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Synthesis of polyacene by using a  
metal–organic framework

Takashi Kitao    1,2,9, Takumi Miura1,9, Ryo Nakayama    3,4, Yusuke Tsutsui    2,5, 
Yee Seng Chan6, Hironobu Hayashi2,6,7, Hiroko Yamada    6,8, Shu Seki    5, 
Taro Hitosugi    3,4 & Takashi Uemura    1 

The acene series, an important class of linearly polycyclic aromatic 
hydrocarbons, are of interest owing to their unique physicochemical 
features. With an increase in the number of fused benzene rings, acenes 
display an evolution of electronic structure and properties. Thus, efforts 
have been devoted to the synthesis of longer acenes, with dodecacene 
being the longest acene (12 fused benzene rings) reported to date. However, 
the formation of polymeric acenes with numerous benzene rings, namely 
polyacene, has yet to be realized. Herein, we present a methodology for 
the synthesis of polyacene mediated by a metal–organic framework. 
Nanoconfined synthesis of precursor polymers in the channels of the metal–
organic framework and the subsequent dehydro-aromatization reaction 
produced polyacene that was overwhelmingly longer than the previously 
reported acenes. The scalable synthesis of polyacene allowed us to unveil 
the stability and electronic properties of polyacene, paving the way for their 
widespread applications in optoelectronic and magnetic devices.

Since the synthesis of pentacene was reported in 1912 (ref. 1), exten-
sion of linearly fused benzene rings has attracted research attention 
because of curiosity around the nature of aromatic molecules and their 
applications in optoelectronic nanodevices and biological imaging2–9. 
However, the synthesis of acenes longer than hexacene remains formi-
dably challenging because of their low solubility and chemical instabil-
ity, as explained by Clar’s sextet theory10. More specifically, this theory 
explains how increases in the number of non-sextet rings along the 
acene series endows molecules with an unstable biradical character in 
their ground state11. Much effort has gone into the synthesis of acenes, 
and their length has gradually increased (one benzene ring at a time) 
for many decades. Functionalization with solubilizing and stabilizing 
substituents has allowed for the preparation of acenes of up to nine 
fused rings using solution synthesis methods12. The on-surface reaction 
has also emerged as a promising method to afford unsubstituted acenes 

under high-vacuum conditions13,14. This methodology has enabled the 
synthesis of the longest acene yet, one with 12 benzene rings15. However, 
despite these efforts, polymeric acenes consisting of numerous fused 
benzene rings, namely polyacene, have not been synthesized.

Using regular nanopores for ship-in-a-bottle synthesis has many 
advantages, including highly specific reactions in the pores and impos-
ing nanoconfinement effects on reaction selectivity and kinetics16–25. 
Recently, metal–organic frameworks (MOFs), which comprise metal 
ions and organic ligands, have attracted much attention due to their 
applications in fields such as gas storage, separation, catalysts and 
drug delivery26–30. One of the characteristic features of MOFs is their 
structural diversity; their pore size and shape are controllable at the 
molecular level, providing an ideal compartment for encapsulating a 
variety of guest species and controlling their assembly structures31,32. 
The resulting guest molecules can be easily recovered by dissolution 
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end-to-end fashion due to the geometrical constraint and host–guest 
interactions (Supplementary Fig. 3b,c), which would facilitate the 
regulated reactions at the 3- and 7-position of the monomers.

Polymerization of the monomers in the nanochannels of 1 was per-
formed as follows. First, the monomers were introduced into the pores 
of 1 by sublimation to obtain the host–monomer composites (1⊃BBMN 
and 1⊃BBMA). The monomers were exclusively adsorbed inside the 
nanochannels, as confirmed by X-ray powder diffraction (XRPD), ther-
mogravimetric (TG) and N2 adsorption measurements (Supplementary 
Figs. 4–6). Polymerization of BBMN and BBMA was then conducted by 
heating the composites at 250 °C (below the temperature of monomer 
release from the pores) for 24 h in a sealed glass tube, resulting in the 
composites of 1 with poly(naphthalene-2,3:6,7-tetrayl-6,7-dimethyl-
ene) (PNTD) and poly(anthracene-2,3:6,7-tetrayl-6,7-dimethylene) 
(PATD), respectively. We confirmed the formation of the composites 
(1⊃PNTD and 1⊃PATD) using a series of characterization techniques. 
XRPD measurements showed that the crystal structure of the host MOF 
was maintained during the heating process (Supplementary Fig. 4). The 
morphology and size of the particles of 1 remained unchanged during 
the polymerization, as confirmed by scanning electron microscopy 
(Supplementary Fig. 7). These results suggest that polymerization 
proceeded inside the channels of 1. Furthermore, a drastic decrease 
in the N2 adsorption capacity of the composites compared with that of 
the pristine 1 was consistent with the accommodation of the precursor 
polymers in the nanochannels (Supplementary Fig. 6).

The precursor polymers, PNTD and PATD, were released from the 
framework of 1 by digesting the host in an aqueous NaOH solution. 
The complete removal of 1 was confirmed by XRPD (Supplementary 
Fig. 4) and scanning electron microscopy–energy-dispersive X-ray 
spectroscopy (Supplementary Fig. 8). We performed structural char-
acterizations of the products using Fourier transform infrared (FTIR), 
solid-state 13C nuclear magnetic resonance (NMR) and matrix-assisted 
laser desorption/ionization time-of-flight mass spectroscopy (MALDI-
TOF-MS) measurements. The FTIR spectra of PNTD and PATD display 
peaks corresponding to the out-of-plane (opla) sp2 C–H vibration 
mode, which contrast with the product obtained from thermal pro-
cessing the bulk monomers under the same conditions (Supplementary  
Figs. 2 and 9), suggesting inhibition of the cross-linking reaction in 

of the host frameworks, affording well-defined nanomaterials with 
accurately controlled structures.

Here, we report the synthesis of polyacene by using a methodol-
ogy, distinct from conventional methods, grounded on organic and/or 
surface chemistry. The proposed strategy involves two steps: controlled 
synthesis of precursor polymers within an MOF and subsequent conver-
sion into polyacene (Fig. 1). The spatial constraints of the MOF allowed for 
the highly regulated polycoupling reaction of aromatic monomers within 
the one-dimensional (1-D) nanochannels, providing linearly extended 
polymeric precursors. Subsequently, the dehydro-aromatization reac-
tion of the precursors provided the bulk quantity of polyacene without 
any peripheries, which was inaccessible using conventional methods.

Results and discussion
Hydroacenes, the partially saturated acenes, can be used as precursors 
of acenes via dehydro-aromatization33. Therefore, we envisioned that 
polymeric hydroacenes could serve as a precursor for the generation 
of polyacene. For this purpose, 2,6-bis(bromomethyl)naphthalene 
(BBMN) and 2,6-bis(bromomethyl)anthracene (BBMA) could be 
used as monomers if the selective coupling reaction would proceed 
at the 3- and 7-position. However, targeted precursor polymers were 
not obtained in the bulk reaction owing to the higher reactivity at  
zigzag positions than at the 3- and 7-position (Fig. 1 and Supplementary  
Fig. 1). Thermal treatment of the neat BBMN resulted in the formation 
of branched and graphitic structures (Supplementary Fig. 2).

To initiate the site-selective polycoupling reaction, an MOF with 
1-D nanochannels was used as a host in which the monomers could 
be aligned along the channel direction. We used [ZrO(L)]n (where L 
is the dicarboxylate ligand), with 1-D nanochannels along the c-axis, 
as the host because its pore size can be tuned at the molecular level 
by changing the dicarboxylate ligand34. Additionally, [ZrO(L)]n has 
high thermal stability because of the strong coordination bond and 
high coordination number of the zirconium nodes. On the basis of the 
molecular dimensions of BBMN (4.9 × 8.5 Å2) and BBMA (4.9 × 11.2 Å2), 
[ZrO(4,4-biphenyldicarboxylate)]n (1; pore size = 6.9 × 6.9 Å2) was used 
as a host for the selective propagation of linear polymer chains (Sup-
plementary Fig. 3a). Molecular dynamics (MD) simulations revealed 
that the accommodated monomers were densely assembled in an 
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Fig. 1 | Schematic of polyacene synthesis using an MOF. An MOF with 1-D 
nanochannels is used as a reaction template, in which monomers can be aligned 
along the channel direction. Selective coupling reaction of the monomers at the 

3- and 7-position leads to the formation of precursor polymers. The subsequent 
dehydro-aromatization reaction of the precursor polymers affords polyacene in 
the bulk scale.
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the MOF channels. Notably, the 13C NMR spectra represent the char-
acteristic signals of the polymeric hydroacenes (Fig. 2a). Formation of 
the polymers resulted in a complete loss of the bromomethyl group; 
concomitantly, the appearance of resonance ascribable to the carbon 
of the methylene group was observed. Additionally, a cluster of peaks, 
assignable to aromatic carbons35, was observed around 120–140 ppm. 
In the PNTD spectrum, the peak intensity for the aromatic carbons at 
the zigzag positions was higher than that of the BBMN heated without 
the MOF, supporting the progress of site-selective linear polymerization 
within the 1-D channels of 1 (Supplementary Fig. 10). The peak at 20 ppm 
was attributed to the methyl terminus of the polymers via the debro-
mination reaction36. The absence of other peaks indicates that the pre-
cursor polymers did not undergo any undesired side reactions, such as 
oxidation and dimerization, during their isolation process. The forma-
tion of polymeric compounds was corroborated by the MALDI-TOF-MS 
spectra, which showed a periodic pattern of signals in agreement with 
the molecular mass of the repeating unit (Fig. 2b and Supplementary 
Fig. 11). Remarkably, the precursor polymers consisted of up to several 
dozens of linearly fused rings, demonstrating the generation of highly 
extended polymeric hydroacenes mediated by the MOF nanochannels.

The precursor polymers were transformed into polyacene with 
numerous benzene rings by heating at 300 °C under air atmosphere. 
The colour of the samples drastically changed from ochre to dark brown 
during the heating treatment, suggesting the formation of polyacene 
with an extended conjugated backbone. In contrast, the transformation 

reaction did not proceed at all under vacuum conditions, demonstrat-
ing that oxygen is essential for the dehydro-aromatization reaction 
(Supplementary Fig. 12). The obtained polyacene was insoluble in 
all solvents due to the strong interchain π–π interaction, which may 
impede microscopic structural analysis; however, the bulk quantity of 
polyacene meant a wide range of techniques could be used to confirm 
the conversion of the precursors to polyacene. For instance, solid-
state 13C NMR spectroscopy of polyacene did not exhibit the signals 
for terminal methyl groups of the precursor polymers, presumably 
because of thermally induced elimination (Fig. 2a). Most strikingly, 
the methylene resonance peak completely disappeared. The presence 
of only a broad peak in the aromatic region confirms the formation of 
polyacene via quantitative dehydro-aromatization reaction7,37. This is 
also confirmed by the presence of characteristic polyacene peaks in 
FTIR spectroscopy measurements. The opla aromatic C–H vibration 
modes are classified as SOLO, DUO, TRIO and QUATRO, in reference 
to the number of adjacent C–H groups38. Only the SOLO and QUATRO 
mode were detected at 900 and 736 cm−1, respectively, as was the case 
with the unsubstituted acene series (Fig. 3a)39,40. The disappearance of 
the DUO-mode band at approximately 800 cm−1 suggests the removal 
of the terminal methyl groups in the precursor polymers during the 
heating process38,39,41, which is consistent with NMR analysis (Fig. 2a).

We attempted to analyse the polyacene chain length using MALDI-
TOF-MS measurements; however, no mass peak corresponding to poly-
acene was detectable, probably because of its high molecular weight 
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Fig. 2 | Synthesis of precursors and polyacene using an MOF. a, Solid-state 13C 
NMR spectra of BBMN, BBMA, PNTD, PATD and polyacene. The coloured circles 
indicate the signals assigned to sp3carbons of the monomers and precursor 

polymers. The asterisk (*) corresponds to spinning side bands. b, MALDI-TOF-
MS (linear mode) spectra of PNTD (red) and PATD (blue). The orange arrows 
represent the repeating mass interval of the precursor polymers.
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and strong intermolecular interactions which reduced the detection 
efficiency of polyacene. Therefore, because vibrational spectroscopy 
is a powerful method for quantitative structural analysis, we analysed  
polyacene length using IR42,43. The peaks corresponding to the opla sp2 C–H  
vibration modes (SOLO and QUATRO) of the previously reported acene 
series were analysed and we found a correlation between those peaks 
and the number of the benzene rings, demonstrating that the IR analy-
sis is capable of evaluating polyacene length (Supplementary Fig. 13)39.  
Therefore, several acene molecules with defined structures were 
synthesized and simulated for IR analysis (Fig. 3 and Supplementary  
Fig. 14), revealing a linear correlation between the relative peak area 
of SOLO to QUATRO modes and the benzene ring number. According 
to the line of best fit, the mean numbers (±S.D.) of benzene rings in 
polyacene from PNTD and PATD were estimated to be 17.8 ± 3.3 and 
18.6 ± 3.5, respectively (Fig. 3b). Additionally, the absorption spectra 

of polyacene corroborated the presence of acenes with numerous 
fused benzene rings. The S0 to S1 transition band of acenes (p band) 
shifts bathochromically with increasing size of the acene system44,45. 
The polyacene exhibited substantial absorption bands in the near-IR 
region (Fig. 3c). The bandgaps of polyacene from PNTD and PATD 
were estimated to be 1.30 and 1.28 eV, respectively, on the basis of the 
absorbance onsets, which were notably small enough to be comparable 
with the theoretical limit value (1.23 eV) for acenes with infinite chain 
length44. Also, given that the precursor polymers consisted of up to 
several dozen rings (Fig. 2b and Supplementary Fig. 11), these results 
indicate that, to our knowledge, the polyacene obtained in this study 
is the longest among the acene series reported so far.

The unprecedented length of the generated polyacene incentiv-
ized our efforts to unveil its physicochemical properties. The study 
on the structural stability of polyacene produced remarkable results. 
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It is well known that longer acenes are more susceptible to oxidation 
and dimerization reactions because of their inherent singlet biradical 
character46,47. However, the 13C NMR spectra of polyacene did not show 
the peaks for sp3-bridgehead carbons37 and carbonyl groups generated 
by these reactions (Fig. 2a). Therefore, we concluded that such unfa-
vourable reactions did not take place in the bulk polyacene; therefore, 
we evaluated the biradical character of polyacene using electron spin 
resonance (ESR) and superconducting quantum interfering device 
(SQUID). In the ESR spectrum of polyacene, we observed a signal with 
a g value of 2.003, ascribable to a carbon-centred radical (Fig. 4a and 
Supplementary Fig. 15a)48. SQUID polyacene data revealed a fitting 
component with a steep decrease in the magnetic susceptibility upon 
cooling from 70 to 20 K, in accordance with the Bleaney–Bowers equa-
tion (Supplementary Fig. 15b)49. This magnetic behaviour is typical for 
open-shell singlet biradical molecules50; therefore, these results sug-
gested that polyacene did have a biradical nature, which is in agreement 
with theoretical calculations51–53. This is also supported by the NMR 
polyacene analysis: we detected NMR signals that were broader than 
those of the precursors which were ascribed to a thermally populated 
paramagnetic triplet biradical (Fig. 2a)48.

To identify the mechanisms underlying the unexpectedly high 
stability of polyacene, the biradical species were quantitatively ana-
lysed by ESR. The spin concentration of polyacene was calculated to be 
approximately 1 × 1018 spins g−1 (Fig. 4a). Notably, this value is several 
orders of magnitude smaller than that predicted from the length of 
polyacene54. A similar reduction in radical nature has been reported for 
several π-conjugated radical molecules that form π-dimers in the solid 
state. The intermolecular antiferromagnetic interactions result in these 
molecules being undetectable via ESR55. The insolubility of polyacene 
in all solvents implied strong interchain interactions; therefore, the 
aggregation of polyacene was studied using MD simulations, and the 
π-stacked structure was energetically most stable (Supplementary 
Fig. 16a). The aggregation structure was also revealed by XRPD of the 
polyacene sample, showing a peak corresponding to π–π stacking (Sup-
plementary Fig. 16b). The observed broad diffraction peak suggested 
the presence of the stacked structures with non-uniform interchain 
distance, as shown in the MD structure of polyacene. Therefore, it is 
probable that interchain antiferromagnetic coupling occurs when in 
close proximity, giving rise to the decrease in the inherent biradical 
character of polyacene56,57.

We evaluated the composition of polyacene using X-ray pho-
toelectron spectroscopy by initially focusing on the surface of the  
polyacene particles. The C1s core level region displays peaks corre-
sponding to the oxidized carbon (Supplementary Fig. 17). The sur-
face of the polyacene particles was etched using argon plasma to 
examine the inner composition, which led to a drastic decrease in the 
oxidized carbon peaks. We observed a small NMR peak, assignable to 
the oxidized carbons (Supplementary Fig. 18), when polyacene was 
left in air for a long period (>30 days). These results suggest that the 
oxidation reaction took place only near the surface of the polyacene 
particles owing to their biradical character. The high stability of the 
bulk polyacene was also confirmed by TG analysis, which showed no 
weight loss up to 350 °C (Supplementary Fig. 19a). The FTIR spectra of 
polyacene before and after heating up to 350 °C displayed no obvious 
changes, and the opla sp2 C–H vibration modes were clearly observ-
able, indicating its high thermal stability (Supplementary Fig. 19b). 
Again, this behaviour was in sharp contrast to that of acenes in solu-
tion, which readily decompose via oxidation and/or dimerization reac-
tions. Therefore, the unexpectedly high stability of polyacene in the 
solid state can be attributed to the chain aggregation that decreased 
its biradical character, limited oxygen access to the polymer chains 
and restricted the chain motion required for undesirable oxidation 
and dimerization reactions7,11,37,39,58,59.

Conclusions
Unsubstituted acenes have thus far been fabricated on surfaces 
under ultrahigh vacuum conditions because of their unstable zigzag 
edges15,60, presenting a barrier to their scalability. Here, we used an MOF 
to demonstrate the bulk-scale synthesis of polyacenes with exceptional 
length. The physicochemical properties of the acene series depend-
ing on benzene ring number led to the development of theoretical 
arguments45,61,62. Our findings represent an important step toward not 
only unveiling the unique topological properties of the acene series63,64 
but also its future applications in various areas, including molecular 
electronics, optoelectronics and spintronics. For example, polyacene, 
being a mixture of polymeric chains with different lengths, is capable of 
absorbing light over a wide wavelength, ranging from visible to near IR 
(Fig. 3c). Along with its remarkably high stability, this light-absorbing 
feature would be beneficial for applications in photoenergy conver-
sion systems.
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Methods
Synthesis of precursor polymers in 1
The general procedure for synthesis was as follows: Degassed 1 was 
prepared by heating it at 160 °C for 12 h in a vacuum. BBMN (298 mg) 
and degassed 1 (1,000 mg) were mixed in a round-bottom flask (20 ml) 
and heated at 150 °C for 1 h under reduced pressure, leading to vapour 
adsorption of BBMN throughout the internal and external surface of 1. 
The externally absorbed monomer was selectively removed by heating 
at 150 °C for 12 h under vacuum, affording a composite of 1 including 
BBMN (1⊃BBMN, 1,237 mg). The amount of BBMN adsorbed in the com-
posite was calculated to be 18.7%, as determined by TG measurements. 
1⊃BBMN was then heated at 250 °C in a sealed reaction container for 
24 h to perform polymerization, resulting in 1 and PNTD nanocom-
posite (1⊃PNTD, 1,124 mg). PATD was synthesized identically within 
the nanochannels from BBMA (loading amount of BBMA was 33.5%).

Isolation of precursor polymers from 1
1⊃PNTD (1,680 mg) was stirred in a 1 M aqueous solution of NaOH 
(120 ml) for 24 h, followed by washing three times with a 5% v/v aque-
ous solution of HF (20 ml) for complete decomposition of the host 
framework. The collected PNTD was washed with CHCl3 and then dried 
under reduced pressure to obtain PNTD (123 mg, 70% yield based on 
the loading amount of BBMN in 1⊃BBMN). PATD was isolated from 1 in 
a similar manner (39% yield).

Conversion from PNTD and PATD to polyacene
The precursor polymers, PNTD (48 mg) and PATD (24 mg), were heated 
at 300 °C under air for 24 h to obtain polyacene of 38 and 18 mg, 
respectively.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the 
article and its Supplementary Information. Source data are provided 
with this paper.
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