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Improving the robustness of analog deep neural
networks through a Bayes-optimized noise
injection approach
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Analog deep neural networks (DNNs) provide a promising solution, especially for deploy-

ment on resource-limited platforms, for example in mobile settings. However, the practic-

ability of analog DNNs has been limited by their instability due to multi-factor reasons from

manufacturing, thermal noise, etc. Here, we present a theoretically guaranteed noise injection

approach to improve the robustness of analog DNNs without any hardware modifications or

sacrifice of accuracy, which proves that within a certain range of parameter perturbations, the

prediction results would not change. Experimental results demonstrate that our algorithmic

framework can outperform state-of-the-art methods on tasks including image classification,

object detection, and large-scale point cloud object detection in autonomous driving by a

factor of 10 to 100. Together, our results may serve as a way to ensure the robustness of

analog deep neural network systems, especially for safety-critical applications.
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Recently, analog DNNs have emerged as a promising
direction to further alleviate the speed power consumption
limits of standard von Neumann computational archi-

tectures. For example, with the crossbar computing architecture, a
common operation in DNNs—in-place dot product, can be effi-
ciently implemented by analog computation without the need to
transfer data from memories to computing devices, therefore
breaking the memory wall, which limits the efficiency of existing
deep-learning accelerators. This is in contrast to standard von
Neumann architectures, where data has to be moved to compu-
tation units before computation.

However, challenges exist in that analog DNNs are not com-
patible with current deep-learning paradigms designed primarily
for deterministic circuits. Without the potential gap between high
and low voltages to resist noise, as in digital circuits, the stability
of analog DNNs is rather sensitive to thermal noise, electrical
noise, process variations, and programming errors. As a result,
the parameters of DNNs represented by the conductance at each
crossbar intersection can be easily distorted, jeopardizing the
utility of analog deep-learning systems, especially for life-critical
applications1.

Many efforts have been made to minimize the detrimental
effect of noise by improving the device stability from the engi-
neering perspective, such as employing novel materials and
optimizing the design of circuits2–7. These approaches can miti-
gate the issue to some extent, for example, in a certain field or for
single tasks. However, hardware modification is normally on a
specific type or types of devices that lacks universality in manu-
facturing, and will bring extra hardware costs. From an algo-
rithmic perspective, previous work has shown that noise injection
during training could lead to empirical improvements in the noise
resilience of analog computing devices. For example, standard
Gaussian noise is widely introduced in the training process of
DNNs to improve the robustness8–10, while the improvement
depends on the measurements of the time-consuming noise for
each single device to be deployed. Also, prior studies focused
more on the methods themselves but lacked in-depth analysis
such as explanations about how to choose the strength of the
injected noise and how the noise spectrum would affect the
performance8–13. Therefore, the fundamental understanding is
still unclear which limits the wide application of analog DNNs in
real-world situations. Consequently, developing a theoretically
guaranteed method to ensure the robustness of analog DNNs
could be essential for their widespread utility and may lead to
improvements in life-critical applications, such as autonomous
driving.

Herein, we present a thorough theoretical study and a theoreti-
cally guaranteed noise injection approach that allows us to train an
analog DNN that is fault-tolerant, robust against noise, and gen-
eralizable to complex tasks. Inspired by previous neuroscience
research that demonstrated the benefits of noise in human neural
systems14, we demonstrate a noise injection approach leveraging
the Bayesian optimization method—“BayesFT”—to optimize the
characteristics of the injected noise, therefore enhancing the
robustness of analog neural networks. Compared with some typical
state-of-the-art studies (Supplementary Table 1), we delivered more
comprehensive studies considering many types of injected noise
with theoretical proofs to obtain robust analog DNNs. Further
performance evaluation experiments prove the effectiveness, gen-
eralizability and practicality of our method.

Results
Discussions on key factors affecting fault tolerance. A DNN can
be regarded as a composition of many nonlinear functions. Given
input data x 2 Rd and its corresponding label y, the DNN aims to

minimize the loss ‘ f θðxÞ; y
� �

, where ℓ is the loss function, and fθ is
the neural network with drift-inducing parameters θ. As shown in
Fig. 1a, analog noise such as thermal noise, programming errors,
and manufacturing errors will add drift-inducing parameters θ to
the neural network that affects the robustness of the DNN. This
can compromise the precision of machine learning models. In
Fig. 1b, the decision boundary for a two-class classification pro-
blem shifts towards the wrong side with the increase of parameter
drifting (σ). Instead of proposing new materials or optimizing
circuitry design to improve the robustness of the system to analog
noise, we consider forging a DNN that is self-immuned to analog
noise without any additional hardware modifications. To sys-
tematically analyze the effect of DNN architectural choices on the
robustness of analog noise, we first implemented a memristor
simulator, MemSim, to analyze the impact of different factors on
the performance of analog DNNs. The implementation details are
presented in the Method section. Four possible influential factors
including inductive noise, normalization, model complexity, and
activation functions were examined by Ablation studies to
determine the key factors affecting the robustness of analog
DNNs. The following list discusses the influence of each factor in
detail, and the results are shown in Fig. 1c–f, using the MNIST
classification task as an example. We also include results on other
memristor simulation platforms such as MemTorch and IBM-
aihwkit to test the applicability of our approach on different
devices (Supplementary Note 1 and Figs. S1, S2). Our method
exhibits consistent and statistically significant improvements
over the baseline method on different analog computing hard-
ware. This shows that our approach is practical, can be uni-
versally deployed, and does not require any modification to the
hardware.

a. Inductive noise: the influence of adding dropout/noise was
examined to be positive for the robustness of the analog
DNN, as illustrated in Fig. 1c. The network with dropout
layers could gain self-healing ability when parameters are
randomly removed during the training process. Therefore,
the improvement of robustness to missing parameters
strengthens the immunity of the network to parameter
drifting.

b. Normalization: it is observed in Fig. 1d that adding
normalization, regardless of the type, deteriorates the
performance of the analog DNN. This is because the
parameter drifting on the scaling factors in normalization
amplifies the drifting effect on the network accuracy.

c. Model complexity and activation functions: contrary to
the common assumption in machine learning that complex
DNNs are more robust, increasing the complexity of an
analog DNN reduces its robustness due to the errors caused
by the accumulation of parameter drifting as the layers go
deeper (Fig. 1d). Finally, the effects of other factors, such as
the activation function shown in Fig. 1e are negligible for
the robustness of the analog DNN.

Though adding dropout layers can significantly improve the
robustness of the analog DNN to parameter drifting, they can also
cause suboptimal performances due to misspecifications. There-
fore, it is crucial to automatically search for an optimal neural
network architecture with proper noise injection settings to
ensure robustness while avoiding uncertainties. To simplify the
neural architecture search, instead of looking for all possible
topology structures of the DNN15–17, we appended noise
injection layers after each DNN layer except the last softmax
layer for output, and we searched for the dropout rate of each
layer only. We denote the specification of the additional noise
injection layers as α 2 RK�1, where K is the number of layers in
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the DNN. The advantage of this neural architecture search space
design is not only its simplicity, but also its strong compatibility
with all existing neural network architectures. The effectiveness of
noise injection is proved with a functional optimization frame-
work as demonstrated in Supplementary Note 2 and Fig. S3.
Intuitively, noise injection randomly samples the landscape of the
neural network parameter space in analog DNNs. Compared to
single-point optimization, noise-injected optimization is equiva-
lent to optimizing the sampled region of neural network
parameters. This can expand the parameter space of the robust
neural network centered on the original unperturbed parameters
during optimization, adding an allowable perturbation range
within which the performance of the algorithm would not change.
In other words, if the randomized analog DNN gives a correct
prediction, for any perturbation on the neural network
parameters within the allowable range, the DNN can still yield
the same performance. According to the theoretical analysis, the
type (spectrum) of the injected noise determines the positions of

sampling around the original parameter point and therefore the
radius of the robust region of analog DNNs. We examined three
different types of noise, including Binomial distribution (also
known as dropout), Gaussian distribution, and Laplace distribu-
tion, to theoretically explain their effectiveness in robustness
improvement and to identify their allowable ranges, respectively
(Supplementary Note 2). In the proof, we further revealed the
complex trade-off between robustness against analog noise and
accuracy. This motivates us to employ Bayesian optimization to
determine the optimal setting of the noise level (α). Because the
noise levels are not differentiable, we choose Bayesian optimiza-
tion as it does not require the gradients for variables to be
optimized and the implementation details are presented in the
Methods section.

Discussions on the effectiveness of BayesFT. We then examine
the effectiveness of our method by performing image recognition
experiments on several datasets including the Modified National

Fig. 1 The framework of fault-tolerant analog deep neural networks. a The accuracy of analog DNNs is limited by noise and variations of analog devices.
A two-class classification problem, as an example, is shown that upon parameter drifting, the decision boundary shifts. Bayesian optimization (BayesFT in
the figure) is employed to improve the robustness of analog DNNs by finding the optimal neural network settings. b A zoom-in plot of “Examples of
decision boundary shifts” in (a). Pink and blue shadings indicate the two classes, and the dispersed dots are the decisions. The decision dots should be in
the shading area with the same color ideally (i.e., accuracy= 100%). Analog noise perturbs DNNs and shift the boundary to a lower accuracy. c Adding
inductive noise can improve the robustness of analog DNNs. Alpha dropout, dropout, Laplace noise, and Gaussian noise were examined, and the first two
showed improved accuracy compared to the original model at different resistance variations (σ). d Normalization has negative effects on analog DNNs'
robustness. Batch normalization, layer normalization, instance normalization, and group normalization were examined and showed worse performance.
e Increasing the model complexity leads to degenerated robustness. The original model with three layers can achieve higher accuracy compared to the six-
layer and nine-layer models. f Nonlinear activation functions have negligible effects on the robustness of DNNs. The performance of the original model with
the ReLU function and models with nonlinear activation functions (i.e., ELU, GELU, and Leaky RELU) are almost the same. The shaded areas are confidence
intervals. The bar plots in c–f are the results of statistical tests that compare the accuracy between the model trained with a candidate method and
the original model at the corresponding noise level (σ= 0–1.5). If the difference is statistically significant, the color will be blue (pvalue≤ 0.05, smaller
p value indicates larger significance), if not, the color will be white.
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Institute of Standards and Technology (MNIST, ref. 18) dataset,
the Canadian Institute for Advanced Research-10 (CIFAR-10,
ref. 19) dataset, the German Traffic Sign Recognition Dataset
(GTSRB, ref. 20), the Penn-Fudan Database for Pedestrian
Detection (PennFudanPed, ref. 21), and the Karlsruhe Institute of
Technology and Toyota Technological Institute at Chicago Vision
Benchmark (KITTI, ref. 22). For comparison, we implemented the
following state-of-the-art baseline algorithms as references:
Empirical risk minimization (ERM) which is the baseline algo-
rithm that only minimizes the empirical risk; ReRAM-variations
(ReRAM-V, ref. 6) which diagnoses the ReRAM circuits and
iteratively re-tunes the parameters to improve robustness to
parameter drift until BayesFT converges; Adversarial weight
perturbations (AWP, ref. 23) which adversely trains the neural
network against parameter perturbations to improve robustness
to parameter shifts; and Fault-tolerant neural network archi-
tecture (FTNA, ref. 1) which replaces the last softmax layer of the
original model with an error-correction coding scheme as dis-
cussed before. We denote our method as BayesFT-DO, BayesFT-
Ga, and BayesFT-La, corresponding to different types of injecting
noise, namely Bernoulli noise, Gaussian noise, and Laplace noise,
respectively.

Each algorithm was run 20 times on the MemSim simulation
platform, and the mean (line) and standard deviation (shaded
area) of accuracy under different resistance variations are
demonstrated in Figs. 2, 3. The performance of the system was
first evaluated on MNIST18. The experiments were carried out on
a three-layer multilayer perceptron (MLP) and LeNet524 with
drifting terms (resistance variation, σ: 0–1.5) applied as the noise
level to the model (Fig. 2a). All algorithms except BayesFT-DO
exhibit severe accuracy degradation with increasing resistance
variation. For the classification of MLP, the accuracy of BayesFT-
DO remains constant within the small variance region (σ ≤ 0.6)
and only drops slightly when σ exceeds 0.9. In contrast, the other
algorithms exhibit significant accuracy dropping when σ reaches
0.2. The accuracy values for all algorithms at σ= 0.9 are provided
in Fig. 2a for a more intuitional comparison. BayesFT-DO also
out-competes the other algorithms in terms of the mean accuracy,
with at least a 30% improvement (p < 0.001, two-sided t-test). A
similar trend can be observed in LeNet, where BayesFT-DO
outperforms other baseline methods. This is in good agreement
with our theoretical analysis (Supplementary Note 2) that adding
Bernoulli distributed noise (dropout) can improve the fault
tolerance of DNNs to parameter drifting.

Fig. 2 Experimental results on image classification tasks. a Experiment results on the MNIST dataset. b Experiment results on the CIFAR-10 dataset. The
left part in each panels a, b is a schematic demonstration of the task itself. The results are presented by curve charts and bar charts. The curve chart
compares the prediction accuracy of our methods (BayesFT-Ga, BayesFT-La, and BayesFT-Do) and the baseline methods (ERM, FTNA, AWP, and ReRam-
V) at different resistance variation (σ= 0–1.5). The shaded areas are confidence intervals. The bar charts with confidence intervals show the results of
statistical tests (i.e., run the task 20 times and compare the accuracy) at a specific σ setting. The horizontal line above the bars indicates the statistical
difference in the performance of our methods compared to the baseline methods (if the difference is significant, it will be marked by the *** symbol.
Otherwise, the p value will be displayed). Specific σ values are selected as they can present challenging environments.
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A similar experimental protocol was applied to the CIFAR-10
dataset with various neural network architectures, including the
most commonly used ones in computer vision, such as AlexNet25,
VGG26, ResNet27, and PreAct-ResNet (PreAct, ref. 27) with different
numbers of layers. Compared with handwritten digits in the MNIST
dataset, CIFAR-10 contains real-world objects that pose more
difficulties for recognition. The results are shown in Fig. 2b. The
classification accuracy of the baseline methods decreases rapidly as
the resistance variance increases, while BayesFT optimization still
has stable performance. For example, on AlexNet, the accuracy of
BayesFT-DO remains almost the same for σ < 0.6, and it drops by
only 20% for σ < 0.8. The accuracy improvement obtained by
BayeFT-DO increases from 17 to 68% compared to ERM when σ is
varied from 0.3 to 0.9. BayesFT-DO also demonstrates competitive
results on VGG and ResNet architectures. It is worth noting that on
VGG, ResNet, and AlexNet, the performances of BayesFT-Ga and
BayesFT-La are rather close to BayesFT-DO and out-compete other
baseline methods. Stronger superiority of BayesFT can be observed
on the PreAct-18, PreAct-50, and PreAct-152 networks showing its
much greater insensitivity to high-level noise (Fig. 2b lower panels).
Recognition results from other realistic tasks, including traffic sign
recognition (Fig. 3a) and pedestrian detection (Fig. 3b), provide
extra evidence for the effectiveness of BayesFT in improving the
robustness of analog DNNs. For example, compared with the
baseline method ERM, BayesFT achieves three times the accuracy at
σ= 0.4, largely improving the safety of pedestrian detection systems
on analog computing devices.

We finally conducted experiments on an autonomous driving
task of point cloud detection with the KITTI28 dataset to detect
cars, pedestrians, and cyclists on the road, in which data is
collected by a Velodyne Lidar. A point cloud is a bunch of points
that contains the location information of each point in three-
dimensional space29, and it plays an essential role in many
contemporary autonomous driving systems. We compared the
performance of different training algorithms using the PointPillars
networks30, a fast DNN model for object detection from point
clouds. Similar to the above experiments, perturbations with σ
from 0 to 0.6 were applied as the drift-inducing parameters for the
trained model (Fig. 4a). Two typical 3D object detection metrics,
Bird’s Eye View (BEV) and 3D Detection, were evaluated to
examine the performance of the baseline method (ERM) and our
method. As shown in Fig. 4b, BayesFT-DO outperforms ERM in
terms of the mean average precision (mAP) over the entire
perturbation σ range for both BEV and 3D detection. This means
that BayesFT, compared to ERM, can provide more accurate
recognition in both noise-free and noise-injected environments.
The visualized results shown in Fig. 4c are in good agreement with
this conclusion. Both the baseline and our methods can achieve
good performance when σ is zero. However, when σ reaches 0.4,
the recognition accuracy of ERM decreases sharply without even
one car being detected correctly, while BayesFT-DO can still
detect most of the cars accurately. Consequently, from the
experimental results, the proposed method, namely BayesFT-DO,
could improve the robustness of analog DNNs, especially for

Fig. 3 Experiments on image classification and 2D object detection. Experimental results on a traffic sign classification on the GTSRB dataset, b object
detection on the PennFudanPed dataset. The left part in each panel a, b is a schematic demonstration of the task itself. The results are presented by curve
charts and bar charts. The curve chart compares the prediction accuracy of our methods (BayesFT-Ga, BayesFT-La, and BayesFT-Do) and the baseline
methods (ERM and ReRam-V) at different resistance variations (σ= 0–1.5). The shaded areas are confidence intervals. The bar charts with confidence
intervals show the results of statistical tests (i.e., run the task 20 times and compare the accuracy) at a specific σ setting. The horizontal line above the bars
indicates the statistical difference in the performance of our methods compared to the baseline methods. (if the difference is significant, it will be marked
by the *** symbol. Otherwise, the p value will be displayed.) Specific σ values are selected as they can present challenging environments.
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critical applications, such as autonomous driving, and improve the
recognition accuracy even in a noisy environment.

Conclusion
To conclude, in this work, in contrast to the previous efforts
which focus on improving the accuracy of analog DNNs from a
device manufacturing perspective, we provide a train-time
optimization framework to improve the robustness of analog
DNNs to achieve accurate recognition without any hardware
modification. By systematically analyzing the influence of dif-
ferent factors on the performance of analog DNNs through a
memristor simulator, we find that injecting noise can efficiently
improve the robustness, for which we also provide theoretical

proof. BayesFT was applied to optimize the setting and dis-
tribution of the injected noise, and its working principle was
proved theoretically, making it the first theoretically guaranteed
method for training robust analog DNNs. BayesFT is general-
izable to various DNN architectures and its effectiveness was
examined by different recognition tasks, including image clas-
sification (MNIST and CIFAR-10), traffic sign recognition, and
3D point detection (KITTI). BayesFT makes the analog DNN
insensitive to noise while inducing only relatively low accuracy
loss, even at high-level noise. We believe our findings could
extend the practicability of analog DNNs to previously
impossible life-critical tasks, such as autonomous driving, by
providing both good empirical performances and theoretical
guarantees.

Fig. 4 Experimental results of 3D object detection in autonomous driving tasks. a The experimental setting of the object detection task on KITTI. Three
types of objects were detected: cars, pedestrians, and cyclists. b Numerical results of the KITTI experiment. The blue curves are the results of the baseline
method. The yellow curves are the results of our approach. The proposed method can achieve more than 100 times better performance under large
resistance variances on all KITTI dataset subsets (Easy, Moderate, and Hard). The shaded areas are confidence intervals. The bar charts on the right with
confidence intervals show the results of statistical tests (i.e., run the task for 20 times and compare the accuracy) at σ= 0.25. The horizontal line above the
bars indicates the statistical difference in the performance of our methods compared to the baseline methods (if the difference is significant, it will be
marked by the *** symbol. Otherwise, the p value will be displayed). c Visualization of 3D object detection results. The top figure is the Bird’s Eye View of
the ground truth detection result. The left bottom figure is the baseline method’s result. The bottom right figure is our approach’s result. Cars and cyclists
are not detected by baseline methods, while the proposed method can successfully detect these objects. The safety of analog DNNs can be largely
improved with our approach.
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Methods
Implementation details of MemSim. For simplicity and to avoid loss of gen-
erality, we adopt a memristor perturbation model following a challenging setting as
used in refs. 6, 31. This model is fitted on real devices and considers multiple factors
resulting in the memristance drifting, including thermal noise, programming
errors, and manufacturing errors. Specifically, the drifting term is applied to each
neural network parameter θi:

θ0i  θie
λ; λ � N ð0; σ2Þ ð1Þ

where θ0i is the drifted neural network parameters, which follow a log-normal
distribution. By changing the σ value, we can simulate different perturbation levels
under various devices and deployment scenarios. The example Pytorch code of the
simulator is shown as follows (more simulation platform results with different
device models can be seen in Supplementary Note 1):

import torch

import numpy as np

”’
model: Python code for neural network architecture;
model_path: Saved parameters for neural networks;
valid_dl: Data loader for validation dataset.
”’

def evaluate_MemSim_Robustness(model, model_path, valid_
dl):

# Pick different sigma values
sigma= np.linspace(0., 1.5, 31)
# Initialize an empty list for accuracy under different sigma values
accu = []
# Run several times for statistical tests
num = 20
evaluated = np.zeros(num)
for std in sigma:
for i in range(num):
model.load_state_dict(torch.load(model_path))
add_noise_to_parameters(0, std, model)
#Add noise to the parameters of neural networks
evaluated[i] = evaluate_accuracy(model, valid_dl)

[’val_acc’]
accu.append(np.sum(evaluated)/num)
return sigma, accu

Implementation details of optimization methods. We first define our objective
function by marginalizing the loss over the distribution of drifting neural network
parameters θ:

uðα; θÞ ¼ �E~θ�pð~θÞ½‘ðf ðα;~θÞðxÞ; yÞ� ð2Þ
where ~θ ¼ θ expðλÞ; λ � N ð0; σ2Þ, ‘ðf ðα;~θÞðxÞ; yÞ is the loss of a neural network with
the noise setting α (e.g. dropout rates for Binomial noises) and parameter θ given
input data x and target y. This intractable equation can be approximately computed
by Monte Carlo sampling:

uðα; θÞ ’ � 1
T
∑
T

t¼1
‘ðf ðα;~θt ÞðxÞ; yÞ

i
ð3Þ

where T is the number of Monte Carlo samples and ~θt is the t-th sample randomly
drawn from the distribution of parameter pð~θÞ. To maximize the objective function,
we use an optimization scheme where α and θ are optimized alternatively. When
optimizing α, as discussed in the main text, because there is no exact gradient
information available for α, we use Bayesian optimization, which does not require
the gradients for variables to be optimized. Bayesian optimization uses a surrogate
model constructed from previous trials to determine the point for the next trial, i.e.
the point which is the most likely to give the optimal solution for the gradient-free
optimization problem32. For θ, we employ the stochastic gradient descent method.

In terms of Bayesian optimization, we use a Gaussian process regression model
as the surrogate model. Suppose we already have n trials of different settings of α
denoted as α1:n, its corresponding objective function value g(α1:n), and kernel
matrix κ(α1:n, α1:n), more specifically:

α1:n ¼ ½α1; � � � ; αn� ð4Þ

gðα1:nÞ ¼ ½uðα1; θÞ; � � � ; uðαn; θÞ� ð5Þ

κðα1:n; α1:nÞ ¼
κðα1; α1Þ; � � � ; κðα1; αnÞ
� � � ; � � � ; � � �

κðαn; α1Þ; � � � ; κðαn; αnÞ

2
64

3
75 ð6Þ

Then, according to the Gaussian process’s property, the posterior probability of
g(α) after n trials follows a Gaussian distribution: where κ is the kernel function. In
our experiment, we use the exponential kernel function:

κðα1; α2Þ ¼ k0 expð� k α1 � α2k2Þ ð7Þ
where k α1 � α2k2 ¼ ∑d

i¼1 kiðα1;i � α2;iÞ2, and ki are parameters of the kernel.
Then, the next trial is given by finding the point that is most likely to give the

optimal objective value: α� ¼ maxα� pðgðα�Þjgðα1:nÞÞ. Based on the above theory,
we generate the algorithm based on Bayesian optimization for fault-tolerant neural
network architecture, as shown in Algorithm 1.

Algorithm 1. Bayesian Optimization for Fault-Tolerant DNN (BayesFT)
Input: Dataset (x, y), neural network parameters θ, dropout rates for each layer

α, number of epochs for training neural networks E.
Output: Trained neural network θ and dropout rates for each layer α.
Initialization: initialize θ with Xavier random initialization33, α with a uniform

distribution on [0, 1], number of iterations t= 0:
repeat
for e= 1 to e= E do
Optimize neural network parameters θ:

θt  θt�1 � ∇θuðαt�1; θt�1Þ
end for
Update the posterior distribution function for Bayesian optimization:

gðα1:t�1Þ ¼ ½uðα1; θtÞ; � � � ; uðαt�1; θtÞ�

ut�1ðαÞ ¼ κðα; α1:t�1Þκðα1:t�1; α1:t�1Þ�1gðα1:t�1Þ

σ2t�1ðαÞ ¼ κðα; αÞ � κðα; α1:t�1Þκðα1:t�1; α1:t�1Þ�1κðα1:t�1; αÞ
Calculate the optimal α from the updated posterior distribution function for

the surrogate model:

αt  max
α

pðgðαÞjgðα1:t�1ÞÞ
t ← t+ 1
until convergence;
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