked in a survey by Reif et al.18, the SDR-based
classifier is still in its infancy stage and it needs a long way to
develop general-purpose architectures instead of just working
for the case under consideration. Currently, the size of the
implemented neural network-like computation has been
noticeably low, owing to the scale and complexity of imple-
menting such systems. Their computing capability still suffers
from many problems, such as undesired leak reactions, con-
siderable reaction delay, and reaction cross-talk. Last but not
least, the designed computing gate is just a one-shot device used
up in one forward pass of the input.

In the above computing processes, the specific hybridization
between DNA molecules plays a fundamental role where non-
specific hybridizations may lead to unexpected results in the
multistage cascading reactions18,19. Recently, Bee et al. harnessed
the non-specific hybridization to execute a similarity search over
a DNA database of 1.6 million images. They trained a VGG16
deep learning network as an image-to-sequence encoding so that
queries preferentially bind to visually similar targets20. In their
work, the non-specific hybridization actually achieved a kind of
parallel similarity computing in large-scale DNA molecules21.
This motivates us to adapt it for solving a non-parametric

learning task known as instance-based learning22, which predicts
a new data instance based on its similarity to previously observed
instances. The key advantages of this approach lie in its simpli-
city, robustness, and its potential to achieve optimal performance
across a wide range of challenging classification problems. In
practice, its implementation is usually challenged by the need for
enormous memory space and computing costs in similarity
comparison. However, these two challenges may disappear at the
molecular scale.

In this paper, we demonstrate the construction of an instance-
based classifier by DNA molecules to recognize the handwritten
digits in the MNIST database23. A LeNet-5 CNN network23 is
used to extract image features, while an encoder and a predictor
are used to map similar images into similar DNA sequences.
According to NUPACK24, an authoritative software suite in the
field of DNA computing and storage21,25, the proposed classifier
has the potential to achieve an average accuracy of 95% in dry-
lab. A wet-lab experiment with 50 instances validates that the
predicted yield by NUPACK is consistent with the hybridization
strength between the query sequence and instances. In sum, both
the simulation and wet-lab results demonstrate that it is possible
to build a practical instance-based learning model by DNA
molecules which could accommodate millions of instances and
perform parallel computing.

Results
The workflow of the image encoding architecture. Figure 1a
outlines the three main blocks of our image encoding archi-
tecture, a LeNet-5 backbone for feature extraction, an encoder to
map feature vectors to DNA sequences, and a predictor to opti-
mize the encoder effectively. LeNet-5 is a classic CNN consisting
of seven layers, specifically designed for handwritten digit
recognition. Given a single-channel 28 × 28 grayscale image (in
MNIST), the output of the second fully connected layer (FC2) is
used as its feature vector.

To build a DNA instance-based classifier for the MNIST
dataset, the critical step is to encode digit (‘0’ to ‘9’) images so that
similar images should be encoded by similar DNA sequences.
That is, the reverse complement sequence of one image should be
highly hybridized with the sequences of the same class images
(the same digit image, judged according to the MNIST label), and
less likely with those of the other class images. Then, the query
label is assigned to the class with the highest hybridization
strength.

To optimize the encoder for this goal, we need an indicator to
quantitatively reflect the hybridization degree of pairwise DNA
sequence along with a suitable tool to predict it effectively. The
“yield” is defined as the ratio of the double-strand DNA (dsDNA)
concentration to the initial single-strand DNA (ssDNA) concen-
tration at equilibrium21,25. Obviously, the closer the yield is to 1,
the stronger the hybridization degree of the pairwise DNA. Yield
can be accurately estimated by NUPACK. However, operations
within NUPACK are not continuous and differentiable, rendering
it inappropriate for the proposed CNN-like structure. Other
simple approaches, such as the edit distance of sequences, cannot
be treated as an accurate approximation of yield (as explained in
Supplementary Note 1). Therefore, a two-layer CNN is employed
as the predictor to approximately substitute NUPACK in our
architecture.

The encoder, composed of two linear layers with softmax
activation, maps a 50-dimensional (50-D) feature vector into a
4 × 59 tensor. Each row of the tensor corresponds to a nucleic
acid base: A (Adenine), T (thymine), C (Cytosine) and G
(Guanine). The row with the maximum value in each column is
determined as the output base. Based on this rule, the 4 × 59
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tensor is converted to a 59-nt (59-nucleotide) DNA sequence
(Fig. 1b).

Figure 1c shows the workflow of the encoding architecture, and
the training process includes three stages: First, train the LeNet-5
backbone to classify the 60,000 images in the MNIST dataset.

Second, train the predictor with 300,000 DNA sequence pairs
whose yields are labeled by NUPACK. Finally, train the encoder
based on the similarity of the feature vectors, their MNIST labels
and the predicted yield. Details of training and encoding can be
found in the Method section.

Fig. 1 Image encoding architecture. a Detail structure of the feature extractor, encoder, and hybridization predictor. b An image encoding example.
Colored cells in the encoder output mark the maximum value in this column. c The image encoding architecture. There are two identical feature extractors
and encoders shown in the figure to synchronize the feature extractor, the encoder and the predictor. Three training stages are shown in three colors.
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The encoding performance. The MNIST dataset is composed of
two mutually exclusive subsets: the training set of 60,000 images
and the testing set of 10,000 images. Figure 2a shows the clus-
tering result of the training images on a 2-D plane by t-SNE26,
where the left is based on the LeNet-5 feature vectors and the
right is on the encoded DNA sequences. In both cases, images
within the same class label are almost clustered in the same
group. However, their neighboring relationship in the feature
vector space may be different from that in the DNA sequence
space.

This is because the training process considers both the MNIST
labels and the similarity of feature vectors. This difference in the
neighboring relationship can be observed for the four-pair images
in Group A and B. In general, the encoded DNA sequences could
reflect the similarity of images to a high degree.

Figure 2b shows the distribution of yield according to the
Euclidean distance of their feature vectors. Most of the yield is
larger than 0.8 when the Euclidean distance is less than 9, and the
yield is close to 0 when the Euclidean distance is larger than 17.
When the Euclidean distance ranges from 9 to 16, about one-
third is close to one and the rest is close to zero. Figure 2c
presents four pairs of images within each distance interval to
illustrate the relationship between visual similarity and their
Euclidean distance. When the Euclidean distance is larger than 9,
most of the images tend to be different. All in all, the yield
distribution reveals that the encoder assures similar images
usually have a large hybridization yield (>0.7) while those
dissimilar have a low yield (<0.2).

Figure 2d shows the top 50 nearest neighbors of a query
sequence of digit ‘5’ according to the predicted yield by
NUPACK. As expected, images of digit ‘5’ are the first majority
which is 46%. The second and third majority comes from digit ‘9’
and ‘6’ which is about 14% and 12%. Further, most of the images
of digit ‘5’ are in the top 30. This means that the total
hybridization yield of the query sequence with those of digit ‘5’
should be significantly larger than that with other digit images.
This demonstrates that the total yield of the query sequence with
each digit label could serve as an indicator of the similarity
degree.

Simulated classification performance by NUPACK. We take all
images in the MNIST training set as instances and randomly
draw 1000 images (100 for each digit) from the MNIST testing set
as queries to verify the performance of the proposed instance-
based classifier. Simulation experiment (dry-lab experiment)
protocol can be found in “Method” section.

Figure 3a, b show the yield distribution of these query sequences
with those in the same class (a) and those from other classes (b).
(In the remainder of the manuscript, the same/different class
means images in this class have the same/different MNIST label.
Class 0, 1, …, 9 means images’ MNIST labels of the class are 0,
1,…, 9 and digit ‘0’, ‘1’, ‘2’, …, ‘9’) Comparing Fig. 3a, b, we could
see that these query sequences usually have larger yield with their
own class sequences (>0.8) and smaller yield with other class
sequences (<0.1). These observations indicate that the query
sequences tend to have higher yields with their own class instances
than with others.

Figure 3c presents the average accuracy for each digit class and
the overall accuracy is about 95%. Only class 4 has the least
accuracy (86%), and this is consistent with the yield distribution
in Fig. 3a, b. That is, the query sequences have a quite low yield
with their own class sequences and a relatively larger yield with
other class sequences. The main reason may be attributed to its
quite low encoding quality. Back to the clustering results in
Fig. 2b, we can see that the instances of class 4 are scattered in

two sub-clusters surrounded by six other clusters. Furthermore,
Fig. 3d presents the 51 misclassified query images, most of which
are irregular handwritings. Their detailed predicted yields for
each class can be found in Supplementary Note 5.

Experimental validation of the hybridization yield. To verify
the consistency between the predicted yields by NUPACK and
real hybridization outcomes, we designed a small classifier with
50 instances for each class. We select ten queries (one for each
class, Fig. 4a) which have relatively low yields with their own class
instances. Figure 4a shows the simulated yields by NUPACK
between these queries with the 50 instances for each class. The
predicted yield for each query with its own label is always the
largest (see the diagonal values in each row). That means the
classifier could correctly recognize the digit written even though
they may have some degree of similarity with other classes.

Furthermore, the query sequences for 5, 7, and 8 have relatively
high yields, with the 50 instances for class 3. We conduct a wet-lab
experiment to measure the real hybridization strength between 10
queries and 50 instances of class 3. Figure 4b shows the measured
fluorescence intensity, and the larger the intensity, the higher the
degree of the hybridization would be (See Method section). For
each case, we repeat the three-time experiments. Columns A and
B are used as control groups for TE buffer and TE buffer added
with fluorescent dye, respectively. The rest of columns correspond
to query sequences for digit ‘0’ to ‘9’ (Q0 to Q9). We could see
that column F (Q3) has the largest fluorescence intensity than
others. That is, Q3 has the highest hybridization strength with the
instances of class 3. And columns K(Q8), J(Q7), and H(Q5) have
a relatively larger intensity. These observed fluorescence inten-
sities are consistent with the average predicted yield for the 10
query sequences in Fig. 4a. This demonstrates that the predicted
yield could reflect the hybridization strength, and it is feasible to
build a large classifier with DNA sequences which is composed of
tens of thousands of instances.

Discussion
In this paper, we propose an instance-based classifier by non-
specific hybridization of DNA sequences. Images in the MNIST
dataset are encoded into DNA sequences by a deep learning
network in Fig. 1. Then the DNA sequences representing
instances are synthesized and those belonging to the same class
are grouped in one test tube. The reverse complement sequences
of the query image are used to hybridize with those instances
simultaneously. Finally, the one with the highest hybridization
strength is assigned as the output. Simulation results by
NUPACK and the wet-lab experiment demonstrate the feasibility
of the proposed method. Compared with the SDR-based
classifier14, the proposed classifier by non-specific hybridization
has the following advantages.

Firstly, it is more robust. The implementation of the cascade of
the seesaw DNA gate is not only time-consuming but also sen-
sitive to biochemical reaction conditions, such as the concentra-
tion gradient of substrates, temperature, and perfect
hybridization. On the contrary, the non-specific hybridization
process in the proposed classifier requires no these rigorous
requirements and only needs one round of hybridization.

Secondly, it is easily implemented and more efficient. The
cascade of SDR reactions is very complicated and laborious,
which has to screen the output DNA strands as the input of the
next round of reaction. The proposed classifier could be imple-
mented on a solid surface27 on which millions of samples can be
organized according to their class labels. The fluorescence
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Fig. 2 The encoding performance. a 2D t-SNE projection of image feature vectors and their encoded DNA sequences. Images or sequences from the same
class are represented by dots in the same color. b Encoding performance. A violin graph of the yield in different Euclidean distance intervals. c Example
images in each Euclidean distance interval in b. d The top 50 nearest neighbors of a query sequence of image ‘5’.
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intensity of hybridization can be directly read out by an optical
scanning machine. Furthermore, the non-specific hybridization
relieves the computation burden of calculating the similarity
between the query sample and the training samples. Combined
with the nanoscale of DNA molecules, it provides an easy way to
construct a classifier when facing massive training samples.

Thirdly, it can be flexibly extended to other larger complicated
datasets. To extend the SDR-based classifier for more classes, the
complexity of the SDR computation circuit had to be increased
dramatically and more likely to lead to reaction failure13–17.
However, the proposed classifier could accommodate problems
with a hundred or more classes. For example, considering the
applications for images in OpenImages28, we could adopt
the encoding network architecture in Bee et al.’s work to encode
images with more channels and class labels21. Further,
the excellent performance of Transformer29 also provides a
flexible embedding techniques to encode different objects such as
the image30 and the text31.

Finally, we should point out that the encoding quality of
images plays an essential role in the reliable performance of the
proposed classifier. For future large-scale applications with
hundreds/thousands of classes, developing a highly efficient

encoding architecture is urgently needed. In addition, the
influence of the secondary structures of ssDNA is another critical
issue to be considered, which may affect the non-specific
hybridization and result in off-target effects. In the future, we
will focus on these two problems to consolidate the application of
the proposed classifier for more complicated scenarios.

Method
Feature extraction. To extract image features by LeNet-5 back-
bone, we first modify the dimension of FC2 to 50. Subsequently,
the fine-tuned LeNet-5 is used to perform MNIST classification
tasks to obtain optimal parameters for all layers. Then, the out-
puts of FC2 are used as the image feature vectors (50-D). All
parameters of the network keep unchanged during feature
extraction process.

Predictor training. A dataset of 300,000 pairs of DNA sequences
with a length of 59-nt is randomly generated for predictor
training. To ensure a more realistic representation, homo-
polymers are excluded from the dataset, which refers to any
instance where three or more consecutive identical bases (e.g.,
AAA, TTTT) occur in the sequence. Each sequence pair is then
labeled with a simulated yield from NUPACK. Then fine-tune the

Fig. 3 Simulated classification performance of 1000 query sequences by NUPACK. a The average yield distribution between the query sequences and
their own class sequences. b The average yield distribution between the query sequences and other class sequences. c The average accuracy for each digit
number. d The misclassified images and their corresponding labels.
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dataset to remove repeat pairs and ensure an even distribution of
pairs with different yields. Sequence pairs are adapted into One-
hot form and fed into the predictor. The estimated yield, along
with the pairs’ labels are used to compute the mean square error
loss (MSELoss) for each batch. The parameters of the predictor
are adjusted via gradient descent to minimize MSELoss.

Encoder training. To train the encoder for the two goals, three
issues as follows should be exhaustive discussed.

How to measure image similarity? The similarity of image pairs
is primarily measured by Euclidean distance of their feature vectors
and secondary consideration, their MNIST labels. Ideally, similarity
should be judged solely by MNIST labels, which encourages the
encoder to map images in the same class into high-yield sequences.
However, there are some neighboring exceptions with very
different labels (such as images in Fig. 2a Group A). Considering
only one of the two leads to excessive regularization for the
encoder, ultimately causing a training failure.

Sync problem with the feature extractor, the encoder and the
predictor. As previously discussed, the predictor estimates yield
of pairwise DNA sequence while the feature extractor and
the encoder process one image at a time. To address the
asynchronous problem, we call the feature extractor and the
encoder twice to obtain the first and the second ssDNA to catch
up the pace with the predictor. (That is why there are two same
feature extractors and encoders in Fig. 1b but in our code, there is
an encoder and a feature extractor in the proposed architecture.)
Sequence pairs passed to the predictor are comprised of the first
sequence and the reverse complement of the second sequence.
The output of the encoder, estimated yield, Euclidean distance of
feature vectors and MNIST labels are then processed by loss
function of the encoder.

Loss function of the encoder. The encoder loss is composed of
two parts: encoding loss and sequence loss.

Encoder Loss ¼ Encoding Lossþ Sequence Loss ð1Þ

Fig. 4 Experimental validation of the hybridization yield. a Dry-lab experiment result when the proposed classifier faces a hard-to-classify situation.
Yields at the diagonal are always significantly larger than those at the same row for each query sequence, which indicates the classifier can smoothly
complete the classification tasks of fuzzy queries. b The fluorescence intensity (repeated three times). Columns A and B are the control experiments with
TE buffer and TE buffer added with fluorescent dye. Columns C to L are for queries of digit ‘0’ to ‘9’ hybridization situation with the 50 instances of digit ‘3’.
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To penalize the ambiguous output of the encoder, the encoding
loss is defined as:

Encoding Loss ¼ ∑
59

i¼1
Encoding Lossi ð2Þ

Encoding Lossi ¼
Cross EntropyðYi;TiÞ; if maxðYiÞ<0:5
0; otherwise

�
ð3Þ

Where Yi indicates each column of the encoder output. Ti is
generated from Yi. Calculating cross-entropy when Yi with
maximum value < 0.5 is to avoid an over-solid punishment for the
encoder. Details are available in Supplementary Note 2.

Sequence loss supervises the encoder to translate similar/
dissimilar images to high/low yield sequences. The sequence loss
is then defined as:

Sequence Loss ¼

1; if ðE<T1 and Y<T2 and L1 ¼ L2Þ or
ðE ≥T1 and Y ≥T2 and L1! ¼ L2Þ
0; if ðE<T1 and Y ≥T2Þ or
ðE ≥T1 and Y<T2Þ or
ðE ≥T1 and Y ≥T2 and L1 ¼ L2Þ

8>>>>>><
>>>>>>:

ð4Þ

In which, E is the Euclidean distance of the corresponding
feature vector, L1and L2are the MNIST label of the encoding
images, Y indicates the estimated yield reported by the predictor.
T1and T2 are different thresholds, in this work, T1= 16, T2= 0.8.
A flowchart of the sequence loss is available in Supplementary
Fig. 2b.

Parameters of the feature extractor and the predictor remain
unchanged during the whole encoder training phase.

Sequence encoding. Unlike training phase, images from MNIST
testing set are processed by the feature extractor and the encoder
“one by one”. The predictor is suspended since there is no need to
calculate loss.

DNA instance-based classifier. During the training phase, all
labeled samples (in MNIST training set) are synthesized as
instances and stored in tubes by their labels. In the prediction
phase, query samples are encoded to DNA sequences by the
proposed architecture other than the predictor. Each reverse
complement of the query is used as the probe to add to tubes in
turn. By analyzing the yield between the probe and instances in
each tube, the query is assigned to the class that exhibits the
highest yield.

In dry-lab, NUPACK can report yield between certain pairs of
DNA sequences. Thus, we record the sum of yield between the
query and instances in each tube to indicate the hybridization
degree. The label of the query is assigned to the class with the
highest yield sum. But in wet-lab, it is trivial to observe the
hybridization of a specific dsDNA. At the same time, the
fluorescence intensity can accurately reflect the hybridization
degree between the query and all instances in the tube. Therefore,
the label of the query is assigned to the class with the highest
fluorescence intensity.

NUPACK protocol. A brief introduction of the parameters can
be found in Supplementary Note 3. For both predictor training
and dry-lab experiments, parameters of NUPACK are set as
followed:

1. Temperature: 25 °C.
2. Initial concentration: 1 nM;
3. Max complex size: 2;
4. Model options: default.

Materials and equipment. All DNA sequences (10 queries and 50
instances of digit ‘3’) for the wet-lab experiment are purchased
from SBS Genetech Co.Ltd. and purified by Ultra-Polyacrylamide
Gel Electrophoresis. They are dissolved in TE buffer (Beijing
Solarbio Science & Technology Co., Ltd.) and stored at −20 °C.
The SYBR GreenI (SGI), purchased from MCE (MedChemEx-
press, USA), is stored at −20 °C. Cytomics FC 500 (Beckman
Coulter, USA) is the instrument to measure fluorescence
intensity.

SGI is an asymmetrical cyanine dye used as a nucleic acid stain
to quantify dsDNA32,33. The stain preferentially binds to dsDNA,
which DNA-dye-complex best absorbs 497 nm blue light
(λmax= 497 nm) and emits green light (λmax= 520 nm). In
this paper, the fluorescence intensity is proportional to the
percentage of hybridized dsDNA, which is, in turn, determined
by the similarity between two sequences and whether they belong
to the same class.

Cytomics FC 500 is used to measure and record the
fluorescence intensity. The parameters are: 25 °C, medium speed
vibrating plate for 20 s, incubation for 10 min, emission length of
485 nm, and absorption wavelength of 520 nm.

Validation experiment of hybridization yield. DNA sequences
are dissolved in TE buffer solution (50 mM pH 8.0) and diluted to
10 μM. We add 10 μL instance (10 μM) to each of the 10 cen-
trifuge tubes (indicating digit ‘0’ to digit ‘9’). Subsequently, each
query sequence (in Supplementary Note 4) is added into the
corresponding tube. Vortex mixed, and heated at 95 °C for 10 min
to open the secondary knot of ssDNA. Slowly cool to room
temperature and dilute with TE buffer solution. The final con-
centration of instances and the query is 50 nM, and store them at
4 °C for standby.

Then, add 100 μL dsDNA (50 nM) to a cell of microplate,
followed by 10 μL SGI of which the final concentration is 10× SGI
and excessive. TE buffer only and TE buffer with SGI are taken as
control blanks. There are three repeats for each reaction.

Data availability
MNIST images are publicly available via the National Institute of Standards and
Technology and also available with our models of the feature extractor, the encoder and
the predictor at: https://github.com/yanqingsugzhu/nano-instance-based-classfier.

Code availability
The code of this study is available here: https://github.com/yanqingsugzhu/nano-
instance-based-classfier.
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