Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunometabolism in atherosclerotic disorders

Abstract

Cardiovascular diseases (CVDs), including atherosclerosis, myocardial infarction and heart failure, are the leading causes of morbidity and mortality worldwide. Emerging evidence suggests a crucial role for immune cell dysfunction and inflammation in the progression of this complex set of diseases. Recent advances demonstrate that immune cells, tightly linked to CVD pathogenesis, are sensitive to environmental signals and respond by engaging immunometabolic networks that shape their behavior. Inflammatory cues and altered nutrient availability within atherosclerotic plaques or following ischemia synergize to elicit metabolic shifts in immune cells that influence the course of disease pathology. Understanding these metabolic adaptations and how they contribute to cellular dysfunction may reveal novel therapeutic approaches for the treatment of CVD. Here we provide a comprehensive summary of the metabolic reprogramming that occurs in immune cells and their progenitors during CVD, offering insights into the potential therapeutic interventions to mitigate disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Role of immune cells in the progression of atherosclerotic CVD.
Fig. 2: Metabolic adaptations support inflammatory macrophage function.
Fig. 3: Metabolic adaptations support the anti-inflammatory and resolving function of macrophages.
Fig. 4: Metabolic changes that promote and sustain efferocytosis.
Fig. 5: Glycolysis and ROS are key drivers of neutrophil activation and NETosis.
Fig. 6: Glycolytic pathways are critical for clot formation and granule secretion by platelets.
Fig. 7: A spectrum of metabolic changes are linked to critical immune cell functions.

Similar content being viewed by others

References

  1. Murphy, A. J. & Tall, A. R. Disordered hematopoiesis and athero-thrombosis. Eur. Heart J. 37, 1113–1121 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Murphy, A. J. & Febbraio, M. A. Immune-based therapies in cardiovascular and metabolic diseases: past, present and future. Nat. Rev. Immunol. 21, 669–679 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Bjorkegren, J. L. M. & Lusis, A. J. Atherosclerosis: recent developments. Cell 185, 1630–1645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murphy, A. J. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 121, 4138–4149 (2011). Described a critical role for the cholesterol content of hematopoietic progenitor cells as a driver of myelopoiesis and atherosclerosis development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karunakaran, D. et al. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ. Res. 117, 266–278 (2015). Discovered that macrophage-derived foam cells require functional mitochondria for cholesterol efflux to occur.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarrazy, V. et al. Disruption of Glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE–/– mice. Circ. Res. 118, 1062–1077 (2016). Discovered that glucose uptake as mediated by GLUT1 in hematopoiteic progenitors facilitates myelopoiesis to excaerbate atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cai, S. et al. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. J. Clin. Invest. https://doi.org/10.1172/JCI159498 (2023).

  8. Oburoglu, L. et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 15, 169–184 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Chapman, N. M. & Chi, H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 55, 14–30 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ryan, D. G. & O’Neill, L. A. J. Krebs cycle reborn in macrophage immunometabolism. Annu. Rev. Immunol. 38, 289–313 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Swain, A. et al. Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages. Nat. Metab. 2, 594–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qin, W. et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat. Chem. Biol. 15, 983–991 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013). A seminal work detailing links among glycolysis, succinate accumulation and pro-inflammatory macrophage activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hooftman, A. et al. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. Nature 615, 490–498 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferreira, A. V. et al. Dimethyl itaconate induces long-term innate immune responses and confers protection against infection. Cell Rep. 42, 112658 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Assmann, N. et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat. Immunol. 18, 1197–1206 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Bacigalupa, Z. A., Landis, M. D. & Rathmell, J. C. Nutrient inputs and social metabolic control of T cell fate. Cell Metab. 36, 10–20 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009). A seminal work on the central role of fatty acid metabolism in T cell fate determination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, F., Beck-Garcia, K., Zorzin, C., Schamel, W. W. & Davis, M. M. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat. Immunol. 17, 844–850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pietrocola, F. et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30, 147–160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geiger, R. et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chua, B. A. et al. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis. Cell Stem Cell 30, 460–472 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang, R. et al. Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency. Cell Stem Cell 26, 359–376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakamura-Ishizu, A., Ito, K. & Suda, T. Hematopoietic stem cell metabolism during development and aging. Dev. Cell 54, 239–255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Shirai, T. et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J. Exp. Med. 213, 337–354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lauterbach, M. A. et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51, 997–1011 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Baardman, J. et al. Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques. Nat. Commun. 11, 6296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruparelia, N. et al. Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans. Eur. Heart J. 36, 1923–1934 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Panizzi, P. et al. Impaired infarct healing in atherosclerotic mice with Ly-6Chi monocytosis. J. Am. Coll. Cardiol. 55, 1629–1638 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. DeBerge, M. et al. Hypoxia-inducible factors individually facilitate inflammatory myeloid metabolism and inefficient cardiac repair. J. Exp. Med. https://doi.org/10.1084/jem.20200667 (2021).

  37. Wang, F. et al. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Rep. 19, 2331–2344 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Doddapattar, P. et al. Myeloid cell PKM2 deletion enhances efferocytosis and reduces atherosclerosis. Circ. Res. 130, 1289–1305 (2022). Discovered that the deletion of a glycolytic intermediate, PKM2, in myeloid cells enhances the clearance of apoptotic cells in the plaque.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nishizawa, T. et al. Testing the role of myeloid cell glucose flux in inflammation and atherosclerosis. Cell Rep. 7, 356–365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parathath, S. et al. Hypoxia is present in murine atherosclerotic plaques and has multiple adverse effects on macrophage lipid metabolism. Circ. Res. 109, 1141–1152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aarup, A. et al. Hypoxia-inducible factor-1α expression in macrophages promotes development of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 36, 1782–1790 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Freigang, S. et al. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1α and sterile vascular inflammation in atherosclerosis. Nat. Immunol. 14, 1045–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Bekkering, S. et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler. Thromb. Vasc. Biol. 34, 1731–1738 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Baardman, J. et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep. 25, 2044–2052 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Rayner, K. J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ouimet, M. et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Invest. 125, 4334–4348 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Park, D. et al. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477, 220–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, S. et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 29, 443–456 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Morioka, S. et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563, 714–718 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schilperoort, M., Ngai, D., Katerelos, M., Power, D. A. & Tabas, I. PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages. Nat. Metab. 5, 431–444 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fond, A. M., Lee, C. S., Schulman, I. G., Kiss, R. S. & Ravichandran, K. S. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. J. Clin. Invest. 125, 2748–2758 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yurdagul, A. Jr et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31, 518–533 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ampomah, P. B. et al. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat. Metab. 4, 444–457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chia, S. et al. Association of leukocyte and neutrophil counts with infarct size, left ventricular function and outcomes after percutaneous coronary intervention for ST-elevation myocardial infarction. Am. J. Cardiol. 103, 333–337 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Fossati, G. et al. The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. J. Immunol. 170, 1964–1972 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Horckmans, M. et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 38, 187–197 (2017).

    CAS  PubMed  Google Scholar 

  58. Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Sreejit, G. et al. Retention of the NLRP3 inflammasome-primed neutrophils in the bone marrow is essential for myocardial infarction-induced granulopoiesis. Circulation 145, 31–44 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Sreejit, G. et al. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation 141, 1080–1094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pruenster, M. et al. E-selectin-mediated rapid NLRP3 inflammasome activation regulates S100A8/S100A9 release from neutrophils via transient gasdermin D pore formation. Nat. Immunol. https://doi.org/10.1038/s41590-023-01656-1 (2023).

  62. Doring, Y., Soehnlein, O. & Weber, C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ. Res. 120, 736–743 (2017).

    Article  PubMed  Google Scholar 

  63. Westerterp, M. et al. Cholesterol efflux pathways suppress inflammasome activation, NETosis, and atherogenesis. Circulation 138, 898–912 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Silvestre-Roig, C. et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 569, 236–240 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dhawan, U. K. et al. Hypercholesterolemia impairs clearance of neutrophil extracellular traps and promotes inflammation and atherosclerotic plaque progression. Arterioscler. Thromb. Vasc. Biol. 41, 2598–2615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pierini, L. M. et al. Membrane lipid organization is critical for human neutrophil polarization. J. Biol. Chem. 278, 10831–10841 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Murphy, A. J. et al. Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 1333–1341 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Wong, S. L. et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21, 815–819 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Amini, P. et al. Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production. Nat. Commun. 9, 2958 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang, L. et al. Hyperglycemia induces neutrophil extracellular traps formation through an NADPH oxidase-dependent pathway in diabetic retinopathy. Front. Immunol. 9, 3076 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Flynn, M. C. et al. Transient intermittent hyperglycemia accelerates atherosclerosis by promoting myelopoiesis. Circ. Res. 127, 877–892 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Angeli, V. et al. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Shamshiev, A. T. et al. Dyslipidemia inhibits Toll-like receptor-induced activation of CD8α-negative dendritic cells and protective Th1 type immunity. J. Exp. Med. 204, 441–452 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gautier, E. L. et al. Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis. Circulation 119, 2367–2375 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Westerterp, M. et al. Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity. Cell Metab. 25, 1294–1304 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roman, M. J. et al. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N. Engl. J. Med. 349, 2399–2406 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Bobryshev, Y. V. Dendritic cells in atherosclerosis: current status of the problem and clinical relevance. Eur. Heart J. 26, 1700–1704 (2005).

    Article  PubMed  Google Scholar 

  79. Van der Borght, K. et al. Myocardial infarction primes autoreactive T cells through activation of dendritic cells. Cell Rep. 18, 3005–3017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lee, J. S. et al. Conventional dendritic cells impair recovery after myocardial infarction. J. Immunol. 201, 1784–1798 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Basit, F., Mathan, T., Sancho, D. & de Vries, I. J. M. Human dendritic cell subsets undergo distinct metabolic reprogramming for immune response. Front. Immunol. 9, 2489 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Clement, C. C. et al. Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. Immunity 54, 721–736 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Shaw, M. K. et al. T-cells specific for a self-peptide of ApoB-100 exacerbate aortic atheroma in murine atherosclerosis. Front. Immunol. 8, 95 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lu, H. et al. High glucose induces upregulation of scavenger receptors and promotes maturation of dendritic cells. Cardiovasc. Diabetol. 12, 80 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barrachina, M. N. et al. Efficient megakaryopoiesis and platelet production require phospholipid remodeling and PUFA uptake through CD36. Nat. Cardiovasc. Res. 2, 746–763 (2023).

    Article  Google Scholar 

  86. de Jonckheere, B. et al. Critical shifts in lipid metabolism promote megakaryocyte differentiation and proplatelet formation. Nat. Cardiovasc. Res. 2, 835–852 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dhenge, A., Limbkar, K., Melinkeri, S., Kale, V. P. & Limaye, L. Arachidonic acid and docosahexanoic acid enhance platelet formation from human apheresis-derived CD34+ cells. Cell Cycle 16, 979–990 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kraakman, M. J. et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J. Clin. Invest. 127, 2133–2147 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Helou, M. A., Sisler, I., Ning, Y. & Liu, H. Is obesity alone associated with increased blood cell counts in otherwise healthy children? Blood 118, 3135–3135 (2011).

    Article  Google Scholar 

  90. Kelly, K. L. et al. De novo lipogenesis is essential for platelet production in humans. Nat. Metab. 2, 1163–1178 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Valet, C. et al. Adipocyte fatty acid transfer supports megakaryocyte maturation. Cell Rep. 32, 107875 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Nayak, M. K. et al. The metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood 137, 1658–1668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Flora, G. D. et al. Mitochondrial pyruvate dehydrogenase kinases contribute to platelet function and thrombosis in mice by regulating aerobic glycolysis. Blood Adv. 7, 2347–2359 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, D. et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559, 637–641 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lepropre, S. et al. AMPK–ACC signaling modulates platelet phospholipids and potentiates thrombus formation. Blood 132, 1180–1192 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hofmann, U. & Frantz, S. Role of T cells in myocardial infarction. Eur. Heart J. 37, 873–879 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Bensinger, S. J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008). An early demonstration of the importance of LXR signaling and lipid metabolism in modulating T cell expansion and acquired immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Armstrong, A. J., Gebre, A. K., Parks, J. S. & Hedrick, C. C. ATP-binding cassette transporter G1 negatively regulates thymocyte and peripheral lymphocyte proliferation. J. Immunol. 184, 173–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Gaddis, D. E. et al. Atherosclerosis impairs naive CD4 T-cell responses via disruption of glycolysis. Arterioscler. Thromb. Vasc. Biol. 41, 2387–2398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gerriets, V. A. et al. Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur. J. Immunol. 46, 1970–1983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Taleb, S. et al. Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 2691–2698 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Yang, W. et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cheng, H. Y. et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J. Clin. Invest. 126, 3236–3246 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun. 9, 1095 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bazioti, V. et al. T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice. Nat. Commun. 13, 3799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tyrrell, D. J. et al. Clonally expanded memory CD8+ T cells accumulate in atherosclerotic plaques and are pro-atherogenic in aged mice. Nat. Aging https://doi.org/10.1038/s43587-023-00515-w (2023).

  108. Quinn, K. M. et al. Metabolic characteristics of CD8+ T cell subsets in young and aged individuals are not predictive of functionality. Nat. Commun. 11, 2857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wagner, A. et al. Metabolic modeling of single TH17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. O’Brien, K. L. et al. De novo polyamine synthesis supports metabolic and functional responses in activated murine NK cells. Eur. J. Immunol. 51, 91–102 (2021).

    Article  PubMed  Google Scholar 

  111. Ron-Harel, N. et al. T cell activation depends on extracellular alanine. Cell Rep. 28, 3011–3021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Martinez, N. et al. Chromatin decondensation and T cell hyperresponsiveness in diabetes-associated hyperglycemia. J. Immunol. 193, 4457–4468 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Desdin-Mico, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Ouyang, J., Wang, H. & Huang, J. The role of lactate in cardiovascular diseases. Cell Commun. Signal. 21, 317 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 54, 1561–1577 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mauro, C. et al. Obesity-induced metabolic stress leads to biased effector memory CD4+ T cell differentiation via PI3K p110δ-Akt-mediated signals. Cell Metab. 25, 593–609 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sage, A. P., Tsiantoulas, D., Binder, C. J. & Mallat, Z. The role of B cells in atherosclerosis. Nat. Rev. Cardiol. 16, 180–196 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Hilgendorf, I. et al. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation 129, 1677–1687 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Winer, D. A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chan, C. T. et al. Obligatory role for B cells in the development of angiotensin II-dependent hypertension. Hypertension 66, 1023–1033 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chou, M. Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 119, 1335–1349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Muri, J., Thut, H., Bornkamm, G. W. & Kopf, M. B1 and marginal zone B cells but not follicular B2 cells require Gpx4 to prevent lipid peroxidation and ferroptosis. Cell Rep. 29, 2731–2744 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Morgan, P. K. et al. A lipid atlas of human and mouse immune cells provides insights into ferroptosis susceptibility. Nat. Cell Biol. 26, 645–659 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Lorenzo, C. et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature 589, 287–292 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Rosser, E. C. & Mauri, C. The emerging field of regulatory B cell immunometabolism. Cell Metab. 33, 1088–1097 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Bibby, J. A. et al. Cholesterol metabolism drives regulatory B cell IL-10 through provision of geranylgeranyl pyrophosphate. Nat. Commun. 11, 3412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Luo, W. et al. SREBP signaling is essential for effective B cell responses. Nat. Immunol. 24, 337–348 (2023). A recent demonstration that lipid homeostasis controls the quality and longevity of B cell immunity.

    Article  CAS  PubMed  Google Scholar 

  129. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science https://doi.org/10.1126/science.aan4673 (2019).

  130. Edgar, L. et al. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis. Circulation 144, 961–982 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Olivares, R., Ducimetiere, P. & Claude, J. R. Monocyte count: a risk factor for coronary heart disease? Am. J. Epidemiol. 137, 49–53 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. van der Valk, F. M. et al. Increased haematopoietic activity in patients with atherosclerosis. Eur. Heart J. 38, 425–432 (2017).

    PubMed  Google Scholar 

  133. Gomes, A. L., Carvalho, T., Serpa, J., Torre, C. & Dias, S. Hypercholesterolemia promotes bone marrow cell mobilization by perturbing the SDF-1:CXCR4 axis. Blood 115, 3886–3894 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Robbins, C. S. et al. Extramedullary hematopoiesis generates Ly-6Chigh monocytes that infiltrate atherosclerotic lesions. Circulation 125, 364–374 (2012).

    Article  PubMed  Google Scholar 

  135. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gu, Q. et al. AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science 363, 1085–1088 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Westerterp, M. et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11, 195–206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lee, M. K. S. et al. Defective AMPK regulation of cholesterol metabolism accelerates atherosclerosis by promoting HSPC mobilization and myelopoiesis. Mol. Metab. 61, 101514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Brandts, J. & Ray, K. K. Novel and future lipid-modulating therapies for the prevention of cardiovascular disease. Nat. Rev. Cardiol. 20, 600–616 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Kornberg, M. D. et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449–453 (2018). A seminal exploration of the beneficial therapeutic effects of targeting immunometabolic pathways with dimethyl fumarate (a methyl ester of the TCA cycle intermediate fumarate) in chronic inflammatory disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Weng, J. H. et al. Colchicine acts selectively in the liver to induce hepatokines that inhibit myeloid cell activation. Nat. Metab. 3, 513–522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. DeBerge, M., Chaudhary, R., Schroth, S. & Thorp, E. B. Immunometabolism at the heart of cardiovascular disease. JACC Basic Transl. Sci. 8, 884–904 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Engelen, S. E., Robinson, A. J. B., Zurke, Y. X. & Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ussher, J. R. & Drucker, D. J. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat. Rev. Cardiol. 20, 463–474 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Packer, M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat. Rev. Cardiol. 20, 443–462 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Borcherding, N. & Brestoff, J. R. The power and potential of mitochondria transfer. Nature 623, 283–291 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Borcherding, N. et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab. 34, 1499–1513 (2022). New concept to transfer functional mitochondria into macrophages. This could be done in HSCs, which would reduce atherosclerosis-related myelopoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Palsson-McDermott, E. M. & O’Neill, L. A. J. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 30, 300–314 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.J.F. is supported by funding from Diabetes Australia. J.N. is supported by funding from the NHMRC (GNT202152). N.L.G. is supported by funding from the NHMRC (GNT2017335) and ARC (DP230102412). A.K. is supported by funding from the NHMRC (GNT2017420) and the Australia Research Council Discovery Grant. A.J.M. is supported by funding from the NHMRC (GNT1194329).

Author information

Authors and Affiliations

Authors

Contributions

A.J.F., J.N., N.L.G., A.K. and A.J.M. contributed equally to the writing and revision of the article. A.J.F. prepared the draft figures that were used as a guide for the final images.

Corresponding authors

Correspondence to Andrew J. Fleetwood or Andrew J. Murphy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Federica Marelli-Berg, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleetwood, A.J., Noonan, J., La Gruta, N. et al. Immunometabolism in atherosclerotic disorders. Nat Cardiovasc Res 3, 637–650 (2024). https://doi.org/10.1038/s44161-024-00473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-024-00473-5

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research