Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kinetically controlled Z-alkene synthesis using iron-catalysed allene dialkylation

Abstract

Stereodefined trisubstituted alkenes are key constituents of biologically active molecules and also serve as indispensable substrates for a wide range of stereospecific reactions affording sp3-hybridized skeletons. However, there is a persisting lack of methods that generate the thermodynamically less stable Z-isomers. Here we report an iron-catalysed multicomponent strategy that merges allenes, dialkylzinc compounds and haloalkanes to construct trisubstituted alkenes with excellent control of regioselectivity and Z-selectivity. Selective installation of diverse C(sp3) groups enables access to a broad library of functionalized unsaturated products. The synthetic utility of the method is highlighted through the synthesis of a glucosylceramide synthase inhibitor. Contrary to conventional mechanisms for metal-catalysed allene functionalization, our studies suggest a kinetically controlled pathway involving sequential radical-mediated alkylferration of the less hindered C=C bond and inner-sphere alkylation via reductive elimination. Mechanistic and computational investigations reveal the origins of the stereochemical outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges and strategies for the synthesis of trisubstituted Z-alkenes.
Fig. 2: The scope of allenes in iron-catalysed 1,2-dialkylation.
Fig. 3: The scope of electrophiles and nucleophiles in iron-catalysed 1,2-dialkylation and its synthetic utility.
Fig. 4: Mechanistic and computational studies.

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. The DFT-optimized structures are available via Zenodo at https://doi.org/10.5281/zenodo.11363682 (ref. 42).

References

  1. Hoveyda, A. H. et al. Taking olefin metathesis to the limit: stereocontrolled synthesis of trisubstituted alkenes. Acc. Chem. Res. 56, 2426–2446 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Itami, K. & Yoshida, J. Multisubstituted olefins: platform synthesis and applications to materials science and pharmaceutical chemistry. Bull. Chem. Soc. Jpn. 79, 811–824 (2006).

    Article  CAS  Google Scholar 

  3. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wickham, L. & Giri, R. Transition metal (Ni, Cu, Pd)-catalysed alkene dicarbofunctionalization reactions. Acc. Chem. Res. 54, 3415–3437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Negishi, E. et al. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy. Acc. Chem. Res. 41, 1474–1485 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Flynn, A. B. & Ogilvie, W. W. Stereocontrolled synthesis of tetrasubstituted olefins. Chem. Rev. 107, 4698–4745 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Siau, W. Y., Zhang, Y. & Zhao, Y. in Stereoselective Synthesis of Z-Alkenes (ed. Wang, J.) 33–58 (Springer, 2012).

  8. Vedejs, E. & Peterson, M. J. in Topics in Stereochemistry (ed. Mathey, F.) 1–157 (Wiley, 2007).

  9. Liu, C.-F. et al. Olefin functionalization/isomerization enables stereoselective alkene synthesis. Nat. Catal. 4, 674–683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo, F.-K. et al. Wittig/B–H insertion reaction: a unique access to trisubstituted Z-alkenes. Sci. Adv. 9, eadj2486 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jasem, Y. A., El-Esawi, R. & Thiemann, T. Wittig- and Horner–Wadsworth–Emmons-olefination reactions with stabilised and semi-stabilised phosphoranes and phosphonates under nonclassical conditions. J. Chem. Res. 38, 453–463 (2014).

    Article  Google Scholar 

  12. Hodgson, D. M. & Arif, T. Convergent synthesis of trisubstituted Z-allylic esters by Wittig–Schlosser reaction. Org. Lett. 12, 4204–4207 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Ando, K. Z-Selective Horner–Wadsworth–Emmons reaction of α-substituted ethyl (diarylphosphono)acetates with aldehydes. J. Org. Chem. 63, 8411–8416 (1998).

    Article  CAS  Google Scholar 

  14. Vedejs, E., Cabaj, J. & Peterson, M. J. Wittig ethylidenation of ketones: reagent control of Z/E selectivity. J. Org. Chem. 58, 6509–6512 (1993).

    Article  CAS  Google Scholar 

  15. Kutateladze, D. A. et al. Stereoselective synthesis of trisubstituted alkenes via copper hydride-catalyzed alkyne hydroalkylation. J. Am. Chem. Soc. 145, 17557–17563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Long, T. et al. Ligand-controlled stereodivergent alkenylation of alkynes to access functionalized trans- and cis-1,3-dienes. Nat. Commun. 14, 55 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qin, J., Zhang, Z., Lu, Y., Zhu, S. & Chu, L. Divergent 1,2-carboallylation of terminal alkynes enabled by metallaphotoredox catalysis with switchable triplet energy transfer. Chem. Sci. 14, 12143–12151 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, L. et al. Palladium-catalyzed formal hydroalkylation of aryl-substituted alkynes with hydrazones. Angew. Chem. Int. Ed. 59, 14009–14013 (2020).

    Article  CAS  Google Scholar 

  19. Huang, Q., Wang, W.-N. & Zhu, S.-F. Iron-catalyzed alkylzincation of terminal alkynes. ACS Catal. 12, 2581–2588 (2022).

    Article  CAS  Google Scholar 

  20. Nguyen, T. T., Koh, M. J., Mann, T. J., Schrock, R. R. & Hoveyda, A. H. Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis. Nature 552, 347–354 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mu, Y., Nguyen, T. T., Koh, M. J., Schrock, R. R. & Hoveyda, A. H. E- and Z-, di- and tri-substituted alkenyl nitriles through catalytic cross-metathesis. Nat. Chem. 11, 478–487 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qin, C. et al. Z-Trisubstituted α,β-unsaturated esters and acid fluorides through stereocontrolled catalytic cross-metathesis. J. Am. Chem. Soc. 145, 3748–3762 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Belardi, J. K. & Micalizio, G. C. Conversion of allylic alcohols to stereodefined trisubstituted alkenes: a complementary process to the Claisen rearrangement. J. Am. Chem. Soc. 130, 16870–16872 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, Z. & Negishi, E. Highly stereo- and regioselective synthesis of (Z)-trisubstituted alkenes via 1-bromo-1-alkyne hydroboration-migratory insertion-Zn-promoted iodinolysis and Pd-catalyzed organozinc cross-coupling. J. Am. Chem. Soc. 129, 14788–14792 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, Y., You, W., Smith, K. B. & Brown, M. K. Copper-catalyzed cross-coupling of boronic esters with aryl iodides and application to the carboboration of alkynes and allenes. Angew. Chem. Int. Ed. 53, 3475–3479 (2014).

    Article  CAS  Google Scholar 

  26. Ng, S.-S. & Jamison, T. F. Highly enantioselective and regioselective nickel-catalyzed coupling of allenes, aldehydes, and silanes. J. Am. Chem. Soc. 127, 7320–7321 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Ju, T. et al. Dicarboxylation of alkenes, allenes and (hetero) arenes with CO2 via visible-light photoredox catalysis. Nat. Catal. 4, 304–311 (2021).

    Article  CAS  Google Scholar 

  28. Zhai, Y., Zhang, X. & Ma, S. Stereoselective rhodium-catalyzed 2-C–H 1,3-dienylation of indoles: dual functions of the directing group. Chem. Sci. 12, 11330–11337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakao, Y., Hirata, Y. & Hiyama, T. Cyanoesterification of 1,2-dienes: synthesis and transformations of highly functionalized α-cyanomethylacrylate esters. J. Am. Chem. Soc. 128, 7420–7421 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, M.-S., Rayabarapu, D. K. & Cheng, C.-H. Nickel-catalyzed highly regio- and stereoselective three-component assembly of allenes, aryl iodides, and alkenylzirconium reagents. J. Am. Chem. Soc. 125, 12426–12427 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Ma, S. in Handbook of Organopalladium Chemistry for Organic Synthesis (ed. Negishi, E.-I.) 1491–1521 (Wiley, 2003).

  32. Tan, T.-D. et al. Congested C(sp3)-rich architectures enabled by iron-catalysed conjunctive alkylation. Nat. Catal. 7, 321–329 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, L., Ward, R. M. & Schomaker, J. M. Mechanistic aspects and synthetic applications of radical additions to allenes. Chem. Rev. 119, 12422–12490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petruncio, G., Shellnutt, Z., Elahi-Mohassel, S., Alishetty, S. & Paige, M. Skipped dienes in natural product synthesis. Nat. Prod. Rep. 38, 2187–2213 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Sato, T., Suto, T., Nagashima, Y., Mukai, S. & Chida, N. Total synthesis of skipped diene natural products. Asian J. Org. Chem. 10, 2486–2502 (2021).

    Article  CAS  Google Scholar 

  36. Wang, M. & Casey, P. J. Protein prenylation: unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol. 17, 110–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Du, Y., Korchi, I., Rubtsov, A. E., Andrei, V. & Malkov, A. V. Catalytic prenylation of natural polyphenols. New J. Chem. 47, 20358–20362 (2023).

    Article  CAS  Google Scholar 

  38. Childers, W. et al. Novel compounds that reverse the disease phenotype in type 2 Gaucher disease patient-derived cells. Bioorg. Med. Chem. Lett. 30, 126806 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, D., Rahaman, S. W., Mercado, B. Q., Poli, R. & Holland, P. L. Roles of iron complexes in catalytic radical alkene cross-coupling: a computational and mechanistic study. J. Am. Chem. Soc. 141, 7473–7485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, B. et al. Interception of transient allyl radicals with low-valent allylpalladium chemistry: tandem Pd(0/II/I)–Pd(0/II/I/II) cycles in photoredox/Pd dual-catalytic enantioselective C(sp3)–C(sp3) homocoupling. J. Am. Chem. Soc. 146, 6377–6387 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, L. et al. General method for iron-catalysed multicomponent radical cascades–cross-couplings. Science 374, 432–439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, X. Kinetically-controlled Z-alkene synthesis using iron-catalysed allene dialkylation. Zenodo https://doi.org/10.5281/zenodo.11363682 (2024).

Download references

Acknowledgements

This research was supported by the Ministry of Education of Singapore Academic Research Fund Tier 2 (A-8000034-00-00, M.J.K.) and the Foundation of Wenzhou Science & Technology Bureau (ZY2020027, T.-D.T. and P.-C.Q.).

Author information

Authors and Affiliations

Authors

Contributions

M.J.K. and T.-D.T. conceived the project. T.-D.T., K.Z.T., X.L. and P.-C.Q. developed the catalytic method. X.Z. designed and performed the DFT studies. M.J.K. wrote the paper with revisions provided by the other authors.

Corresponding authors

Correspondence to Xinglong Zhang or Ming Joo Koh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–10, experimental data, synthesis and characterization data, DFT calculation data, NMR spectra, and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, TD., Tee, K.Z., Luo, X. et al. Kinetically controlled Z-alkene synthesis using iron-catalysed allene dialkylation. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00658-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00658-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing