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A multi-model architecture based on deep learning
for aircraft load prediction
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Monitoring aircraft structural health with changing loads is critical in aviation and aerospace

engineering. However, the load equation needs to be calibrated by ground testing which is

costly, and inefficient. Here, we report a general deep learning-based aircraft load model for

strain prediction and load model calibration through a two-phase process. First, we identified

the causality between key flight parameters and strains. The prediction equation was then

integrated into the monitoring process to build a more general load model for load coeffi-

cients calibration. This model achieves a 97.16% prediction accuracy and 99.49% goodness-

of-fit for a prototype system with 2 million collected flight recording data. This model reduces

the effort of ground tests and provides more accurate load prediction with adapted aircraft

parameters.
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A ircraft structural health monitoring is of great significance
to prevent aircraft damage, avoid air crashes and promote
the development of aviation and aerospace engineering:

Aircraft with high cost, complex structure, and safety require-
ments must have high-reliability1. With the maturity of safety and
design theories of electrical appliances, accidents caused by the
failure of aircraft electronic components are decreasing, while
faults of the aircraft structure system, especially fatigue failure,
become increasingly prominent. Once fatigue damage occurs, it
often leads to air crashes and casualties2.

Structural load analysis is a key technique of in-service aircraft
life monitoring and structural health management3. In flights
from takeoff to landing, the aircraft structures are constantly
subjected to alternating loads. Statistics indicate that the load is
the major cause of fatigue failure, accounting for >50% of the total
mechanical structure failures4. At present, this problem has not
been well solved in engineering because load sensors are usually
not available to be equipped on the aircraft in service due to the
restriction of cost, reliability, and maintenance5.

In this situation, in-service aircraft structural load (F) is usually
identified by the on-board flight parameters (X) based on the load
model F= f(X)6. However, such a load model needs to be cali-
brated by the ground test, including wind tunnel test and com-
putational fluid dynamics analysis, which has a heavy workload, a
long cycle, and the risk of accidental damage to the aircraft7.
Thus, in current engineering practice, the model of one aircraft is
used for the whole fleet (Fig. 1b), i.e., a general load model. But
this model is not so general as only the data of one aircraft is
used. Subtle differences in structure and abrasion among aircrafts
will weaken their reliability. Establishing the load model adapt to
every aircraft is more accurate, but also unrealistic and expensive.

Early classical approaches could establish equations suitable for
different aircrafts8 (Fig. 1a), where the load (F) was calculated
from the measured strains (E) based on the strain-load linear
regression equation F= kE+ b9, where parameters k, b are weight
and bias. They mainly depended on the strain gauges pasted on
the main load-transferred path of each aircraft. But the strain
gauges gave the risk of falling off, data drift and missing10. The
data error could be up to 40% when the operational demand is
high. Although many practices have improved the measurement
accuracy11,12, operation and maintenance would require regular
expensive tests, and once the strain gauge pasted inside the
structure fails, it can hardly be compensated. Thus, the cumber-
some engineering process hinders the establishment of the gen-
eral load model. (Section S2 of the Supplementary Information
covers additional related research.)

In this paper, we propose a two-phase prediction process to get
a general aircraft load model as shown in Fig. 1c (Details are in
Fig. S1): (I) predicting strains from flight parameters, (II) cali-
brating strains and obtaining load. Compared with the end-to-
end method from flight parameters to load (Fig. 1b), it can create
a general model for the fleet by calibrating the strain-load
equation; Compared with the method of directly using the strain-
load equation (Fig. 1a), it can avoid strain gauges that could fail at
any time, which is meaningful for the long-term use of an aircraft.
The following findings were made while using our method:

Finding 1: There is a deep learning-based Granger causality
(our previous work13) from flight parameters to strains, including
the relation among products of flight parameters and strains.

Finding 2: The strain-load equation of one aircraft can be
obtained by processing the strain-load equation of another air-
craft calibrated by the ground test with a correction coefficient.

Based on Finding 1 and 2, we can design a two-phase method
to achieve a more general load model, consisting of (i) predicting
strains from flight parameters and (ii) calculating load from
strains. i.e., F= kE+ b= kf(X)+ b. This idea keeps the classical

idea of calculating load from strains to ensure the model gen-
erality and keeps the practical idea of utilizing flight parameters to
ensure the model’s accuracy. In application, it cuts down some
engineering processes: reducing the use of unreliable strain gauges
through the prediction method and avoiding potentially dama-
ging tests by using convenient flight tests instead of cumbersome
ground tests.

However, it is not easy to integrate the strain prediction
method into the load monitoring process directly as the response
relations between flight parameters and strains are highly com-
plex during flight. Meanwhile, noise and electronic interference
often exist14 and small differences among flight parameters may
cause large prediction differences.

Finding 3: Flight attitude always affects the result of strain
prediction. In the flight course, the aircraft will have many phases
like takeoff and landing, and many actions like turning and
circling15, even the same flight parameters may respond to dif-
ferent strains. i.e., there are different relations, causing multiple
data distributions. But most individual models lack the ability to
learn them all due to the premise of independent identical dis-
tribution (i.i.d)16,17.

Finding 4: Data corruption in a short period is the main noise.
But the load prediction is sensitive: A 5% error of load may cause
almost 20% error in damage and life, and 90% reliability of life
requires at least 97% reliability of load7.

Based on Finding 3 and 4, the promising approach is to design
a robust flight parameter processing flow and flight attitude
coding method. In this way, we can build a unique deep learning
model for each flight attitude to improve accuracy.

Besides, practical aviation application requires interpretable
methods, but most deep learning models are uninterpretable. The
22nd article of the European Union’s General Data Protection
Regulation stipulates that a subject of algorithmic decisions has a
right to meaningful explanation regarding said decisions18.
Engineers always justify a result, verify and revise the method
using domain knowledge familiar to them19. Unfortunately, the
common opinion holds that deep learning models are black-
boxes20. Through our previous investigation21–23, we found that
an expert’s understanding of a method is usually based on their
knowledge, i.e., which input features are important to the result,
and what is the contribution of each feature to the result. Based
on this, we achieved the interpretation method by finding the key
flight parameters and their contributions to load prediction,
which is a preliminary exploration to explain the deep learning
method in aviation engineering.

Finding 5: There are the important flight parameters in the
load prediction process, namely normal overload, attack angle,
inner aileron deflection, Mach number, and barometric altitude.
This interpretation is important to the model expansion, data
analysis and accuracy improvement of our model.

The major advantages of our study are fourfold: (1) We pro-
posed a deep learning method for strain prediction, which is a
multi-model responding to 36 defined hybrid flight attitudes. The
model can achieve 97.16% average prediction accuracy. The error
is less than the 5% tolerance in the aviation industry. (2) We
proposed a coefficient calibration method to achieve a more
general load model without increasing costs. It can achieve
99.49% goodness-of-fit. In this way, the model generality can be
improved by the data from more aircrafts, where only one
cumbersome ground test is needed and the others are replaced
with convenient flight tests. (3) We designed a key feature-based
method and a alternative model-based nonredundant multiple
tree to interpret deep learning models. It showed the important
flight parameters in the load prediction process. (4) Our tests are
implemented on real flight records. We have collected 2,003,159
flight records from 5 aircrafts. Each record consists of 28 flight

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00100-4

2 COMMUNICATIONS ENGINEERING |            (2023) 2:47 | https://doi.org/10.1038/s44172-023-00100-4 | www.nature.com/commseng

www.nature.com/commseng


parameters and 10 strains. The real experimental data and
environment ensure the reliability of our method.

Results
The deep learning-based two-phase prediction method addressed
most challenges in aircraft load prediction. We make best use of
the advantages of practical methods (flight parameter-load model)

and classical methods (strain-load equation)24–30, and propose a
two-phase process for load prediction as shown in Fig. 1c:

Phase I: We establish the strain-load equation F0= kE0+ b for
the reference measured-load aircraft 0 through the ground test
(solid aircraft icon), and build flight parameter-strain model
Ea= f(Xa) for other aircrafts a through flight tests.

Phase II: We calibrate the coefficient SFa between the strain E0

of the reference measured-load aircraft 0 and the strain Ea of the

Fig. 1 Two-phase aircraft load prediction process with deep learning. a Classical method: Establishing the load equations (from strains to load) for each
aircraft in the fleet. b Practical method: Using the load model (from flight parameters to load) of one aircraft as the general load model of the fleet. c Our
method: Developing the general load model of the fleet through deep learning-based two-phase process: (i) strain prediction from flight parameters and (ii)
coefficient calibration for load model.
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aircraft a, E0= SFaEa+ ba. Finally, the load model of each aircraft
a is Fa= k(SFaf(Xa)+ ba)+ b.

To reduce the cumbersome aerospace engineering process, our
method only needs one ground test and does not require strain
gauges in later practice; To model complex response relations
among flight data, our method creates a load model for each
aircraft and adopts the multi-model architecture based on flight
attitudes; To improve the practicability of the model, our method
is equipped with interpretation methods for deep learning
corresponding to each phase.

In the following text, variables with superscript 0 belong to the
reference measured-load aircraft, while variables with superscript
a belong to other aircrafts.

Performance of the strain prediction in Phase I. The average
accuracy of our model is 97.16%. All prediction accuracy can
basically be stable at 97%. The error is less than the 5% tolerance
in the aviation industry.

Result 1: Flight parameters and strains have deep learning-
based Granger causality, laying the foundation for the prediction
model. The previous work is based on the prior knowledge that
the load has relations to strains or flight parameters. Inspired by
this, we explored the relationship between strains and flight
parameters. In this way, strains can be obtained by the prediction
from flight parameters rather than the measurement from strain
gauges, thus avoiding data errors over time.

The classical Granger causality is a statistical hypothesis testing
method that determines whether one time series is the cause of
another. The feasibility of the prediction method can be validated
by testing the causality between flight parameters and strain. But
flight parameters are multivariate time series from complex

system, which makes the test difficult to implement: The classical
Granger causality only analyzes two variables but multiple
variables; The prior knowledge assumes that the relation between
variables is linear and can not analyze the complex nonlinear
dependency; It only examines static causality and ignores
dynamic causality.

Thus, to solve these issues, the deep learning-based Granger
causality is proposed in our previous work, which measures
causality between two variables through a deep learning model:
Deep neural networks can model complex nonlinear relationships
without prior knowledge; Joint modeling reduces the spatial
complexity of the model from O(n2) to O(n); The correlation time
periods can analyze the causality that dynamically change over time.

We concluded: There is the Granger causality from flight
parameters to strains! As shown in Fig. 2a, more than 70% pairs
have the classical Granger causality. The p-value of the F-test is
<5%; As shown in Fig. 2b, more than 80% pairs have the deep
learning-based Granger causality (our previous work13). Almost
all flight parameters can help deep neural networks to forecast
strains after adding them to input (Table S4–S6 contain more
detailed results.). This finding indicates that the strains can be
predicted from flight parameters, especially using deep learning
methods! Then, by combining the equation between strains and
load, we can use flight parameters to predict the load indirectly.

Result 2: Flight parameters mainly have data corruptions in the
short period. Their products are conducive to deep learning
models with additional physical meanings. Flight parameters are
flight data recorded by the flight recording system, including
about 30 parameters such as weight, normal overload, pitch angle,
etc. Due to noise and electronic interference, the collected data is
not clean.

Fig. 2 Granger causality from flight parameters to strains. a Classical Granger causality test (have causality if P < 0.05). b Deep learning-based Granger
causality (have causality if ΔError < 0). The causal relationship found by our method is basically consistent with that found by the classical method.
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As shown in Fig. 3, the main problem is data corruption in the
short period, which is mainly reflected in spikes, steps, and
composite. After eliminating these three types of data corruption,
the strain prediction accuracy based on the deep learning model
was improved by about 5% (Figs. S5 and S6 contain more detailed
results). Meanwhile, outliers that can be detected by the angle-
based method31 exist when regarding all signals as a multi-
dimensional sequence. And the redundant features will affect the
prediction accuracy. The feature can also be extracted from the
frequency domain, we created additional features by fusing in
different frequency domains32 to enrich data. After the above
processing for flight parameters, the strain prediction accuracy
was improved by about 2% (Tables S7–S9 contain more detailed
results.). We also found that 75.6% (3258 in 11 ´C2

28) pairs of
flight parameters’ products and strains have the deep learning-
based Granger causality. And the product of some flight
parameters may have a additional physical meaning, e.g., the lift
is equal to the normal overload multiplied by the weight. Thus,
we extend n flight parameters to C2

n þ n features. It improved
prediction accuracy by about 6%.

Result 3: There are different relations between flight parameters
and strains under different flight attitudes. The hybrid strategy
based on the maneuver code and the PITS rule shows a good
result of relation division. Flight parameters not only reflect the
load but also reflect the change of flight attitude. In the flight
course, the aircraft will go through multiple phases, including
takeoff, cruise, landing, etc. And in one phase, the aircraft may
also perform some flight actions. In different flight attitudes, the
relation between flight parameters and strains may different. If we
use all the data to train a deep learning model without considering
the aircraft attitude, the average prediction accuracy is <90%.
Therefore, it is necessary to first divide the entire data set into
multiple subsets, and then design a specific model for each subset.
We have tested the impact of different division methods on the
prediction, and finally determined the best division strategy, which
is based on the flight phase and action, specifically, a hybrid
method of maneuver and point-in-the-sky (PITS).

Our previous work coded the maneuver15. It divided the flight
records by the identified flight actions (The first table in Fig. 4a).
We subdivided the maneuver into 28 categories (Code M01-M28
are described in Table S10), which can improve the prediction

accuracy to nearly 95%. Meanwhile, in our experience of strength
testing, the range of flight parameters can also reflect the aircraft’s
state. Our previous work defined the PITS, dividing the flight
records into 540 subsets by the reference value of flight
parameters (height, Mach number, weight, normal overload)
(The second table in Fig. 4a). But it has hardly improved the
prediction accuracy, even reduced to 85%. This is because some
subsets have too little data, which hinders the training of the deep
learning model. This under-fitting issue also occurs in maneuver
division.

As shown in Fig. 4b, different division methods lead to
different accuracy. Finally, we get a hybrid coding strategy,
namely, maneuver C1-C9, PITS F1-F4 (The third table in Fig. 4a).
That is, the final strategy divided the original dataset into
9 × 4= 36 subsets. 9 maneuvers consist of turn/circle, pull rod/
push up, dive turn, jump turn, split-s, loop, half loop, roll, and
ground attack. 4 PITS consist of H < 5000 and Nz < 3.0,H < 5000
and Nz ≤ 3.0,H ≤ 5000 and Nz < 3.0,H ≤ 5000 and Nz ≤ 3.0, based
on the height (H) of 5000m and the normal overload (Nz) of 3.0g
(Refer to Fig. S7).

Result 4: Multi-model architecture is more accurate and more
robust for strain prediction as it can eliminate the influence of
different flight attitudes on flight parameters. Compared with
strains, flight parameters are more reliable, easy to obtain, and
low-cost24. They represent flight status, attitude and working
status33. We proposed a deep learning multi-model to predict
strains from flight parameters. In detail, we first divide the whole
dataset into multiple subsets, then we design specific deep neural
networks for each subset, and finally, we get a structure consisting
of multiple models.

We introduce the specific model based on Multi-Layer
Perceptron (MLP) to learn each subset. MLP is a kind of deep
neural network, forming a highly complex nonlinear dynamic
learning system based on a complex network structure formed by
many simple processing units of neurons widely connecting with
each other. In the training process, we also integrate some
optimization methods of feedback mechanism, model uncertainty
evaluation, neural architecture search, parameter update strategy,
etc. Note that after dataset division, some subsets inevitably are a
small sample. For example, some flight actions like split-s have a
short duration, yielding a dataset many orders of magnitude

Fig. 3 Data correction for flight parameters. The main data corruptions are spikes, steps, and composite.
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smaller than those typically used in deep learning applications. As
shown in Fig. 5c, small sample makes the accuracy of MLP low.
Thus, we also introduce the Ridge Regression (RR) and Light
Gradient Boosting Machine (LightGBM).

Three individual basic machine learning methods achieve
different accuracy and the data size affects their performance as
shown in Fig. 5b and c. Our multi-model can select the best basic
model through an accuracy feedback mechanism. Therefore,
regardless of the amount of data, its performance is always the
upper bound of the performances of RR, LightGBM, and MLP.
Meanwhile, the multi-model has different prediction accuracy
when using different data division methods: As shown in Fig. 5d,
the hybrid method is the best. It indicates that both the maneuver
and the numerical ranges of flight parameters will affect the strain
response. Besides, as shown in Fig. 5a, our method is more
accurate and has stronger generalization: Although the accuracy
of the classical end-to-end method is adequate, our method is
more accurate (blue bar); Our method performs better on new
data as we take uncertainty into account during training, whereas
the accuracy of other methods decreases (orange bar). Our
method has transfer learning mechanisms that can be fine-tuned
to adapt to new data (yellow bar).

In summary, as shown in Fig. 5e and f, our method achieved an
accuracy of over 95% on different strains and aircrafts (Table S11,
Figs. S8 and S9 contain more detailed results).

Performance of the coefficient calibration in Phase II. We
perform coefficient calibration of all strains of each aircraft in the
fleet with the reference measured-load aircraft to form the per-
sonalized load model of each aircraft. The method can achieve
99.49% goodness-of-fit for strain coefficient calibration on
average.

Result 1: Prediction model helps to find stain pairs to be
calibrated with low computational complexity and avoid the gap
among the flight parameter distributions of aircrafts. Before
calibrating, in the original flight data of two aircrafts, it is
unknown which two strains correspond. Finding strain pairs
through the similarity requires traversing the entire dataset and
has the complexity Oðn2Þ, where n is the number of flight records
and usually millions. Besides, this method is not always reliable
because of alignment errors caused by the differences in data
distribution of different aircrafts.

To reduce the algorithm complexity and avoid the distribution
gap, we propose a data pair construction method based on the

Fig. 4 Construction and model selection rules of deep learning-based multi-model. a Data division strategy. b Prediction accuracy under different data
division strategies. The hybrid division method yields the highest accuracy.
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prediction model. We use the model of the aircraft 0 to predict the
strain E0= f 0(Xa) from the flight parameters of the aircraft a.
Combining with the corresponding real strain Ê

a
of a, we can get

pair ðE0; Ê
aÞ. Then we also use the model of a to predict the strain

Ea from flight parameters of 0 and get ðÊ0
; EaÞ. Finally, we integrate

them to get the pair dataset (E0, Ea) (Fig. S10 shows the detailed
process). The complexity will be reduced from Oðn2Þ to OðnÞ.

Result 2: Clustering-based coefficient calibration can modify
the load model for each aircraft and finally achieve a more general
and low-cost load model. To revise the strain-load equation of
each aircraft, we calibrate the strain coefficients between the
aircraft a and the reference measured-load aircraft 0 and create
their relation E0= SFaEa+ ba.

To correct factor SF, our method iterated the feasible space of
SF. In this process, as shown in Fig. 6a, the intercept b under the
current SF was clustered based on the distribution-based method
and the density-based method. At the same time, as shown in
Fig. 6b, the clustering silhouette coefficient S and the coefficient of
determination R2 were obtained and feedback to continue to

iterate and adjust SF. The distribution-based method models b as
a Gaussian distribution N ðμ; σ2Þ and divides the σ interval
equally to get clusters. Then, the density-based method merges
clusters with a small sample, especially at the edge of the
distribution.

The method can achieve 99.49% goodness-of-fit for strain
coefficient calibration (The detailed calibration results and
performances are in Table S12, S13, Fig. S11 and S12). Without
clustering, SF may meet the regular requirement of b. But it
results in the high local R2 while the low overall R2. The clustering
method can alleviate this problem.

Performance of interpretation methods. The interpretation of
the method can promote the implementation of the application.
In this work, we propose the key feature-based and the alternative
model-based interpretation method for deep learning models: We
find the important input features to explain the prediction results
and design a tree-like if-else rule to explain the calibration
process.

Fig. 5 Prediction performance of proposed deep learning multi-model and comparison with baselines. a Prediction accuracy of different baselines. Black
arrows indicate that the accuracy of the classical method for new data is significantly reduced, but our method uses a transfer learning machine to improve
the generalization. b Prediction accuracy of different base models. MLP model yields the highest accuracy. c Change of Prediction accuracy with data
volume. Small sample scenarios are not friendly to deep learning models. d Prediction accuracy using different model structures. Multi-model structure
yields the highest accuracy. e Prediction accuracy of our method for 7 different strains. All predictions are >95% accurate. f Prediction accuracy of our
method for 5 different aircrafts. All predictions are >95% accurate.

COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00100-4 ARTICLE

COMMUNICATIONS ENGINEERING |            (2023) 2:47 | https://doi.org/10.1038/s44172-023-00100-4 |www.nature.com/commseng 7

www.nature.com/commseng
www.nature.com/commseng


Result 1: The key feature-based interpretation method for
deep learning models reveals the important flight parameters
for load prediction. For the uninterpretable neural network
MLP, we interpret its results by the key features of model
perception, not the model itself. The interpretation is flight
parameters that have a great impact on the strain prediction
results. We use the SHapley Additive explanation (SHAP)
method34: Each kind of flight parameter is calculated to get a
Shapley value, which is the average contribution of a feature to
the prediction in all possible coalitions. According to ranking
the features of the Shapley value, we can get the important flight
parameters when predicting strains. Figure 7c shows the top 20
single flight parameters and product flight parameters (The
overall rankings are detailed in Table S14 and Fig. S13). For
example, the five most important flight parameters are normal
overload, attack angle, inner aileron deflection, Mach, and
barometric altitude (height).

We also found that the important flight parameters in deep
learning are different from that in the classical multiple linear
regression analysis. As shown in Fig. 7a and b, the classical
important flight parameters are about deflections. But deep
learning models focus more on normal overload, attack angle,
Mach number, and height while paying attention to deflections.
This finding could provide a horizon for engineering research.
The perception principles of the deep learning model at different
aircraft structural components are different, although it is for the

same strain. But perception principles for strains at the same
components are similar.

Result 2: The substitution model-based interpretation method
gives the rules of coefficient calibration. For strain coefficient
calibration, because it’s a repeated clustering process, the
explanation for every step is lengthy. Thus, we design the
alternative model-based method. Under the same SF, the samples
with the same intercept b are considered in the same class. We
design a classification model to learn the relation between the
flight parameters and the intercept classes. The decision tree is
naturally interpretable. But it is usually the binary tree, and the
same classification feature will appear in different layers, resulting
in multiple paths that can reach the same class. Thus we propose
the Nonredundant Multiple Tree (NMT) and prove that there is
an equivalent NMT without information loss for the full binary
tree (Fig. S14). The interpretation path is shown in Fig. 6c, four
key classification characteristics are obtained: Mach, left flap
deflection, pitching angular acceleration, and normal overload
(Table S15).

Discussion
Artificial intelligence algorithms have the potential to solve or
optimize most problems in the aviation field. Flight data is large and
readily available. Fusing the flight big data into prognostic infor-
mation and automated decisions leads to improvements in aircraft

Fig. 6 Cases of coefficient calibration. a Clustering case: change of clustering. The clusters are defined by the value range of interception b in Eq.(10). Our
method gradually enlarges the interval to achieve the appropriate clustering. b Calibration case: change of correction factor. The number of correction
coefficients changes with the interval in (a). c Interpretation case: nonredundant multiple tree (k= 1.01).
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Management, Affordability, Availability, Airworthiness, and Per-
formance (MAAAP). Most aviation sub-field is full of flight data. In
addition to aircraft structural fatigue research, other applications,
such as aircraft anomaly diagnosis and automatic management of

flight control, also contain a large amount of data, which can be
implemented or improved by artificial intelligence methods35.

Software algorithms can make up for the shortage of hardware.
Deep learning36 have achieved great success in many fields such

Fig. 7 Important flight parameters for wing shear prediction. a Importance ranking of flight parameters in the linear regression model. b Importance
ranking of flight parameters in multi-layer perceptron model. c Importance ranking of extended flight parameters in multi-layer perceptron model.
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as medicine and industry37. In this work, we showed that using
only one cumbersome ground test can form a mode general load
model. The data-driven approach can learn the potential data
relations and avoid the use of low-precision devices. In detail, we
can use deep learning models to predict strains, rather than using
unreliable gauges to measure strains.

Data-driven algorithms may also find the physical relation that
omits in the basic physics research. For example, in subsonic
flight, the existing work does not take dynamic pressure as an
important characteristic for calculating the load, but our data-
driven method finds that the combined characteristics, such as
dynamic pressure multiplied attack angle, have a great impact on
the load.

A large number of flight records provide the possibility for the
application of deep learning and bring complex characteristics.
Big data will improve the accuracy and reliability of the algo-
rithm. Deep learning models require cleaned and corrected flight
records. In this work, we have collected over 4 million flight
records and designed a data preprocessing method to support the
training of deep learning models. However, due to complex
engineering processes and confidentiality and privacy reasons,
data is not easy to obtain. Future work could focus on data
generation, few-Shot learning, and transfer learning.

Multi-model architecture can alleviate the problem of complex
data distribution in many industrial scenarios. Flight data has
multiple different internal relations and feature dependence. For
example, the strain response in the split-s process is twice the
value of that in the turning process, even though they have the
same flight parameter value. A single model is hard to model all
the distributions simultaneously. Future work can apply transfer
learning technology to reduce the complexity of training and
construction for multi-model.

Interpretability of deep learning is one of the key issues to
achieving human trust and inserting the deep learning algorithm
into engineering workflow. DL models are often considered to be
black-box because they typically have high-dimensional nonlinear
operations, many model parameters, and complex model archi-
tectures, which makes them difficult for a human to understand.

Although interpretability is still an issue that has not been
solved in the field of deep learning, we can bypass the direct
interpretation of the neural network, and design some auxiliary
methods. For example, in this work, there is no need to fully
explain the model mechanism, and the interpretation effect can
be achieved only by providing key features. Meanwhile, the
simple model is easy to explain. We can use natural interpretable
models to fit the results of complex models. In our work, we use a
simple tree model to explain complex clustering and get good
results. That is, although the general interpretation of the deep
learning model is unknown, designing the specific interpretation
methods for the specific problem is acceptable, and even leads to
additional findings. For example, we ranked the important flight
parameters when the deep learning model predicts trains and
have found the five most important features, which are diffident
from that in the classical analysis approach. It shows that deep
learning models have a distinctive perception principle, rather
than based on common physical relationships. It may provide
ideas for further physical and engineering research.

Challenges and opportunities for future work. Compared to
directly collecting strains and computing the strain-load equation,
our two-phase method predicts strains using flight parameters,
avoiding the problem of strain being expensive and prone to
failure during flight. It is particularly meaningful for the long-
term use of an aircraft, but an additional step in the process may
introduce additional prediction errors. Although our method
achieves acceptable errors in the aviation industry, it still falls
short of the precise strain gauges used in the early stages of an

aircraft’s life. Currently, our practice is to use sensing strains
when the strain gauges are still reliable and to use the prediction
method when they fail. To essentially avoid relying on strain
gauges that could fail at any time, our future work will focus on
improving the adaptability of our two-phase prediction method.
At present, we use the fine-turning transfer learning mechanism
in our method, which makes the model more robust to new data.
Considering new scenarios and aircraft models, our future work
will embed few-shot learning and federated learning technologies
to make the load model not only applicable to the current fleet
but also to other fleets.

Methods
As shown in Fig. 1, building a general load model mainly involves the following
processes: flight parameter preprocessing, strain prediction, coefficient calibration,
and method interpretation. Refer to Supplementary Information Section S1 for
detailed methods and more experiments. Notations are summarized in Table S1.

The general load model. First, the strain-load equation of the reference measured-
load aircraft 0 is obtained by the ground test (Eq. (1)) . Then, strain prediction
models of all aircrafts is built by deep learning models (Eq. (2)). And the strain
coefficients between aircraft 0 and a is calibrated by clustering methods (Eq. (3)).
Finally, we can get the load model for all aircrafts in a fleet (Eq. (4)).

F ¼ ∑
i
k0i � E0

i þ b0 ð1Þ

Ea=0 ¼ f a=0ðXa=0Þ ð2Þ

E0 ¼ SFaEa þ ba ð3Þ

F ¼ ∑
i
k0i � ðSFa

i E
a
i þ bai Þ þ b0 ¼ ∑

i
αiE

a
i þ B ¼ ∑

i
αi � f ai ðXaÞ þ B ð4Þ

Data preprocessing. The dataset contains 2,003,159 records from 5 aircrafts, about
400,000 records per aircraft. Each record consists of 28 kinds of flight parameters and 10
kinds of strains (Table S2 and S3 contain data statistics, and Fig. S2 depicts a data case).
We process the original flight data in five steps: (1) We filter the time series of flight
parameters and strains with 8Hz stopband cut-off frequency. (2) We use the angle-based
outlier detector31 to eliminate outliers. (3) We use the Pearson correlation coefficient to
evaluate the correlation among flight parameters, use multicollinearity analysis and
principal component analysis38 to remove redundant features. (4) We extract and
superimpose features in frequency domain to create additional features. (5) We extend
28 flight parameters to C2

28 þ 28 ¼ 406 input features.

Deep learning-based granger causality. We proposed a deep Learning-based
Granger causality test (Fig. S3, S4): If the model prediction error E of forecasting
strain E by using both E and flight parameter X as input is less than that of
forecasting E by using only E as input (Eq. (5)), we will conclude that deep
learning-based Granger causality exists from X to E. The prediction model is Long
Short-Term Memory (LSTM)39, presented in Eq. (6). LSTM is a variant of
Recurrent Neural Networks (RNNs) that is adept at solving long-term dependency
problems. In a RNN model, the current state ht is affected by the previous state ht−1

and the current input xt, ht= σ(Wxt+Uht−1+ b), where σ is an activation func-
tion, andW,U, b are learnable parameters. In LSTM, ft, it, ot represent forget, input,
and output gates, respectively. The gate utilizes the sigmoid function σ to make the
output value between (0, 1), representing a certain proportion of historical infor-
mation passing through.

ΔE ¼ EðLSTMðE;XÞ; ÊÞ � EðLSTMðEÞ; ÊÞ<0 ð5Þ

it ¼ σðWixt þ Uiht�1 þ biÞ Input gate

f t ¼ σðWf xt þ Uf ht�1 þ bf Þ Forget gate

ot ¼ σðWoxt þ Uoht�1 þ boÞ Output gate

ect ¼ tanhðWcxt þ Ucht�1 þ bcÞ Candidatememory

ct ¼ f t � ct�1 þ it � ect Currentmemory

ht ¼ ot tanhðctÞ Current hidden state

ð6Þ

Deep learning-based multi-model architecture for strain prediction. The ori-
ginal flight parameters dataset is divided into 9 × 4= 36 subsets by 9 maneuver
categories and 4 PITS sets with height (H) of 5000m and normal overload (Nz) of
3.0g.

We build 9 Multi-Layer Perceptrons (MLP) for these 9 subsets. Each MLP
contains an input layer, hidden layers, and an output layer. States are transferred by
weighting between adjacent layers. Nonlinear activation occurs on neurons in the
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hidden layer. The state oJj in J-th hidden layer is the transformation of all states

foIi gNI

i¼1 in I-th hidden layer oIj ¼ σð∑NI
i¼1 Wijo

I
i þ bijÞ;NI is the number of neurons

in I-th layer. We use mean square error Lmse (Eq. (8)) and model uncertainty loss
Luncertainty (Eq. (9)) as the minimum bi-objective LMLP (Eq. (7)), where γ1, γ2 are
weight coefficients, f is MLP model, θ;D are model parameters and parameter
distribution, H is the entropy of the predictive distribution. Using the dual
objective as the loss function can increase the stability and generalization ability of
our model. Meanwhile, each MLP has different model structures, reflected in
2 structural hyper-parameters and 5 training hyper-parameters, which are searched
by the method of neural architecture search40. We also introduce ridge regression
and light gradient boosting machine41 for small subsets.

LMLP ¼ γ1Lmse þ γ2Luncertainty ð7Þ

Lmse ¼ ∑ðE � f ðXÞÞ2 þ λ k Wk22 ð8Þ

Luncertainty ¼ H½EPðθjDÞ½Pðf ðXÞjX; θÞ��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TotalUncertainty

�EPðθjDÞ½H½Pðf ðXÞjX; θÞ��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DataUncertainty
ð9Þ

Clustering-based coefficient calibration for load model. We calibrate the strain
coefficients (Eq. (10)) between aircraft a and reference measured-load aircraft 0 by
assuming that the coefficient between the strain E0 and Ea is SFa.

E0 ¼ SFaEa þ ba ð10Þ
To calibrate SF, we first proposed a prediction-based method to find the

corresponding strain pairs (E0, Ea). We use the model of the aircraft 0 to predict the
strain E0 from flight parameters of aircraft a, E0= fa(Xa). Combining with the
corresponding real strain Ê

a
of aircraft a, we can get pair ðE0; Ê

aÞ. In the same way,

we got ðÊ0
;EaÞ. We integrate them to get the pair dataset (E0, Ea). Then, we design

an iterative and feedback process to iterate the feasible space of SF. The intercept b
under the current SF is clustered based on the distribution-based method and the
density-based method. The clustering silhouette coefficient S (Eq. (11)) and the
coefficient of determination R2 (Eq. (12)) are obtained and feedback to continue to
iterate and adjust SF, where Dintra,Dinter means the distance within a cluster or
between clusters, D is the Euclidean distance, and C is the cluster center.

S ¼ 1
jbj ∑

jbj

i¼1

Dintra ðbiÞ�DinterðbiÞ
MaxfDintraðbiÞ;DinterðbiÞg

DintraðbiÞ ¼ MinAvg Dðbi; fC�bi
gÞ; DinterðbiÞ ¼ Avg Dðbi; bj 2 Cbi

Þ
ð11Þ

R2 ¼ 1�∑nðEn � EÞ2

∑nðÊn � EÞ2
ð12Þ

Distribution-based clustering models b as a Gaussian distribution N ðμ; σ2Þ and
divides the σ interval equally and get clusters. Density-based spatial clustering42

merges clusters with a small number of samples, especially those at the edge of the
distribution.

Interpretation method for deep learning models. We use the SHapley Additive
exPlanation (SHAP) method34 to interpret MLP f. Each kind of flight parameter is
calculated to get a Shapley value (Equation (13)), which is the average contribution
of a feature to the prediction in all possible coalitions, where z is the coalition
vector andM is the coalition size; We interpret LightGBM through the information
gain Gain calculated by information entropy Ent of the training dataset D (Eq.
(14)), where xv means possible discrete value of xi; We interpret RR by its inde-
pendent variable coefficient β (Eq. (15)).

SHAPðf ; xiÞ ¼ ∑
z�Xnfxig

jzj!ðM � jzj � 1Þ
M!

ðf ðXÞ � f ðzÞÞ ð13Þ

GainðD; xiÞ ¼ EntðDÞ � ∑
xv2xi

jDvj
jDj EntðD

vÞ; Dv ¼ fxjx ¼ xv ; x 2 Dg ð14Þ

E ¼ β0 þ β1x1 þ :::þ βnxn þ μ ð15Þ
We design the alternative model-based method to explain how to determine the

specific b under the current calibration with SF. Because the tree model can be
explained by if-else rules, we propose a Nonredundant Multiple Tree (NMT) as the
alternative model. We have proved that there is an equivalent NMT without
information loss for the full binary tree generated by discretization of continuous
features, merging, and pruning. Assuming that the original tree is a full binary tree
with N-layer continuous features and K features are used. The NMT will have
K+ 1 layers and 2N�1þ1

Kþ1 branches in each layer, the final number of category leaves

is ð2N�1þ1
Kþ1 Þk . Therefore, in this study, we only need to satisfy ð2N�1þ1

Kþ1 Þk ≥ 2N�1 to
construct an equivalent nonredundant multiple tree. When N= 5, k > 1 can satisfy

ð15k þ 1Þk � 16≥ 0. Under the same SF, the samples with the same intercept b are
regarded as in the same class. We used NMT to learn the relation between flight
parameters and intercept classes. In this way, the bifurcation principle of each layer

of NMT can be used to point out the characteristics that affect the bias b under the
same coefficient SF.

Data availability
Our tests are implemented on real flight records. We have collected 2,003,159 flight
records from five aircrafts. Each record consists of 28 flight parameters and 10 strains.
We provide flight records of an aircraft during a flight on https://github.com/
SCXsunchenxi/LoadPrediction. Supplementary Information is provided.
Correspondence and requests for materials should be addressed to Chenxi Sun
(sun_chenxi@pku.edu.cn), Hongyan Li(leehy@pku.edu.cn), and Shenda
Hong(hongshenda@pku.edu.cn).

Code availability
The relevant code is publicly available on https://github.com/SCXsunchenxi/
LoadPrediction.
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