Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper-catalysed synthesis of chiral alkynyl cyclopropanes using enantioconvergent radical cross-coupling of cyclopropyl halides with terminal alkynes

Abstract

Transition-metal-catalysed enantioconvergent cross-coupling reactions of highly reactive alkyl radicals often suffer from reduced chemoselectivity, mainly due to side reactions with closed-shell reactants. A strategy to overcome this challenge has yet to be identified, posing substantial limitations on the synthetic utility of this method. Here we report a method for enantioconvergent radical carbon–carbon cross-coupling of highly reactive cyclopropyl radicals with terminal alkynes, using redox state-tuned copper catalysis, under mild conditions. Key to this method is the use of hard chiral N,N,N-ligands in combination with Cu(II) salts of hard ligands/counterions, which results in elevated concentrations of Cu(II) species and thus enhanced cross-coupling reactions. This protocol not only exhibits a broad substrate scope across a wide range of both racemic cyclopropyl halide and terminal alkyne coupling partners but also provides access to useful yet synthetically challenging enantioenriched cyclopropane building blocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Motivation and design of enantioconvergent radical C–C cross-coupling of racemic cyclopropyl electrophiles.
Fig. 2: Substrate scopes of alkynes and racemic cyclopropyl bromides.
Fig. 3: Reaction development and substrate scopes for other racemic cyclopropyl halides.
Fig. 4: Synthetic utility for the construction of valuable enantioenriched cyclopropane building blocks.
Fig. 5: Mechanistic studies and proposals.
Fig. 6: Preliminary experimental results and rationale for redox-state-tuned copper catalysis.

Similar content being viewed by others

Data availability

All data are available in the main text and Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2264730 (20), 2267172 (78), 2267173 (86) and 2264731 (88). Copies of the data can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/.

References

  1. de Meijere, A., Bräse, S. & Oestreich, M. (eds) Metal-Catalyzed Cross-Coupling Reactions and More (Wiley, 2014).

  2. Choi, J. & Fu, G. C. Transition metal–catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dong, X.-Y., Li, Z.-L., Gu, Q.-S. & Liu, X.-Y. Ligand development for copper-catalyzed enantioconvergent radical cross-coupling of racemic alkyl halides. J. Am. Chem. Soc. 144, 17319–17329 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).

    Article  CAS  Google Scholar 

  7. Hanson, P., Rowell, S. C., Walton, P. H. & Timms, A. W. Promotion of Sandmeyer hydroxylation (homolytic hydroxydediazoniation) and hydrodediazoniation by chelation of the copper catalyst: bidentate ligands. Org. Biomol. Chem. 2, 1838–1855 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Fattahi, A., Lis, L. & Kass, S. R. Phenylcyclopropane energetics and characterization of its conjugate base: phenyl substituent effects and the C–H bond dissociation energy of cyclopropane. J. Org. Chem. 81, 9175–9179 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds (CRC Press, 2003).

  10. Cui, X. & Zhang, X. P. in Contemporary Carbene Chemistry (eds Moss, R. A. & Doyle, M. P.) 491–525 (Wiley, 2014).

  11. Crisenza, G. E. M., Mazzarella, D. & Melchiorre, P. Synthetic methods driven by the photoactivity of electron donor–acceptor complexes. J. Am. Chem. Soc. 142, 5461–5476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chemler, S. R., Karyakarte, S. D. & Khoder, Z. M. Stereoselective and regioselective synthesis of heterocycles via copper-catalyzed additions of amine derivatives and alcohols to alkenes. J. Org. Chem. 82, 11311–11325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lipp, A., Badir, S. O. & Molander, G. A. Stereoinduction in metallaphotoredox catalysis. Angew. Chem. Int. Ed. 60, 1714–1726 (2021).

    Article  CAS  Google Scholar 

  14. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Proctor, R. S. J., Colgan, A. C. & Phipps, R. J. Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat. Chem. 12, 990–1004 (2020).

    Article  PubMed  Google Scholar 

  16. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, L. & Meggers, E. Steering asymmetric Lewis acid catalysis exclusively with octahedral metal-centered chirality. Acc. Chem. Res. 50, 320–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Li, B., Shi, J.-L. & Xia, Y. Diversified synthesis of all-carbon quaternary gem-difluorinated cyclopropanes via copper-catalyzed cross-coupling. Org. Lett. 25, 2674–2679 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. McKinney, M. A., Anderson, S. W., Keyes, M. & Schmidt, R. Cyclopropyl halides. Electron transfer in the lithium aluminum hydride reduction of gem-dibromo and monobromocyclopropanes. Tetrahedron Lett. 23, 3443–3446 (1982).

    Article  CAS  Google Scholar 

  21. Tanabe, Y., Wakimura, K.-i & Nishii, Y. Sequential and highly stereoselective intermolecular radical additions of 2,3-cis-disubstituted 1,1-dibromo- and 1-bromocyclopropanes to electron-deficient olefins. Tetrahedron Lett. 37, 1837–1840 (1996).

    Article  CAS  Google Scholar 

  22. Cohen, Y., Cohen, A. & Marek, I. Creating stereocenters within acyclic systems by C–C bond cleavage of cyclopropanes. Chem. Rev. 121, 140–161 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z., Gao, Y., Chen, S. & Wang, J. Transition-metal-catalyzed polymerization of cyclopropenes. Chin. J. Org. Chem. 41, 1888–1896 (2021).

    Article  CAS  Google Scholar 

  24. Davies, H. M. L. & Liao, K. Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nat. Rev. Chem. 3, 347–360 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, Y., Fields, K. B. & Zhang, X. P. Bromoporphyrins as versatile synthons for modular construction of chiral porphyrins: cobalt-catalyzed highly enantioselective and diastereoselective cyclopropanation. J. Am. Chem. Soc. 126, 14718–14719 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Zhu, S., Ruppel, J. V., Lu, H., Wojtas, L. & Zhang, X. P. Cobalt-catalyzed asymmetric cyclopropanation with diazosulfones: rigidification and polarization of ligand chiral environment via hydrogen bonding and cyclization. J. Am. Chem. Soc. 130, 5042–5043 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, X. et al. Highly asymmetric intramolecular cyclopropanation of acceptor-substituted diazoacetates by Co(II)-based metalloradical catalysis: iterative approach for development of new-generation catalysts. J. Am. Chem. Soc. 133, 15292–15295 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Hu, Y. et al. Next-generation D2-symmetric chiral porphyrins for cobalt(II)-based metalloradical catalysis: catalyst engineering by distal bridging. Angew. Chem. Int. Ed. 58, 2670–2674 (2019).

    Article  CAS  Google Scholar 

  29. Ebner, C. & Carreira, E. M. Cyclopropanation strategies in recent total syntheses. Chem. Rev. 117, 11651–11679 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Dian, L. & Marek, I. Asymmetric preparation of polysubstituted cyclopropanes based on direct functionalization of achiral three-membered carbocycles. Chem. Rev. 118, 8415–8434 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Talele, T. T. The ‘cyclopropyl fragment’ is a versatile player that frequently appears in preclinical/clinical drug molecules. J. Med. Chem. 59, 8712–8756 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Top Pharmaceuticals Poster. https://sites.arizona.edu/njardarson-lab/top200-posters/ (University of Arizona, 2022).

  33. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2017).

    Article  PubMed Central  Google Scholar 

  34. Lebel, H., Marcoux, J.-F., Molinaro, C. & Charette, A. B. Stereoselective cyclopropanation reactions. Chem. Rev. 103, 977–1050 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Mato, M., Franchino, A., García-Morales, C. & Echavarren, A. M. Gold-catalyzed synthesis of small rings. Chem. Rev. 121, 8613–8684 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Kulinkovich, O. G. & de Meijere, A. 1,n-Dicarbanionic titanium intermediates from monocarbanionic organometallics and their application in organic synthesis. Chem. Rev. 100, 2789–2834 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. Catalytic carbene insertion into C–H bonds. Chem. Rev. 110, 704–724 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. He, Y. et al. Recent advances in transition-metal-catalyzed carbene insertion to C–H bonds. Chem. Soc. Rev. 51, 2759–2852 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, X. & Zhang, X. P. in Transition Metal-Catalyzed Carbene Transformations (eds Wang, J., Che, C.-M. & Doyle, M. P.) 25–66 (Wiley, 2022).

  40. Vicente, R. C–C bond cleavages of cyclopropenes: operating for selective ring-opening reactions. Chem. Rev. 121, 162–226 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Sustac Roman, D. & Charette, A. B. in C–H Bond Activation and Catalytic Functionalization II (eds Dixneuf, P. H. & Doucet, H.) 91–114 (Springer, 2015).

  42. Shao, Q., Wu, K., Zhuang, Z., Qian, S. & Yu, J.-Q. From Pd(OAc)2 to chiral catalysts: the discovery and development of bifunctional mono-N-protected amino acid ligands for diverse C–H functionalization reactions. Acc. Chem. Res. 53, 833–851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, W.-C. C. & Zhang, X. P. Asymmetric radical cyclopropanation of alkenes. Trends Chem. 4, 850–851 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, W.-C. C. & Zhang, X. P. Metalloradical catalysis: general approach for controlling reactivity and selectivity of homolytic radical reactions. Angew. Chem. Int. Ed. 63, e202320243 (2024).

    Article  CAS  Google Scholar 

  45. Lee, W.-C. C. et al. Asymmetric radical cyclopropanation of dehydroaminocarboxylates: stereoselective synthesis of cyclopropyl α-amino acids. Chem 7, 1588–1601 (2021).

    Article  CAS  Google Scholar 

  46. Wang, X. et al. Asymmetric radical process for general synthesis of chiral heteroaryl cyclopropanes. J. Am. Chem. Soc. 143, 11121–11129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, J., Xie, J., Lee, W.-C. C., Wang, D.-S. & Zhang, X. P. Radical differentiation of two ester groups in unsymmetrical diazomalonates for highly asymmetric olefin cyclopropanation. Chem Catal. 2, 330–344 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Ke, J. et al. Metalloradical activation of in situ-generated α-alkynyldiazomethanes for asymmetric radical cyclopropanation of alkenes. J. Am. Chem. Soc. 144, 2368–2378 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, W.-C. C., Wang, D.-S., Zhu, Y. & Zhang, X. P. Iron(III)-based metalloradical catalysis for asymmetric cyclopropanation via a stepwise radical mechanism. Nat. Chem. 15, 1569–1580 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, X. & Tan, C.-H. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers. Chem 7, 1451–1486 (2021).

    Article  CAS  Google Scholar 

  52. An, L., Tong, F.-F., Zhang, S. & Zhang, X. Stereoselective functionalization of racemic cyclopropylzinc reagents via enantiodivergent relay coupling. J. Am. Chem. Soc. 142, 11884–11892 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Müller, D. S. & Marek, I. Copper mediated carbometalation reactions. Chem. Soc. Rev. 45, 4552–4566 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Onneken, C. et al. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 621, 753–759 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boche, G. & Walborsky, H. M. in Cyclopropane Derived Reactive Intermediates (eds Patai, S. & Rappoport, Z.) 117–173 (Wiley, 1990).

  56. Gabbey, A. L., Scotchburn, K. & Rousseaux, S. A. L. Metal-catalysed C–C bond formation at cyclopropanes. Nat. Rev. Chem. 7, 548–560 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Rubin, M., Rubina, M. & Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev. 107, 3117–3179 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Moragas, T. & Martin, R. Nickel-catalyzed reductive carboxylation of cyclopropyl motifs with carbon dioxide. Synthesis 48, 2816–2822 (2016).

    Article  CAS  Google Scholar 

  59. Mao, R., Balon, J. & Hu, X. Decarboxylative C(sp3)–O cross-coupling. Angew. Chem. Int. Ed. 57, 13624–13628 (2018).

    Article  CAS  Google Scholar 

  60. Salgueiro, D. C., Chi, B. K., Guzei, I. A., Garcίa-Reynaga, P. & Weix, D. J. Control of redox-active ester reactivity enables a general cross-electrophile approach to access arylated strained rings. Angew. Chem. Int. Ed. 61, e202205673 (2022).

    Article  CAS  Google Scholar 

  61. Chen, T.-G. et al. Building C(sp3)-rich complexity by combining cycloaddition and C–C cross–coupling reactions. Nature 560, 350–354 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. West, M. S., Gabbey, A. L., Huestis, M. P. & Rousseaux, S. A. L. Ni-catalyzed reductive cross-coupling of cyclopropylamines and other strained ring NHP esters with (hetero)aryl halides. Org. Lett. 24, 8441–8446 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. DeCicco, E. M. et al. Decarboxylative cross-electrophile coupling of (hetero)aromatic bromides and NHP esters. J. Org. Chem. 88, 12329–12340 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Liao, J. et al. Deaminative reductive cross-electrophile couplings of alkylpyridinium salts and aryl bromides. Org. Lett. 21, 2941–2946 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mills, L. R., Monteith, J. J., dos Passos Gomes, G., Aspuru-Guzik, A. & Rousseaux, S. A. L. The cyclopropane ring as a reporter of radical leaving-group reactivity for Ni-catalyzed C(sp3)–O arylation. J. Am. Chem. Soc. 142, 13246–13254 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Gu, Q.-S., Li, Z.-L. & Liu, X.-Y. Copper(I)-catalyzed asymmetric reactions involving radicals. Acc. Chem. Res. 53, 170–181 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Dong, X.-Y. et al. A general asymmetric copper-catalysed Sonogashira C(sp3)–C(sp) coupling. Nat. Chem. 11, 1158–1166 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, F.-L. et al. Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)–C(sp) cross-coupling of tertiary electrophiles with alkynes. Nat. Chem. 14, 949–957 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, L.-L. et al. A general copper-catalysed enantioconvergent radical Michaelis–Becker-type C(sp3)–P cross-coupling. Nat. Synth. 2, 430–438 (2023).

    Article  Google Scholar 

  71. Chen, J.-J. et al. Enantioconvergent Cu-catalysed N-alkylation of aliphatic amines. Nature 618, 294–300 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Tian, Y. et al. A general copper-catalysed enantioconvergent C(sp3)–S cross-coupling via biomimetic radical homolytic substitution. Nat. Chem. 16, 466–475 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Ryabchuk, P., Edwards, A., Gerasimchuk, N., Rubina, M. & Rubin, M. Dual control of the selectivity in the formal nucleophilic substitution of bromocyclopropanes en route to densely functionalized, chirally rich cyclopropyl derivatives. Org. Lett. 15, 6010–6013 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Sladojevich, F., Trabocchi, A., Guarna, A. & Dixon, D. J. A new family of cinchona-derived amino phosphine precatalysts: application to the highly enantio- and diastereoselective silver-catalyzed isocyanoacetate aldol reaction. J. Am. Chem. Soc. 133, 1710–1713 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).

    Article  CAS  Google Scholar 

  76. Wu, X., Lei, C., Yue, G. & Zhou, J. Palladium-catalyzed direct cyclopropylation of heterocycles. Angew. Chem. Int. Ed. 54, 9601–9605 (2015).

    Article  CAS  Google Scholar 

  77. Bai, J.-F., Yasumoto, K., Kano, T. & Maruoka, K. Asymmetric synthesis of chiral 1,4-enynes through organocatalytic alkenylation of propargyl alcohols with trialkenylboroxines. Angew. Chem. Int. Ed. 58, 8898–8901 (2019).

    Article  CAS  Google Scholar 

  78. Xia, H.-D. et al. Photoinduced copper-catalyzed asymmetric decarboxylative alkynylation with terminal alkynes. Angew. Chem. Int. Ed. 59, 16926–16932 (2020).

    Article  CAS  Google Scholar 

  79. Sagadevan, A., Ragupathi, A. & Hwang, K. C. Photoinduced copper-catalyzed regioselective synthesis of indoles: three-component coupling of arylamines, terminal alkynes, and quinones. Angew. Chem. Int. Ed. 54, 13896–13901 (2015).

    Article  CAS  Google Scholar 

  80. Zhang, Y. et al. Copper-catalyzed photoinduced enantioselective dual carbofunctionalization of alkenes. Org. Lett. 22, 1490–1494 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Harayama, T., Fukushi, H., Ogawa, K. & Yoneda, F. An efficient method for preparing gem-dimethylcycloplopanes from gem-dibromocyclopropanes. Chem. Pharm. Bull. 33, 3564–3566 (1985).

    Article  CAS  Google Scholar 

  82. Cohen, T., Dietz, A. G. Jr. & Miser, J. R. A simple preparation of phenols from diazonium ions via the generation and oxidation of aryl radicals by copper salts. J. Org. Chem. 42, 2053–2058 (1977).

    Article  CAS  Google Scholar 

  83. Teator, A. J., Lastovickova, D. N. & Bielawski, C. W. Switchable polymerization catalysts. Chem. Rev. 116, 1969–1992 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Bunschoten, R. P. et al. Mechanistic basis of the Cu(OAc)2 catalyzed azide–ynamine (3 + 2) cycloaddition reaction. J. Am. Chem. Soc. 146, 13558–13570 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, S.-J., Krska, S. W. & Stahl, S. S. Copper-catalyzed benzylic C–H cross-coupling enabled by redox buffers: expanding synthetic access to three-dimensional chemical space. Acc. Chem. Res. 56, 3604–3615 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bakhoda, A. et al. Three-coordinate copper(II) alkynyl complex in C–C bond formation: the sesquicentennial of the Glaser coupling. J. Am. Chem. Soc. 142, 18483–18490 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (numbers 22025103, 92256301 and 22331006 to X.-Y.L.; 22271133 to Q.-S.G.; 22201127 to L.L.), the National Key R&D Program of China (numbers 2021YFF0701604 and 2021YFF0701704, to X.-Y.L.), the Guangdong Innovative Program (number 2019BT02Y335, to X.-Y.L.), the Guangdong Major Project of Basic and Applied Basic Research (number 2023B0303000020, to X.-Y.L.), the New Cornerstone Science Foundation through the Xplorer Prize (to X.-Y.L.), the Shenzhen Science and Technology Program (numbers KQTD20210811090112004, to X.-Y.L. and Q.-S.G.; JCYJ20220818100600001, to X.-Y.L.), the Shenzhen Key Laboratory of Cross-Coupling Reactions (number ZDSYS20220328104200001, to X.-Y.L.), High-Level of Special Funds (number G03050K003, to X.-Y.L.) and the High-Level Key Discipline Construction Project (number G030210001, to X.-Y.L.) is gratefully acknowledged. We appreciate the assistance of SUSTech Core Research Facilities.

Author information

Authors and Affiliations

Authors

Contributions

Z.G., L.L., W.W. and L.T. designed the experiments and analysed the data. Z.G., L.L., W.W. and N.-Y.Y. performed the experiments. J.-R.L. designed and performed the DFT calculations. L.L., Z.-L.L., Q.-S.G. and X.-Y.L. wrote the paper. Q.-S.G. and X.-Y.L. conceived and supervised the project.

Corresponding authors

Correspondence to Qiang-Shuai Gu or Xin-Yuan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–13, experimental procedures, synthetic procedures, characterization data, density functional theory (DFT) calculations and mechanistic discussion.

Supplementary Data 1

Crystallographic data for compound 20; CCDC reference 2264730.

Supplementary Data 2

Crystallographic data for compound 78; CCDC reference 2267172.

Supplementary Data 3

Crystallographic data for compound 86; CCDC reference 2267173.

Supplementary Data 4

Crystallographic data for compound 88; CCDC reference 2264731.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Liu, L., Liu, JR. et al. Copper-catalysed synthesis of chiral alkynyl cyclopropanes using enantioconvergent radical cross-coupling of cyclopropyl halides with terminal alkynes. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00654-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing