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Recent technological advances have contributed to the rapid increase in algorithmic com-

plexity of applications, ranging from signal processing to autonomous systems. To control

this complexity and endow heterogeneous computing systems with autonomous program-

ming and optimization capabilities, we propose a unified, end-to-end, programmable graph

representation learning (PGL) framework that mines the complexity of high-level programs

down to low-level virtual machine intermediate representation, extracts specific computa-

tional patterns, and predicts which code segments run best on a core in heterogeneous

hardware. PGL extracts multifractal features from code graphs and exploits graph repre-

sentation learning strategies for automatic parallelization and correct assignment to het-

erogeneous processors. The comprehensive evaluation of PGL on existing and emerging

complex software demonstrates a 6.42x and 2.02x speedup compared to thread-based

execution and state-of-the-art techniques, respectively. Our PGL framework leads to higher

processing efficiency, which is crucial for future AI and high-performance computing appli-

cations such as autonomous vehicles and machine vision.
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Many real-world applications across science and engi-
neering (e.g., self-driving cars1, digital signal
processing2, autonomous aerial3, ground, and under-

water systems4–6) urgently need increasing computational per-
formance to match the rapid increase in the complexity of
algorithms. Heterogeneous computing systems combine multiple
types of hardware accelerators (e.g., graphics processing
units GPUs, field-programmable gate arrays FPGAs) to achieve
such computational gains.

To manage the need for computational gains, heterogeneous
systems require intelligent, flexible, and efficient programming
strategies that can match the requirements of real-world appli-
cations to the strengths of the heterogeneous architecture. To
optimize this matching in terms of performance and energy
efficiency, we need to improve the mappings, compiler
transformations7, accelerator utilization,8 cache locality9, and
load balancing10. However, the existing monolithic programming
models and task mapping to compute platforms do not fully
exploit the recent heterogeneity as well as architectural innova-
tions in current hardware systems. They also fail to efficiently use
the heterogeneous processing elements which could exacerbate
the load imbalance and communication inefficiencies10–12. For
example, the conventional central processing unit CPU-only or
GPU-only optimization techniques may not be suitable for a
heterogeneous system that combines both. This is due to the
architectural and programming model differences of these hard-
ware accelerators. Therefore, novel optimization approaches are
required to realize the potential of heterogeneous systems and
achieve the goals of exascale performance.

Traditional compilation techniques rely on cost models (of
relatively simple hardware) based on expert heuristics13. How-
ever, the growing need for heterogeneous hardware systems to
improve performance has led to complexity increase in the
hardware, and that in turn has also added to the complexity of the
compilation targets. Thus, the traditional compilation techniques
are insufficient to exploit the promising potential of

heterogeneous hardware systems. For example, the search con-
ducted with those techniques must be repeated for each new
program and might require several compilations and executions.
That makes them impractical for real-world applications14. Fur-
thermore, due to workload imbalance, synchronization overhead,
and resource sharing contention10, the overall performance of
those techniques may be sub-optimal.

Machine learning, in particular, deep-learning techniques15,
have been explored in compiler optimization to learn better cost
models15–18. For example, a recent work19 proposed an end-to-
end deep reinforcement learning (DRL) method for ML compiler
graph optimizations where the learned policies are generalized to
new graphs and transferable to different tasks. Neuro-
vectorizer20,21 proposed an end-to-end deep reinforcement
learning framework for the automatic vectorization of loops. In
addition, ML-driven techniques are also used to optimize the
execution time of tensor computation graphs22 as well as deep
neural networks in TASO23 and SOAP24. However, there is still a
need for compiler approaches that are capable of exploiting recent
advances in machine learning to learn how to accurately map
computations (e.g., kernels) onto heterogeneous hardware sys-
tems for a single application. Such techniques should be capable
of learning better cost models in a dynamic and complex het-
erogeneous hardware systems under uncertain conditions that
complicate the use of traditional compilation techniques. More-
over, such ML-driven techniques will help remove the burden of
writing correct and efficient code from human programmers
(particularly programmers with expertise outside of computer
science).

To address these issues, we propose a machine learning fra-
mework to predict the optimal hardware device (e.g., CPU or
GPU) to provide better performance given a software kernel,
which is defined as the device mapping problem25, as shown in
Fig. 1. However, unlike the previous work13,26,27 that uses ML to
solve the device mapping problem, our approach focuses on how
to accurately map computations onto heterogeneous hardware

Fig. 1 Autonomous heterogeneous computing system. The recent advance of technologies enables the fast progress of autonomous cars and unmanned
aerial vehicles (a). However, with the commonly used system components such as the controller and convolutional neural networks for image recognition
(b), parallelization and communication overhead become inevitable concerns for programmers as the complicated and ever-changing software needs to be
parallelized and executed on a heterogeneous system (c). The proposed framework makes the manual process autonomous without human intervention by
profiling applications (d), constructing dynamic execution graphs (e), and mapping kernels onto the platform via machine learning models (f).
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systems for a single application. As applications become more
diverse and complex, it is inefficient to map them only onto one
type of hardware accelerator. For example, in autonomous driv-
ing, the visualization and recognition tasks can be efficiently
distributed, consisting of many for loops, onto cores in GPUs to
provide higher parallelization. On the other hand, sequential
decisions based on if-else statements require CPUs to provide fast
execution on a single critical thread. In this example, GPUs
provide a higher number of compute engines for parallel com-
puting whereas CPUs have higher frequencies compared to
GPUs, leading to faster execution of sequential threads. There-
fore, a CPU/GPU heterogeneous system where the best features of
both hardware devices are efficiently combined can achieve even
further computational gains.

Methods
Setup. Given a software program, our goal is to identify the
subgraphs (i.e., code segments) that are optimal to run on CPUs
or GPUs. Note that performance varies by use, configuration, and
other factors. Learn more at www.Intel.com/PerformanceIndex.
Our developed end-to-end framework consists of two compo-
nents: a GAE and a GNN. The unsupervised learning model GAE
is used to partition the complex program into several clusters/
kernels to be mapped onto heterogeneous systems. Supervised
learning model GNN predicts the correct label for each kernel. In
the implementation, we use kernels written in OpenCL13 as
training and testing data with 5-fold cross-validation for the GNN
model. The ground-truth labels are either CPU or GPU for the
kernels. In order to evaluate our proposed unified end-to-end
programmable graph representation learning (PGL) framework,
we first use the GAE model to partition the graphs, to find kernels
suitable for either CPU or GPU. Next, different GNN models are
used to predict the correct label to the underlying hardware. The
configuration parameters of the heterogeneous system are listed
below. The hardware contains 32 CPUs and 32 GPUs connected
with the mesh-based network-on-chip. Each CPU has a 4-way
64KB L1 private cache, 256KB L2 shared cache, and 4GB mem-
ory, clocked at 2.4 GHz. Each GPU has 768MB memory with
86.4GB/s bandwidth, clocked at 575 MHz.

Applications for the power-law relationship. The power-law rela-
tionship between multifractal properties and system-level metrics
can be characterized by analyzing 132 programs in 17 applica-
tions, which are discussed as follows: (1) Algebraic multigrid
solver (AMS): the parallel algebraic multigrid solver for linear
systems arising from problems on unstructured grids; (2) Fast
sequence alignment (FSA): an ultrafast and memory-efficient tool
for aligning sequencing reads to long reference sequences; (3)
DNA sequence mapping (DSM): a software package for mapping
DNA sequences against a large reference genome, such as the
human genome, which consists of three algorithms: BWA-back-
track, BWA-SW and BWA-MEM; (4) neural network (NN): an
open source neural network framework written in C and CUDA;
(5) Dijkstra (DA): Dijkstra shortest path; (6) Epidemic simulation
(ES): a simulation of an epidemic, inspired by the 2019-20 novel
Coronavirus Disease (COVID-19) pandemic; (7) Molecular
dynamics (MD): a proxy application and research vehicle for
particle code, in particular molecular dynamics; (8) Graph par-
titioning (GP): graph partitioning algorithms that contains multi-
way partitioning algorithms, Fiduccia-Mattheyses-Sanchis (FMS),
partitioning by locked moves (PLM), and partitioning by free
moves (PFM); (9) Euler equation solver (EES): a mini-app that
solves the time-dependent Euler equations of compressible gas
dynamics in a moving Lagrangian frame using unstructured high-
order finite element spatial discretization and explicit high-order

time-stepping; (10) Evolutionary algorithm (EA): Lamarckian
evolutionary algorithm for molecular design and optimization;
(11) IO proxy application (IPA): a multi-purpose, application-
centric, scalable I/O proxy application for IO performance testing
and multi-physics, HPC applications; (12) Mesh refinement
application (MRA): an adaptive mesh refinement mini-app; (13)
CNN: a convolutional neural network; (14) Poisson equation
solver (PES): a solver for a standard Poisson equation using a
conjugate gradient iteration with a simple or spectral element
multigrid preconditioner on a block or linear geometry; (15)
Monte Carlo kernel (MCK): a mini-app representing a key
computational kernel of the Monte Carlo neutron transport
algorithm; (16) HACC: a stand-alone version of hardware
accelerated cosmology code (HACC)’s distributed-memory,
pencil-decomposed, parallel 3D FFT; (17) Radiative transfer sol-
ver (RTS): a solver for the equation of radiative transfer in the
multi-group two-moment approximation.

Datasets. We start by using the 256 heterogeneous device map-
ping OpenCL kernels13 for the training and validation of GNNs.
These kernels are labeled with CPU vs. GPU. We then manually
convert these kernels to C code. Furthermore, we use standard
application benchmarks to validate the overall PGL framework.
These benchmarks are (1) Dijkstra to find the shortest path with
an input of 100 nodes, (2) Fast Fourier transform with an input
vector of size 4096, (3) K means clustering / partitioning with an
input of 256 2D tuples, (4) Mandel to calculate the Mandelbrot
set with an input of 4092 points; (5) Molecular dynamics with an
input of 1024 particles, (6) Neural network with an input of 5
hidden fully connected layers, (7) Neurons with an input of 1024
neurons with the ReLU activation function, (8) Convolutional
neural network with an input architecture of a convolutional layer
connected with a max pooling layer and a fully connected neural
network.

Baseline comparisons. When comparing the accuracy of the
prediction results from GNN models, we use the following GNN
models: (1) graph convolutional networks (GCN); (2) graph
attention network (GAT); and (3) gated graph neural network
(GGNN). We compare our graph representation to the Pro-
GraML graph representation26, NCC28, and DeepTune13, state-
of-the-art techniques to represent programs as graphs. To
quantify the benefits of graph partitioning, we compare the PGL
framework with the following baselines in terms of the applica-
tion performance: (1) K-means clustering connected with GCNs
(KM+GCN); (2) hierarchical divisive clustering where all
observations start in one cluster, and divisions are performed
recursively as one moves down the hierarchy, connected with
GCNs (HDC+GCN); (3) modularity-based community detection
where an optimization model is proposed to measure the struc-
ture of graphs10,29, connected with GCNs (MOD+GCN);
(4) METIS graph partitioning30 connected with GCNs (METIS
+GCN); (5) feed-forward neural network, connected with
GCNs31 (NN+GCN). In addition, we compare the PGL frame-
work in terms of the application performance with the following
baselines: (1) threads in parallel programming (PAR);
(2) modularity-based community detection to partition the graph
into clusters and a heuristic mapping10 (CommDet); (3) sliding
window based neural network to locate specialized structures with
a reinforcement learning based mapping (NN+RL)31; (4) Alad-
din, a pre-RTL, power-performance simulator for fixed-function
accelerators32.

Feature extraction. Each node in a GNN is associated with
numerous features, which are further used for clustering or
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classification to make decisions at the node level or graph level. In
the literature, the code2vec33 and inst2vec28 are commonly used to
extract features by encoding programs via AST paths. However,
the trained representations can put larger weights on names
rather than code structure, which may lead to misclassification.

In order to exploit the graph structural information flow of
programs, random walks reason about the number of adjacent
nodes and the density of connections around a node34. A random
walk is defined as a series of nodes, starting from n0, the jth node
is generated by the following distribution with a fixed length l.

Pðnj ¼ jjni ¼ iÞ ¼
wij

∑jwij
if ði; jÞ 2 E

0 otherwise

(
ð1Þ

where wij is the edge weight between node i and node j. In
addition, multifractal analysis mathematically studies the struc-
tural complexity and topological heterogeneity of graphs35. The
multifractal properties such as generalized fractal dimensions
provide the higher-order statistics of a graph, which can be
quantified by a finite box-covering method. That is, to study the
different fractal structures in a graph, the box-covering method
uses a box of the same size to cover the graph and then studies the
relationship of the size of a box (l) and the number of nodes in
the ith box of size l (Ni(l)) as

∑
i
NiðlÞq � lτðqÞ ð2Þ

where q is the distortion factor to differentiate the topological
difference of fractal structures, and τ(q) is the mass exponent.
Next, we can obtain the generalized fractal dimensions D(q) from
τ(q), which characterizes the different fractal structures of a
graph.

DðqÞ ¼ τðqÞ
q� 1

ð3Þ

Therefore, to mine the local and scale-dependent topological
properties of programs, we propose an algorithm in Supplemen-
tary Notes 1 that exploits random walks and multifractal concepts
for encoding topological inter-dependencies (See the additional
information for the full details of the algorithm.). Random walks
explore the local topological density around node i in a graph by
finding random paths starting from node i to node j. Once a
random path is identified, we backtrack to the final destination
node j to find the subgraph SG starting from i to j. Next, we
perform a multifractal analysis on the subgraph SG to estimate its
generalized fractal dimension. The time complexity of the
algorithm is bounded by the Dijkstra strategy to find the shortest
path for each node to every other node, which is O(ElogV), where
E and V are the numbers of edges and nodes, respectively.
Finding all shortest paths in a graph has a time complexity of
O(EVlogV).

Results
Problem formulation and framework overview. In order to
combine the benefits of both CPUs and GPUs, as opposed to the
traditional device mapping problem, we formulate a new problem
to be considered within the high-performance computing and
machine learning contexts: Given a complex software application,
the goal is to learn a mapping function that predicts which code
segments would run best on a specific hardware device in het-
erogeneous hardware platforms.

The scheduling and mapping of dataflow graphs are a well-
studied research area including synchronous dataflow36,37 and
dynamic dataflow38–40 extend the job-shop scheduling techniques
to account for inter-processor communication costs. Pino et al.41

show how to construct schedules for heterogeneous

multiprocessors. Falk et al.42 give a parallel scheduling strategy
based on clustering and demonstrate significant performance
gains for multimedia applications. In recent work16, most
approaches to deep learning in compiler optimization borrow
ideas from deep learning in natural language processing.
However, the compiler domain has identified data structures
such as abstract syntax trees and dataflow that exhibit the aspects
more important for compiler optimization than the token
sequences in natural language processing. Therefore, new graph
representations of source code are developed to be used with the
help of the recent advances in graph-based deep-learning models
such as graph neural networks. For example43, proposed a new
compiler-based graph representation for deep-learning models of
code. It incorporates the abstract syntax tree and control-data-
flow graphs to understand program properties and enable deep
learning such as graph neural networks on the graph properties.
In addition, the concurrent execution of varying mixes of
different applications on the many-core systems enables state-
of-the-art research in predictable application execution in terms
of run-time mapping. For example44, proposed a hybrid mapping
that achieves run-time predictability by combining the design-
time analysis of application mappings with run-time
management45 provided a general, completely automated hybrid
application mapping methodology for optimizing the mappings
of multiple concurrent running soft real-time applications to a
heterogeneous multiprocessor system on a chip to minimize
latency and energy. However, previous work on graph repre-
sentation of code fails to expose some interesting graph motifs in
programming languages that are recurring at different scales. The
proposed dynamic execution graph illustrates different self-
repeating code structures that can be exploited in multifractal
analysis to extract meaningful features.

Therefore, to decipher the complex higher-order inter-
dependencies of real-world software, we represent their computa-
tions in programs (code) as a graph where each node represents a
compute instruction and each edge represents an information
flow from one instruction to another. While many prior works
have employed machine learning methods from natural language
processing to represent programs as a sequence of lexical
tokens13,46,47, recently there emerged a number of graph-based
machine learning works that capture the structure of programs
along with the syntactic and semantic information in the graph
representation28,33,43. It has been observed that the graph-based
representation learning strategies tend to have superior learning
ability on the programs for many code analysis tasks, such as code
similarity learning48, program classification49, etc. For instance43,
uses abstract syntax trees (ASTs) and control-dataflow graphs
(CDFGs) independently to represent programs and apply GNNs
for learning predictive compiler tasks on these graphs, which
outperforms the recurrent neural networks (RNNs) on the token
sequence representation of the programs. By modeling the
program’s control, data, and call dependencies as a graph26,
exemplified a GNN to learn representations from the graph for
both node-level and graph-level tasks including compiler analysis,
program classification, and device mapping. The graph representa-
tion of programs enables us to model the dynamic dependency
structures of software programs and helps analyze program
characteristics and automatically compile programs in hetero-
geneous platforms. The automation is achieved via graph-learning
models to predict the type of each program from an initial feature
matrix. In order to obtain the representative higher-order
topological features from a graph representation, we perform a
comprehensive multifractal analysis35 and quantitatively relate the
topological structures hidden in a software graph with computa-
tional performance onmultiprocessor systems while accounting for
communication and synchronization overheads.
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To solve this challenging optimization problem, we propose a
unified, end-to-end, programmable graph representation learn-
ing framework called PGL which is capable of mining the
complexity of high-level programs down to the universal IR,
extracting the specific computational patterns, and predicting
which code segments run best on a specific core in heterogeneous
hardware platforms. The proposed PGL framework, shown in
Fig. 2, is flexible and capable of working with various graph
representations of software code (e.g., regardless of the abstract
syntax tree, or data-control flow graph). We also propose and
evaluate a dynamic execution graph representation constructed
from a partially executed trace of a code, where nodes represent
low-level virtual machine (LLVM) intermediate representation
(IR) instructions and edges represent control, data, and memory
dependencies, which can better identify the structural informa-
tion flow and capture memory dependencies.

Dynamic dependency used in PGL is effective in representing
code as graphs. Recently, various graph representations were
proposed for machine learning to represent and capture the latent
information flow in a program (e.g., abstract syntax tree (AST)33,
contextual flow graph (XFG)28, and control and dataflow graph
(CDFG)43). These graph representations allow the compiler to
analyze the effectiveness and correctness of programs, as well as
enable parallel programming via graph partitioning in high-
performance computing10. However, these statically compiled
graphs have several limitations. First, memory dependencies are
difficult to be identified. If not handled properly, this can exacerbate
the data communication overhead and reduce the application
performance. Second, the number of iterations in for and while
loops cannot be statically determined. This plays a significant role in
predicting whether the code is running in either CPU or GPU based
on the workload. For example, if the number of iterations is small, it
is ideal to run the code on CPU, because of the faster clock fre-
quency. Otherwise, GPU is preferred because the number of cores
on each chip is much denser to provide higher parallelism. There-
fore, in order to overcome these drawbacks, we use the information
generated from static compiler analysis and dynamic compilation to
model the information flow in high-level programs as a dynamic
execution graph. Next, we propose the following representation.

Definition. DYNAMIC EXECUTION GRAPH. A dynamic
execution graph is a weighted directed acyclic graph G= (V, E,
W), where each node v, associated with an attribute va indicating
the type of the node (e.g., add, sub, store, or load), (v, va)∈V
represents an LLVM IR instruction; each edge e, associated with
an attribute ea indicating the type of dependencies (e.g., control,
data, or memory), (e, ea)∈ E represents a dependency between
two instructions; a weight w∈W on each edge e represents the
amount of data communication between two instructions and the
time to execute the instruction. It allows us to quantify com-
munication overhead in the memory hierarchy with L1, L2, and
L3 caches.

Note that the dataflow graphs in the literature are coarse-
grained as each node represents a function in a program and each
edge represents a signal path. However, each node in a dynamic
execution graph introduced in this manuscript represents one
LLVM IR instruction. It is coarse-grained enough to reduce
simulation time and memory space for keeping track of all low-
level assembly instructions and data structures. At the same time,
It is fine-grained enough to express inter-dependencies between
each pair of instructions dynamically collected.

The motivation for adopting a finer granularity analysis is
three-fold: Firstly, the high-level languages and high-level
programs may be designed in order to optimize certain software
engineering objectives (e.g., modularity), but they are not taking
advantage of or keep up with recent hardware innovations and
developments (e.g., high parallelism in exascale computing).
Secondly, the software development for certain applications may
be done in a sub-optimal way without considering the time
complexity in algorithms such as recursion used in Fibonacci
numbers that leads to O(2N) where N is the Nth Fibonacci
number. Thirdly, to bridge the gap between the high performance
offered by heterogeneous hardware platforms and the high
flexibility offered by general-purpose computing, we need a
model of computation representation that allows us to flexibly
capture the best of both worlds - the software and the hardware.
Towards this end, we adopted the dynamic execution graphs with
a finer-grain assembly code representation to retain the above-
mentioned flexibility and provide higher software-hardware
flexibility when compared to the dataflow graphs used in the
literature. However, this finer granularity does not necessarily

Fig. 2 Overview of the proposed programmable graph-learning framework (PGL). PGL constructs a dynamic execution graph for each input software
program via low-level virtual machine (LLVM) intermediate representation (IR). PGL then utilizes a novel feature extraction algorithm based on random
walks and multifractal analysis to construct node features that capture the topological dependencies and structures in dynamic execution graphs. These
features are further used by a graph autoencoder (GAE) to partition the graph into clusters (i.e., software kernels) and a graph neural network (GNN)
model such as graph convolutional networks (GCN) and multilayer perceptrons (MLP) to predict the best hardware device for each kernel.
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mean higher communication overhead. Higher granularity means
more nodes and more edges in our implementation but the
communication overhead refers to the amount of communication
that takes place between clusters after the partitioning. In order to
prevent higher communication overhead, we introduce our
partitioning algorithm that partitions the dynamic execution
graphs into clusters. Indeed, we expect that a resulting cluster
from the partitioning operation to be more similar to a node in
the dataflow graphs in the literature. Each cluster is a sequence of
instructions that are optimized to reduce data communication
between clusters. Therefore, our graph representation with
partitioning does not have a higher communication overhead.
We optimize the inter-cluster communication to make sure the
communication overhead between clusters is minimized.

To construct these dynamic execution graphs, we first collect
the representative dynamic trace generated from executing a
program. This trace contains a sequence of LLVM IR instructions
to be executed. Then, for each instruction, we check if one of the
following dependencies exists and insert a directed edge to
construct the graph:

● Data dependency: Source registers of the current instruc-
tions depend on the destination registers of the previous
instructions.

● Control dependency: Source registers of the function calls
and branches depend on the destination register of the
previous instructions.

● Memory dependency: Memory locations of the current
store-load instructions are the same as the previous store-
load instructions. We perform this memory alias analysis
using “-basicaa -aa-eval -print-allalias-modref-info" in the
LLVM environment.

Figure 3a–c shows some common zoomed-in graph patterns
among dynamic execution graphs with high-level C code. Loops
are commonly used in any programming language that can
execute a group of statements multiple times. When arrays are
used inside a loop statement, the corresponding dynamic
execution graph has a star shape. The central node that is
connected to different branches is the “getelementptr" LLVM IR.
It is used to get the address of a sub-element of an aggregate data
structure. Each branch corresponds to different instances of
a[i]= i. When none of the arrays are used inside a loop, the
corresponding dynamic execution graph has a mesh shape. When
only sequential statements such as if-else are used in code, the
corresponding dynamic execution graph has a tree shape to
represent the information flow from the beginning to the end.
Figure 3d–f shows the constructed code graphs for sequence
alignment, signal processing, and convolutional neural networks,
respectively. Note that a node is an LLVM IR instruction, not an
operand or a high-level language (e.g., C/C++, Java) statement.
Different from AST, XFG, and CDFGs, this specific graph
representation in Fig. 3d–f makes explicit some hidden program
information flows from the execution trace generated at run-time
and analyzed via data, control, and memory dependencies. Each
graph contains multiple fundamental graph patterns in (a), (b),
and (c). For example, (d) clearly shows the mesh topology (b),
and (e) has a star-shaped subgraph (a) that indicates the use of
loops with arrays. In order to quantify the structural difference
among the graphs, we also analyze the multifractal spectra of the
graphs in (i), which validates that multifractal analysis is able to
detect the topological structures in graphs. This helps us to design
the feature extraction algorithm based on multifractal analysis in
PGL.

In order to validate the effectiveness of PGL, we compare it
with state-of-the-art techniques in terms of the accuracy of the
prediction results on the same dataset13. We compare PGL

against the DeepTune and DeepLLVM using the code released by
their authors. We also compare our graph representation against
the ProGraML graph representation by extracting ProGraML
graphs from the C versions of the kernels and training a GGNN
on the graphs. Each dataset contains a set of kernels written in
OpenCL and the labels associated with them. Each label is either 0
(CPU) or 1 (GPU). We then manually convert OpenCL into C in
order to be used in ProGraML and PGL. We use 5-fold cross-
validation to evaluate the machine learning models by partition-
ing each dataset into training, validation, and testing sets.
Accuracy is measured by calculating the number of times that a
framework is able to correctly predict the label for each kernel
divided by the number of kernels. We repeat each experiment 100
times to report the mean and standard deviation. Precision is
calculated by the true positive divided by the true positive plus the
false positive. A recall is calculated by the true positive divided by
the true positive plus the false negative.

As we can see from Table 1, PGL outperforms the state-of-the-
art token-based DeepLLVM47 by 1.03x and graph-based
ProGraML26 by 1.14x in terms of accuracy because it provides
a novel way for program structural representation and enables the
recent graph neural networks (GNNs) for the downstream tasks.
In addition, we also test different graph neural networks
including graph convolutional network (GCN)50, graph attention
network (GAT)51, and gated graph neural network (GGNN)52

along with PGL and it demonstrates that GGNN provides better
accuracy compared to the rest by 1.04x.

In addition, we also test the impact of each framework on the
fast convergence of the machine learning model in terms of
accuracy for the NVIDIA (a) and AMD (b) datasets. More
specifically, each machine learning is trained using 500 epochs to
achieve stable results. In this experiment, we gradually remove 10
percent of training steps to understand which framework offers
fast convergence in terms of accuracy. As we can see from Fig. 4,
in general, PGL-GGNN offers the fastest convergence compared
to others because it reaches the approximately optimal results at
60% whereas DeepLLVM reaches its optimal results at around
90%.

The interdependence between advanced software code opti-
mally executed on heterogeneous hardware exhibits a complex
multifractal and universal behavior. To decipher the mathe-
matical relationship between the network properties (e.g., multi-
fractal spectrum, generalized fractal dimension) and the system-
level metrics such as the parallelization degree and communica-
tion overhead, we investigate different software kernels employed
in high-performance computing and construct their corre-
sponding code graphs. The code graphs exhibit a wide variety of
self-similar structures due to loops and conditional statements.
To quantify the higher-order topological complexity, we perform
the multifractal analysis of code graphs and quantify their self-
similar properties through the multifractal spectrum (Fig. 3g) and
generalized fractal dimension (Fig. 3h). The width of the multi-
fractal spectrum f(α) with respect to the Lipschitz-Holder expo-
nents α measures the structural complexity and heterogeneity of a
network35. Here, α quantifies the dimension of the fractal struc-
ture, and f(α) reflects the proportion of fractal structures with a
given Lipschitz-Holder exponent α, i.e., the distribution of fractal
structures in the network. The multifractal spectrum of a
monofractal graph is similar to a delta function where a single
physical rule governs the graph structure at any scale and can be
interpreted in terms of the system level as the fact that the graph
can be mapped to either CPUs or GPUs. In contrast, the general
multifractal spectrum exhibiting a non-zero width indicates that
more than one physical rule governs the graph topology, which
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means that the graph is heterogeneous and should be carefully
investigated in order to be mapped to both CPUs and GPUs.

For a dynamic execution graph constructed from a given
software code implementation via compiler analysis, we partition it
into several interdependent clusters to identify the optimal
parallelization degree with respect to the characteristics of the
heterogeneous computing system and minimize the inter-cluster
weights (data communication overhead) via the optimization
framework10,53. Each networked processing community represents
a specific set of interdependent LLVM instructions, which is similar
to a thread or process in operating systems. The inter-cluster

weights represent the amount of data communication from one
cluster to another, resulting from the optimization framework
being minimized. To characterize the computational requirements
and properties of various software codes, we consider two system-
level metrics such as the parallelization degree and communication
overhead. The parallelization degree is defined as the number of
processing communities (clusters) generated from the optimization
framework. The communication overhead is defined as the sum of
inter-cluster weights between two clusters.

Dynamic execution graphs can exhibit some self-repeating
patterns on different scales that we can exploit to capture and

Fig. 3 Dynamic execution graphs and multifractal properties. Panel a, b, and c show basic graph patterns in graphs where the code contains either loops
or sequential statements. Panel d, e, and f shows the constructed code graphs for sequence alignment, signal processing, and convolutional neural network,
respectively. The graphs are a hybrid of fundamental graph patterns in (a–c). Panel g shows the multifractal spectrum and some definitions such as α0 and
spectrum width w. Panel h shows a generalized fractal dimension for a graph. Panel i shows three multifractal spectra (green, red, and blue lines) for d–f to
demonstrate multifractal spectrum can identify the heterogeneous graph structures in different dynamic execution graphs.
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understand the intrinsic graph structures. There are two
fundamental techniques in programming languages: iteration
and recursion. Iteration is a significant routine for a program to
define a number of repetitions, usually via for-loops and while-
loops. It corresponds to the mesh-like topology in graph
representation. Recursion is the other major approach for a
program to solve a problem where the solution depends on
solutions to smaller instances of the same problem. It corresponds
to a tree-like topology in graph representation. These two types of
graphs can be analyzed at different scales to understand the
recurring structures to extract the hidden features. For example,
Fig. 5 shows an example of a for loop and its corresponding graph
structure. In order to analyze its self-repeating patterns that can
be seen in (b), we use the box-counting algorithm in multifractal
analysis to calculate the dominant fractal dimension. In other
words, we follow the definition of the measure to find the number
of boxes (N(B)) with a box size r. The number of boxes is
calculated by the optimal amount used to cover the entire graph.
For example, when r= 1, the number of boxes N(B) is the
number of nodes in the graph, which is 116 in this case. When r is
the diameter of the graph, the number of boxes N(B) is 1.

We analyze 132 programs corresponding to 17 applications
ranging from state-of-the-art high-performance solvers to the
machine learning domain. Relying on dynamic and static
compiler analysis, we transform each program into a dynamic
execution graph and measure their corresponding multifractal
properties and system-level metrics. Each dot in Fig. 6 represents
one program. Supplementary Notes 2 discusses the general idea
behind multifractal analysis. To investigate the existence of a
mathematical relationship between the network properties and
system-level computing metrics, we measure the generalized
fractal dimension (Fig. 6a–b), the spectrum width (Fig. 6c, g), the
spectrum height (Fig. 6d), the dominant Lipschitz-Holder
exponent α0 (Fig. 6e, h), and the network complexity
(Fig. 6f, i). We observe that the network and system-level
computing metrics obey a power-law model (i.e., axb), indicating
the existence of a universality phenomenon characterizing the
efficient heterogeneous software-to-hardware optimization. For
example, Fig. 6a shows the power-law trend between the
generalized fractal dimension where q=− 10 characterizing the
rare network motifs and the parallelization degree. The higher
this dimension, the more frequent the rare patterns in code
graphs, and the higher the parallelization degree. Going beyond
rare network motifs, we investigate the width of the multifractal
spectrum which quantifies the richness in generating rules
characterizing a dynamic complex software. Figure 6c, g shows
the power-law relationship between the multifractal spectrum
width and the parallelization degree, and the communication
overhead, respectively, indicating a universality signature. The
larger the multifractal spectrum width, the more heterogeneous
the code graph and the higher the parallelization degree and
communication overhead.

Once we analyze different graph properties from multifractal
analysis such as generalized fractal dimension, spectrum height,
and width, we are trying to relate the graph-level properties
with some system-level metrics such as communication over-
head and parallelization degree by fitting a power-law model
into the data to help us understand the relationship. As we can
see in Fig. 6, There exists such a model that can approximately
estimate the system-level metrics from graph properties. This
has two folds.

1. It provides a universal model that builds the relationship
between the graph properties such as the multifractal
spectrum and the system-level metrics such as the
parallelization degree and communication overhead. If

Table 1 Comparison of the state-of-the-art techniques on the
NVIDIA dataset (left) and AMD dataset (right).

Framework Accuracy (%) Precision Recall F1
DeepTune 65.28 ± 5.32 0.68 0.68 0.68
DeepLLVM 88.64 ± 4.61 0.91 0.91 0.91
NCC 75.63 ± 4.85 0.80 0.80 0.80
ProGraML-GGNN 80.36 ± 4.19 0.83 0.83 0.83
PGL-GCN 87.66 ± 3.17 0.90 0.90 0.90
PGL-GAT 89.73 ± 3.88 0.92 0.92 0.92
PGL-GGNN 91.52 ± 3.14 0.94 0.94 0.94

Framework Accuracy (%) Precision Recall F1
DeepTune 68.4 ± 4.52 0.70 0.68 0.69
DeepLLVM 90.9 ± 2.14 0.93 0.93 0.93
NCC 78.5 ± 3.74 0.79 0.79 0.79
ProGraML-GGNN 86.6 ± 3.28 0.89 0.87 0.88
PGL-GCN 92.97 ± 2.79 0.93 0.93 0.93
PGL-GAT 93.36 ± 2.45 0.94 0.94 0.94
PGL-GGNN 93.87 ± 2.27 0.94 0.94 0.94

The F1 score is the harmonic mean of the precision and recall.

Fig. 4 Framework comparison. Convergence of normalized accuracy with different percentages of training steps in the NVIDIA (a) and AMD (b) datasets. Each
color line indicates normalized accuracy for a given framework and each color shading associated with a line shows the standard deviation for the framework.
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Fig. 5 Example of code with its graph representation and box-counting algorithm used to analyze the multifractal properties. a A loop kernel called
example6 in red; b The dynamic execution graph with initialization in a blue rectangle and wrap-up in a green rectangle with a zoom-in view on one
iteration of the loop; c The box-counting algorithm by varying the size of a box r to count the number of boxes N(B).

Fig. 6 Multifractal analysis can characterize the universal power-law relationship between multifractal properties and system-level metrics. Network
multifractal properties are used as inputs to fit a power-law model axb to find the relationship between network properties and system-level metrics. Panel
a–f shows the parallelization degree of code graphs in terms of generalized fractal dimension (a, b), spectrum width (c), spectrum height (d), α0 (e), and
complexity (f). Panel (g–i) shows the communication overhead for spectrum width (g), α0 (h), and complexity (i).
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such a model can accurately capture the relationship, the
optimal degree of parallelization can be calculated by the
graph properties, without the manual tuning from a
programmer. For example, if a dynamic execution graph
from a piece of code has a spectrum width that equals 2,
then we would expect communication overhead between 80
and 120 × 108 clock cycles, and the parallelization degree
between 10 and 24. On the other hand, if a future platform
can support millions of cores, then we can use this model to
find how to write the code that can exploit the benefits in
exascale computing.

2. It provides us with what design choices we can gain to
develop the feature extraction algorithm. PGL contains a
feature extraction algorithm used by the graph neural
network to predict a label. It shows that multifractal
analysis can capture the graph’s topological structures,
which can be further used in the feature extraction
algorithm.

In addition, when the dataset is evaluated in the full-system
simulation, we notice that PGL achieves 1.89x on average, which is
consistently better compared to state-of-the-art graph partitioning
algorithms such as METIS30 and machine learning models, as

shown in Table 2. It can also provide 4.73x speedup on average,
compared to state-of-the-art frameworks31, as shown in Table 3.

Graph auto-encoders can exploit network universality prop-
erties for partitioning large software into small kernels map-
ping them onto heterogeneous computing systems
GAE-based partitioning of large software graphs into different
kernels. Graph auto-encoders (GAEs)54 are a category of GNNs
that aims at representing nodes into low-dimensional vectors in an
unsupervised training fashion. They are different from other GNNs
that are typically used for supervised or semi-supervised learning
tasks. In our framework, the goal of the graph partitioning stage is
to obtain a good partition for each LLVM graph based on a learned
representation that captures the intrinsic structural information of
the graph, such that the subgraphs preserve the inherent char-
acteristics of the data, control, and memory dependencies in the
LLVM graph. To this end, we propose a graph partitioning strategy
based on the GAE55 and spectral clustering56 for our task, as shown
in Supplementary Notes 3. Once the GAE partitions a dynamic
execution graph into kernels, we further refine the partitions to
minimize the communication overhead, which is discussed in
Supplementary Notes 4.

Table 2 Comparison of different graph partitioning algorithms on the 17 applications

KM+GCN HDC+GCN MOD+GCN METIS+GCN NN+GCN PGL-GGNN

Algebraic multigrid solver 0.78 0.92 1.36 2.57 4.01 5.85
Fast sequence alignment 0.89 1.04 2.63 5.35 7.22 9.27
DNA sequence mapping 0.92 0.82 1.98 3.73 4.67 6.54
Neural network 0.86 1.12 4.52 8.42 9.64 11.85
Dijkstra 0.85 0.97 1.19 1.57 1.86 2.53
Epidemic simulation 0.98 1.21 2.52 4.22 6.53 8.34
Molecular dynamics 0.92 1.06 3.34 5.16 5.95 7.68
Graph partitioning 0.80 0.96 4.73 9.63 10.74 14.47
Euler equation solver 0.90 1.33 1.75 3.37 5.43 6.74
Evolutionary algorithm 0.94 0.89 1.42 2.56 4.12 6.2
IO proxy application 0.94 1.29 1.76 4.14 5.21 5.88
Mesh refinement application 0.93 1.05 2.78 3.75 4.52 6.32
CNN 0.88 1.27 2.56 5.12 6.43 7.69
Poisson equation solver 0.87 0.98 2.06 4.27 6.24 8.52
Monte Carlo kernel 0.79 0.87 1.89 3.64 4.88 6.03
HACC 0.92 0.86 2.21 4.83 5.75 7.84
Radiative transfer solver 0.97 1.26 2.44 5.12 6.70 8.93

Table 3 Comparison of different frameworks on the 17 applications

PAR CommDet Aladdin NN+RL PGL-GGNN

1. Algebraic multigrid solver 1 1.32 2.04 1.65 5.85
2. Fast sequence alignment 1 1.28 2.15 1.89 9.27
3. DNA sequence mapping 1 1.46 1.96 2.21 6.54
4. Neural network 1 1.88 3.21 2.67 11.85
5. Dijkstra 1 1.22 1.35 1.05 2.53
6. Epidemic simulation 1 1.09 1.77 2.04 8.34
7. Molecular dynamics 1 1.15 2.20 1.6 7.68
8. Graph partitioning 1 1.27 2.65 2.45 14.47
9. Euler equation solver 1 1.33 2.85 2.5 6.74
10. Evolutionary algorithm 1 1.54 2.54 2.2 6.2
11. IO proxy application 1 1.32 2.96 2.56 5.88
12. Mesh refinement application 1 1.65 2.33 2.75 6.32
13. CNN 1 1.13 1.91 2.24 7.69
14. Poisson equation solver 1 1.08 1.78 2.53 8.52
15. Monte Carlo kernel 1 1.24 2.12 2.64 6.03
16. HACC 1 1.35 2.52 2.31 7.84
17. Radiative transfer solver 1 1.42 2.22 1.75 8.93
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At the partitioning level, it is true that we cannot guarantee a
correct partition of a graph. This means node i which should have
been placed into cluster i could be in cluster j. However, that
does not necessarily lead to wrong results upon execution. The
wrong results are usually caused by (1) missing instructions; (2)
wrong order of instructions being executed; or (3) wrong data
being fetched. However, none of the scenarios can happen in our
construction of the dynamic execution graph thanks to the
following safeguards: (1) Each graph contains all of the
instructions and their direction dependencies, and the proposed
partitioning does not remove the instructions and their
dependencies. (2) The order of executing the instructions is
preserved by exploiting our proposed topological sort strategy
that guarantees directed dependencies among clusters, i.e., cluster
i is executed before cluster j if there is a direct edge from cluster i
to j. (3) There are two possible cases when an instruction needs
data: (i) whenever it loads data from memory and (ii) whenever it

depends on another instruction. When it needs data from
memory, it can be in any cluster. For example, when an
instruction from cluster i needs data from another instruction
that is in cluster j, the topological sort during the mapping stage
resolves this situation by asking cluster i to wait before the
completion of cluster j to make sure the data is available and sent
to cluster i. To prevent livelock and deadlock situations, the
optimization model used in partitioning has a constraint that
prevents cyclic dependencies in clusters.

We performed experiments on two different benchmark
suites in terms of application performance and reported the
clock cycles spent either on communication or computation as
shown in Figs. 7 and 8. For example, memory-intensive
applications such as Dijkstra involve pointer address manipula-
tion that requires frequent data fetch from memory. When
running in PAR without any optimization, the communication
overhead compared to the execution time is 820.52 × 107.

Fig. 7 The breakdown of the execution time of each application in the standard dataset running on different frameworks. The execution time, measured
in clock cycles, is roughly divided into two parts: communication and computation in a. We also report communication overhead that is calculated by clock
cycles in communication divided by the total clock cycles in b. As we can see, PGL, compared to the other frameworks, has the smallest communication
overhead. It is because PGL has an optimization model that partitions the graph into different clusters to minimize inter-cluster communication.

Fig. 8 The breakdown of the execution time of each application in the real-life dataset running on different frameworks. The execution time, measured
in clock cycles, is roughly divided into two parts: communication and computation in a. We also report communication overhead that is calculated by clock
cycles in communication divided by the total clock cycles in b.
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However, PGL manages to reduce it to 109.38 × 107 via the
optimization model to partition the graph into clusters while
minimizing inter-cluster communication. For compute-
intensive applications such as FFT, the communication over-
head running in PAR is 63.18 × 107 whereas it is reduced to
31.10 × 107 in PGL. This indicates that even though PGL uses a
finer-grained graph representation, the optimization-based
partitioning approach would reduce the communication over-
head between clusters.

GNN-based mapping prediction on heterogeneous computing sys-
tems. Once the kernels are further refined, next for each kernel,
we use a GNN to predict the correct platform to execute the
kernel by updating the node vectors iteratively in a similar
fashion to the message passing. Note that our proposed PGL is a
general framework that can leverage various GNN models for the
device mapping prediction stage, whereas in this paper, we adopt
three different variants of the GNN models: GCN50, graph
attention network (GAT)51,57 and gated graph neural network
(GGNN)52, respectively. We also empirically investigate the
comparative effectiveness of these GNN strategies in representa-
tion learning on the partitioned LLVM graphs for the graph
classification task in heterogeneous device mapping.

We fix the graph neural network as GCN with two hidden
layers and 32 neurons per layer, which is used to predict the
correct label for each kernel. We compare the GAE with different
partitioning algorithms such as K-means (KM), hierarchical
divisive clustering (HDC), modularity-based community detec-
tion (MOD), METIS, and feed-forward neural network (NN) in
terms of the total application execution speedup. As shown in
Fig. 9a, for the partitioning models without machine learning
such as KM, HDC, MOD, and METIS, the normalized execution
speedup is smaller compared to the learning models such as NN
and GAE. This is mainly because the kernels after graph
partitioning are not well recognized by the GCN model. For the

learning models, GAE outperforms NN by up to 32% because the
GAE takes into account the graph structures of code.

In order to validate the framework including the GAE and
GNN models, we use the trained models to predict each
application. As shown in Fig. 9b, we use the traditional thread-
based parallel programming running on CPUs as our baseline
and compare the PGL framework with community detection, a
neural network with reinforcement learning, and Aladdin32. We
observe that the PGL framework can provide up to 6.42x speedup
compared to the baseline and 2.02x speedup higher compared to
the state-of-the-art. Supplementary Notes 5–9 further show more
experimental results on framework comparison.

Discussion
We proposed PGL, an end-to-end learnable framework to predict
which code segments run best on a specific hardware device. We
first develop a node feature extraction algorithm based on random
walks and multifractal analysis concepts to quantify the local
structures of a program. We also measure different multifractal
properties and find the universal relationship between those prop-
erties and system-level metrics such as parallelization degree and
communication overhead. Next, we build the GAE together with a
decoder and spectral clustering to find cluster partition from the
distance matrix. Then, we use graph neural networks as the
learning model to predict the type of each cluster. Our evaluation
based on 32 CPUs and 32 GPUs confirms that the PGL framework
can provide up to 6.42x speedup compared to the baseline and
2.02x higher speedup compared to the state-of-the-art technique.

We believe the universal power-law model between the mul-
tifractal properties and system-level metrics could serve as an
indication to designers who plan to explore the best mapping for
their applications. For example, if a designer wishes to know the
optimal parallelization degree that is hard to find, the easiest
approach could be to quickly collect a certain multifractal

Fig. 9 Experimental results. Panel a shows comparison of different partitioning algorithms. We compare the graph partitioning GAE with different
traditional algorithms. Panel b shows a comparison of different frameworks. We compare PGL with different frameworks in terms of application
performance. We conclude that our approach can achieve 2.02x better compared to the state-of-the-art techniques.
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property such as spectrum width or αo, and use the model to
roughly determine the optimal degree. In the future, this learning
framework is able to be generalized to any system that may
include FPGA and emerging technologies.

In Fig. 10, we illustrate some of the limitations of PGL. We
summarize the limitations and potential future extensions of the
proposed framework as follows:

● First, the run-time profiling in the PGL framework only
supports C and C++ code that involves complicated
computation. Simple code with only a few lines is not
beneficial in PGL (see Fig. 10a for a simple illustration
example where a kernel contains three operations and it
only has two clusters where one contains one instruction
and the other contains two instructions after partitioning.
The small code is not ideal in PGL because the overhead it
spends on profiling and partitioning is not mitigated by
mapping only a few instructions onto a specific core. In the
future, developers could build more run-time systems that
support different languages.

● Second, the PGL is not suitable for high-level programs that
involve many memory random accesses, due to memory
dependencies that are hard to identify (see Fig. 10b). As
shown in Fig. 2b, we have a dynamic execution graph that
involves memory address manipulation and indexing, which
could lead to many false memory dependencies between
clusters. While the LLVM alias analysis reports the
MustAlias, MayAlias, and NoAlias dependencies, we treat
MustAlias and MayAlias as memory dependencies and add
an edge between two instructions irrespective of whether
they are must or may alias. This may increase the
communication overhead due to too many MayAlias cases.
On one hand, after we partition the dynamic execution
graph into clusters to minimize inter-cluster communica-
tion, if most of the memory dependencies are confined in
one cluster, then it would not increase communication. On
the other hand, if many false memory dependencies span
across different clusters, then communication overhead gets

worse. In the future, this can be considered in the
optimization model to partition the graph.

● Third, the high-level programs have to be compiled and
run successfully to collect the execution trace that is
required to build the dynamic execution graph, which
could be time and space-consuming. In the future,
developers could mitigate this issue by combining code
run-time profiling and graph construction on the fly.
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