Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The development of human causal learning and reasoning

Abstract

Causal understanding is a defining characteristic of human cognition. Like many animals, human children learn to control their bodily movements and act effectively in the environment. Like a smaller subset of animals, children intervene: they learn to change the environment in targeted ways. Unlike other animals, children grow into adults with the causal reasoning skills to develop abstract theories, invent sophisticated technologies and imagine alternate pasts, distant futures and fictional worlds. In this Review, we explore the development of human-unique causal learning and reasoning from evolutionary and ontogenetic perspectives. We frame our discussion using an ‘interventionist’ approach. First, we situate causal understanding in relation to cognitive abilities shared with non-human animals. We argue that human causal understanding is distinguished by its depersonalized (objective) and decontextualized (general) representations. Using this framework, we next review empirical findings on early human causal learning and reasoning and consider the naturalistic contexts that support its development. Then we explore connections to related abilities. We conclude with suggestions for ongoing collaboration between developmental, cross-cultural, computational, neural and evolutionary approaches to causal understanding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Causal reasoning and antecedent abilities in human and non-human animals.
Fig. 2: The blicket detector paradigm.
Fig. 3: Naturalistic contexts that support the development of human causal reasoning.
Fig. 4: Reasoning about possibilities across contexts.

Similar content being viewed by others

References

  1. Prüfer, K. et al. The bonobo genome compared with the chimpanzee and human genomes. Nature 486, 527–531 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gopnik, A. & Wellman, H. M. Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory. Psychol. Bull. 138, 1085–1108 (2012). This paper provides an introduction to the interventionist approach formalized in terms of causal Bayes nets.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gopnik, A. & Schulz, L. (eds.) Causal Learning: Psychology, Philosophy and Computation (Oxford Univ. Press, 2007). This edited volume provides an interdisciplinary overview of the interventionist approach.

  4. Pearl, J. Causality (Cambridge Univ. Press, 2009).

  5. Penn, D. C. & Povinelli, D. J. Causal cognition in human and nonhuman animals: a comparative, critical review. Annu. Rev. Psychol. 58, 97–118 (2007).

    Article  PubMed  Google Scholar 

  6. Schölkopf, B. et al. Toward causal representation learning. Proc. IEEE 109, 612–634 (2021).

    Article  Google Scholar 

  7. Spirtes, P., Glymour, C. & Scheines, R. in Causation, Prediction, and Search Lecture Notes in Statistics Vol 81, 103–162 (Springer, 1993).

  8. Gopnik, A. et al. A theory of causal learning in children: causal maps and Bayes nets. Psychol. Rev. 111, 3–32 (2004). This seminal paper reviews the causal Bayes nets approach to causal reasoning and suggests that children construct mental models that help them understand and predict causal relations.

    Article  PubMed  Google Scholar 

  9. Pearl, J. & Mackenzie, D. The Book of Why: The New Science of Cause and Effect (Basic Books, 2018). This book provides a high-level overview of approaches to causal inference from theoretical computer science for a general audience.

  10. Lombrozo, T. & Vasil, N. in Oxford Handbook of Causal Reasoning (ed. Waldmann, M.) 415–432 (Oxford Univ. Press, 2017).

  11. Woodward, J. Making Things Happen: A Theory of Causal Explanation (Oxford Univ. Press, 2005). This book outlines the ‘interventionist’ approach to causation and causal explanation in philosophy.

  12. Shanks, D. R. & Dickinson, A. Associative accounts of causality judgment. Psychol. Learn. Motiv. 21, 229–261 (Elsevier, 1988).

  13. Carey, S. The Origin of Concepts (Oxford Univ. Press, 2009).

  14. Michotte, A. The Perception of Causality (Routledge, 2017).

  15. Leslie, A. M. The perception of causality in infants. Perception 11, 173–186 (1982). This canonical study shows that 4.5-month-old and 8-month-old infants are sensitive to spatiotemporal event configurations and contingencies that adults also construe as causal.

    Article  PubMed  Google Scholar 

  16. Leslie, A. M. Spatiotemporal continuity and the perception of causality in infants. Perception 13, 287–305 (1984).

    Article  PubMed  Google Scholar 

  17. Danks, D. Unifying the Mind: Cognitive Representations as Graphical Models (MIT Press, 2014).

  18. Godfrey‐Smith, P. in The Oxford Handbook of Causation (eds Beebee, H., Hitchcock, C. & Menzies, P.) 326–338 (Oxford Academic, 2009).

  19. Gweon, H. & Schulz, L. 16-month-olds rationally infer causes of failed actions. Science 332, 1524–1524 (2011).

    Article  PubMed  Google Scholar 

  20. Woodward, J. Causation with a Human Face: Normative Theory and Descriptive Psychology (Oxford Univ. Press, 2021). This book integrates philosophical and psychological literatures on causal reasoning to provide both normative and descriptive accounts of causal reasoning.

  21. Rozenblit, L. & Keil, F. The misunderstood limits of folk science: an illusion of explanatory depth. Cogn. Sci. 26, 521–562 (2002).

  22. Ismael, J. How Physics Makes us Free (Oxford Univ. Press, 2016).

  23. Woodward, J. in Causal Learning: Psychology, Philosophy, and Computation (eds Gopnik, A. & Schulz, L.) Oxford Series in Cognitive Development 19–36 (Oxford Academic, 2007).

  24. Godfrey-Smith, P. Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness (Farrar, Straus and Giroux, 2016).

  25. Körding, K. P. et al. Causal inference in multisensory perception. PLoS One 2, e943 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wei, K. & Körding, K. P. in Sensory Cue Integration (eds Trommershäuser, J., Kording, K. & Landy, M. S.) Computational Neuroscience Series 30–45 (Oxford Academic, 2011).

  27. Haith, A. M. & Krakauer, J. W. in Progress in Motor Control: Neural, Computational and Dynamic Approaches (eds Richardson, M. J., Riley, M. A. & Shockley, K.) 1–21 (Springer, 2013).

  28. Krakauer, J. W. & Mazzoni, P. Human sensorimotor learning: adaptation, skill, and beyond. Curr. Opin. Neurobiol. 21, 636–644 (2011).

    Article  PubMed  Google Scholar 

  29. Adolph, K. E. An ecological approach to learning in (not and) development. Hum. Dev. 63, 180–201 (2020).

    Article  PubMed  Google Scholar 

  30. Adolph, K. E., Hoch, J. E. & Ossmy, O. in Perception as Information Detection (eds Wagman, J. B. & Blau, J. J. C.) 222–236 (Routledge, 2019).

  31. Riesen, A. H. The development of visual perception in man and chimpanzee. Science 106, 107–108 (1947).

    Article  PubMed  Google Scholar 

  32. Spelke, E. S. What Babies Know: Core Knowledge and Composition Vol. 1 (Oxford Univ. Press, 2022).

  33. Pearce, J. M. & Bouton, M. E. Theories of associative learning in animals. Annu. Rev. Psychol. 52, 111–139 (2001).

    Article  PubMed  Google Scholar 

  34. Wasserman, E. A. & Miller, R. R. What’s elementary about associative learning? Annu. Rev. Psychol. 48, 573–607 (1997).

    Article  PubMed  Google Scholar 

  35. Sutton, R. S. & Barto, A. G. Reinforcement learning: an introduction. Robotica 17, 229–235 (1999).

    Google Scholar 

  36. Gershman, S. J., Markman, A. B. & Otto, A. R. Retrospective revaluation in sequential decision making: a tale of two systems. J. Exp. Psychol. Gen. 143, 182–194 (2014).

    Article  PubMed  Google Scholar 

  37. Gershman, S. J. Reinforcement learning and causal models. In Oxford Handbook of Causal Reasoning (ed. Waldmann, M.) 295 (Oxford Univ. Press, 2017).

  38. Taylor, A. H. et al. Of babies and birds: complex tool behaviours are not sufficient for the evolution of the ability to create a novel causal intervention. Proc. R. Soc. B 281, 20140837 (2014). This study shows that complex tool use does not entail the ability to understand and create novel causal interventions: crows do not learn causal interventions from observing the effects of their own accidental behaviours.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Povinelli, D. J. & Penn, D. C. in Tool Use and Causal Cognition (eds McCormack, T., Hoerl, C. & Butterfill, S.) 69–88 (Oxford Univ. Press, 2011).

  40. Povinelli, D. J. & Henley, T. More rope tricks reveal why more task variants will never lead to strong inferences about higher-order causal reasoning in chimpanzees. Anim. Behav. Cogn. 7, 392–418 (2020).

    Article  Google Scholar 

  41. Tomasello, M. & Call, J. Primate Cognition (Oxford Univ. Press, 1997).

  42. Visalberghi, E. & Tomasello, M. Primate causal understanding in the physical and psychological domains. Behav. Process. 42, 189–203 (1998).

    Article  Google Scholar 

  43. Völter, C. J., Sentís, I. & Call, J. Great apes and children infer causal relations from patterns of variation and covariation. Cognition 155, 30–43 (2016).

    Article  PubMed  Google Scholar 

  44. Tennie, C., Call, J. & Tomasello, M. Untrained chimpanzees (Pan troglodytes schweinfurthii) fail to imitate novel actions. Plos One 7, e41548 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Whiten, A., Horner, V., Litchfield, C. A. & Marshall-Pescini, S. How do apes ape? Anim. Learn. Behav. 32, 36–52 (2004).

    Article  Google Scholar 

  46. Moore, R. Imitation and conventional communication. Biol. Phil. 28, 481–500 (2013).

    Article  Google Scholar 

  47. Meltzoff, A. N. & Marshall, P. J. Human infant imitation as a social survival circuit. Curr. Opin. Behav. Sci. 24, 130–136 (2018).

    Article  Google Scholar 

  48. Boesch, C. & Boesch, H. Optimisation of nut-cracking with natural hammers by wild chimpanzees. Behaviour 83, 265–286 (1983).

    Article  Google Scholar 

  49. Chappell, J. & Kacelnik, A. Tool selectivity in a non-primate, the New Caledonian crow (Corvus moneduloides). Anim. Cogn. 5, 71–78 (2002).

    Article  PubMed  Google Scholar 

  50. Weir, A. A., Chappell, J. & Kacelnik, A. Shaping of hooks in New Caledonian crows. Science 297, 981–981 (2002).

    Article  PubMed  Google Scholar 

  51. Wimpenny, J. H., Weir, A. A., Clayton, L., Rutz, C. & Kacelnik, A. Cognitive processes associated with sequential tool use in New Caledonian crows. PLoS One 4, e6471 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Manrique, H. M., Gross, A. N.-M. & Call, J. Great apes select tools on the basis of their rigidity. J. Exp. Psychol. Anim. Behav. Process. 36, 409–422 (2010).

    Article  PubMed  Google Scholar 

  53. Mulcahy, N. J., Call, J. & Dunbar, R. I. Gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus) encode relevant problem features in a tool-using task. J. Comp. Psychol. 119, 23–32 (2005).

    Article  PubMed  Google Scholar 

  54. Sanz, C., Call, J. & Morgan, D. Design complexity in termite-fishing tools of chimpanzees (Pan troglodytes). Biol. Lett. 5, 293–296 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Visalberghi, E. et al. Selection of effective stone tools by wild bearded capuchin monkeys. Curr. Biol. 19, 213–217 (2009).

    Article  PubMed  Google Scholar 

  56. Seed, A., Hanus, D. & Call, J. in Tool Use and Causal Cognition (eds McCormack, T., Hoerl, C. & Butterfill, S.) 89–110 (Oxford Univ. Press, 2011).

  57. Völter, C. J. & Call, J. in APA Handbook of Comparative Psychology: Perception, Learning, and Cognition (eds Call, J. et al.) 643–671 (American Psychological Association, 2017). This chapter provides a comprehensive overview of causal and inferential reasoning in non-human animals, highlighting (1) the difference between prediction versus causal knowledge and (2) the organization of non-human animals’ knowledge (stimulus- and/or context-specific versus general and structured).

  58. Völter, C. J., Lambert, M. L. & Huber, L. Do nonhumans seek explanations? Anim. Behav. Cogn. 7, 445–451 (2020).

    Article  Google Scholar 

  59. Call, J. Inferences about the location of food in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus). J. Comp. Psychol. 118, 232–241 (2004).

    Article  PubMed  Google Scholar 

  60. Call, J. Apes know that hidden objects can affect the orientation of other objects. Cognition 105, 1–25 (2007).

    Article  PubMed  Google Scholar 

  61. Hanus, D. & Call, J. Chimpanzees infer the location of a reward on the basis of the effect of its weight. Curr. Biol. 18, R370–R372 (2008).

    Article  PubMed  Google Scholar 

  62. Hanus, D. & Call, J. Chimpanzee problem-solving: contrasting the use of causal and arbitrary cues. Anim. Cogn. 14, 871–878 (2011).

    Article  PubMed  Google Scholar 

  63. Petit, O. et al. Inferences about food location in three cercopithecine species: an insight into the socioecological cognition of primates. Anim. Cogn. 18, 821–830 (2015).

    Article  PubMed  Google Scholar 

  64. Heimbauer, L. A., Antworth, R. L. & Owren, M. J. Capuchin monkeys (Cebus apella) use positive, but not negative, auditory cues to infer food location. Anim. Cogn. 15, 45–55 (2012).

    Article  PubMed  Google Scholar 

  65. Schloegl, C., Schmidt, J., Boeckle, M., Weiß, B. M. & Kotrschal, K. Grey parrots use inferential reasoning based on acoustic cues alone. Proc. R. Soc. B 279, 4135–4142 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schloegl, C., Waldmann, M. R. & Fischer, J. Understanding of and reasoning about object–object relationships in long-tailed macaques? Anim. Cogn. 16, 493–507 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Schmitt, V., Pankau, B. & Fischer, J. Old world monkeys compare to apes in the primate cognition test battery. PLoS One 7, e32024 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Völter, C. J. & Call, J. Great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo abelii) follow visual trails to locate hidden food. J. Comp. Psychol. 128, 199–208 (2014).

    Article  PubMed  Google Scholar 

  69. Blaisdell, A. P., Sawa, K., Leising, K. J. & Waldmann, M. R. Causal reasoning in rats. Science 311, 1020–1022 (2006).

    Article  PubMed  Google Scholar 

  70. Leising, K. J., Wong, J., Waldmann, M. R. & Blaisdell, A. P. The special status of actions in causal reasoning in rats. J. Exp. Psychol. Gen. 137, 514–527 (2008).

    Article  PubMed  Google Scholar 

  71. Flavell, J. H. The Developmental Psychology Of Jean Piaget (Van Nostrand, 1963).

  72. Piaget, J. The Construction of Reality in the Child (Routledge, 2013).

  73. Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature 466, 29–29 (2010).

    Article  PubMed  Google Scholar 

  74. Ayzenberg, V. & Behrmann, M. Development of visual object recognition. Nat. Rev. Psychol. 3, 73–90 (2023).

  75. Bronson, G. W. Changes in infants’ visual scanning across the 2- to 14-week age period. J. Exp. Child. Psychol. 49, 101–125 (1990).

    Article  PubMed  Google Scholar 

  76. Aslin, R. Ν. in Eye Movements. Cognition and Visual Perception (eds Fisher, D. F., Monty, R. A. & Senders, J. W.) 31–51 (Routledge, 2017).

  77. Miranda, S. B. Visual abilities and pattern preferences of premature infants and full-term neonates. J. Exp. Child. Psychol. 10, 189–205 (1970).

    Article  PubMed  Google Scholar 

  78. Haith, M. M., Hazan, C. & Goodman, G. S. Expectation and anticipation of dynamic visual events by 3.5-month-old babies. Child Dev. 59, 467–479 (1988).

    Article  PubMed  Google Scholar 

  79. Harris, P. & MacFarlane, A. The growth of the effective visual field from birth to seven weeks. J. Exp. Child. Psychol. 18, 340–348 (1974).

    Article  PubMed  Google Scholar 

  80. Cohen, L. B. & Amsel, G. Precursors to infants’ perception of the causality of a simple event. Infant. Behav. Dev. 21, 713–731 (1998).

    Article  Google Scholar 

  81. Leslie, A. M. & Keeble, S. Do six-month-old infants perceive causality? Cognition 25, 265–288 (1987).

    Article  PubMed  Google Scholar 

  82. Oakes, L. M. & Cohen, L. B. Infant perception of a causal event. Cogn. Dev. 5, 193–207 (1990). This canonical study shows that 10-month-olds, but not 6-month-olds, discriminate between causal versus non-causal events.

    Article  Google Scholar 

  83. Kotovsky, L. & Baillargeon, R. Calibration-based reasoning about collision events in 11-month-old infants. Cognition 51, 107–129 (1994).

    Article  PubMed  Google Scholar 

  84. Kominsky, J. F. et al. Categories and constraints in causal perception. Psychol. Sci. 28, 1649–1662 (2017).

    Article  PubMed  Google Scholar 

  85. Spelke, E. S., Breinlinger, K., Macomber, J. & Jacobson, K. Origins of knowledge. Psychol. Rev. 99, 605 (1992).

    Article  PubMed  Google Scholar 

  86. Baillargeon, R. in Language, Brain, and Cognitive Development: Essays in Honor of Jacques Mehler (ed. Dupoux, E.) 341–361 (MIT Press, 2001).

  87. Hespos, S. J. & Baillargeon, R. Infants’ knowledge about occlusion and containment events: a surprising discrepancy. Psychol. Sci. 12, 141–147 (2001).

    Article  PubMed  Google Scholar 

  88. Spelke, E. S. Principles of object perception. Cogn. Sci. 14, 29–56 (1990).

    Article  Google Scholar 

  89. Sobel, D. M. & Kirkham, N. Z. Blickets and babies: the development of causal reasoning in toddlers and infants. Dev. Psychol. 42, 1103–1115 (2006).

    Article  PubMed  Google Scholar 

  90. Sobel, D. M. & Kirkham, N. Z. Bayes nets and babies: infants’ developing statistical reasoning abilities and their representation of causal knowledge. Dev. Sci. 10, 298–306 (2007).

    Article  PubMed  Google Scholar 

  91. Bell, S. M. & Ainsworth, M. D. S. Infant crying and maternal responsiveness. Child Dev. 43, 1171–1190 (1972).

  92. Jordan, G. J., Arbeau, K., McFarland, D., Ireland, K. & Richardson, A. Elimination communication contributes to a reduction in unexplained infant crying. Med. Hypotheses 142, 109811 (2020).

    Article  PubMed  Google Scholar 

  93. Nakayama, H. Emergence of amae crying in early infancy as a possible social communication tool between infants and mothers. Infant. Behav. Dev. 40, 122–130 (2015).

    Article  PubMed  Google Scholar 

  94. Meltzoff, A. N. & Moore, M. K. in The Body and the Self (eds Bermúdez, J. L., Marcel, A. J. & Eilan, N.) 3–69 (MIT Press, 1995).

  95. Rovee, C. K. & Rovee, D. T. Conjugate reinforcement of infant exploratory behavior. J. Exp. Child. Psychol. 8, 33–39 (1969).

    Article  PubMed  Google Scholar 

  96. Hillman, D. & Bruner, J. S. Infant sucking in response to variations in schedules of feeding reinforcement. J. Exp. Child. Psychol. 13, 240–247 (1972).

    Article  PubMed  Google Scholar 

  97. DeCasper, A. J. & Spence, M. J. Prenatal maternal speech influences newborns’ perception of speech sounds. Infant. Behav. Dev. 9, 133–150 (1986).

    Article  Google Scholar 

  98. Watson, J. S. & Ramey, C. T. Reactions to response-contingent stimulation in early infancy. Merrill-Palmer Q. Behav. Dev. 18, 219–227 (1972).

    Google Scholar 

  99. Rovee-Collier, C. in Handbook of Infant Development 2nd edn (ed. Osofsky, J. D.) 98–148 (John Wiley & Sons, 1987).

  100. Twitchell, T. E. The automatic grasping responses of infants. Neuropsychologia 3, 247–259 (1965).

    Article  Google Scholar 

  101. Wallace, P. S. & Whishaw, I. Q. Independent digit movements and precision grip patterns in 1–5-month-old human infants: hand-babbling, including vacuous then self-directed hand and digit movements, precedes targeted reaching. Neuropsychologia 41, 1912–1918 (2003).

    Article  PubMed  Google Scholar 

  102. Von Hofsten, C. Mastering reaching and grasping: the development of manual skills in infancy. Adv. Psychol. 61, 223–258 (1989).

  103. Witherington, D. C. The development of prospective grasping control between 5 and 7 months: a longitudinal study. Infancy 7, 143–161 (2005).

    Article  PubMed  Google Scholar 

  104. Needham, A., Barrett, T. & Peterman, K. A pick-me-up for infants’ exploratory skills: early simulated experiences reaching for objects using ‘sticky mittens’ enhances young infants’ object exploration skills. Infant. Behav. Dev. 25, 279–295 (2002).

    Article  Google Scholar 

  105. van den Berg, L. & Gredebäck, G. The sticky mittens paradigm: a critical appraisal of current results and explanations. Dev. Sci. 24, e13036 (2021).

    Article  PubMed  Google Scholar 

  106. Keen, R. The development of problem solving in young children: a critical cognitive skill. Annu. Rev. Psychol. 62, 1–21 (2011). This paper provides an overview of the developmental trajectory of ‘problem-solving’skills in young children, integrating findings from perception and motor development studies with cognitive problem-solving studies.

    Article  PubMed  Google Scholar 

  107. Claxton, L. J., McCarty, M. E. & Keen, R. Self-directed action affects planning in tool-use tasks with toddlers. Infant. Behav. Dev. 32, 230–233 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  108. McCarty, M. E., Clifton, R. K. & Collard, R. R. The beginnings of tool use by infants and toddlers. Infancy 2, 233–256 (2001).

    Article  Google Scholar 

  109. Gopnik, A. & Meltzoff, A. N. Semantic and cognitive development in 15- to 21-month-old children. J. Child. Lang. 11, 495–513 (1984).

    Article  PubMed  Google Scholar 

  110. Gopnik, A. & Meltzoff, A. N. in The Development of Word Meaning: Progress in Cognitive Development Research (eds Kuczaj, S. A. & Barrett, M. D.) 199–223 (Springer, 1986).

  111. Gopnik, A. & Meltzoff, A. N. Words, Thoughts, and Theories (Mit Press, 1997).

  112. Tomasello, M. in Early Social Cognition: Understanding Others in the First Months of Life (ed. Rochat, P.) 301–314 (Lawrence Erlbaum Associates, 1999).

  113. Tomasello, M. & Farrar, M. J. Joint attention and early language. Child Dev. 57, 1454–1463 (1986).

  114. Gopnik, A. Words and plans: early language and the development of intelligent action. J. Child. Lang. 9, 303–318 (1982). This paper proposes that language acquisition tracks with conceptual developments in infants’ and toddlers’ abilities in goal-directed action and planning.

    Article  PubMed  Google Scholar 

  115. Meltzoff, A. N. Infant imitation and memory: nine-month-olds in immediate and deferred tests. Child. Dev. 59, 217–225 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Meltzoff, A. N. Infant imitation after a 1-week delay: long-term memory for novel acts and multiple stimuli. Dev. Psychol. 24, 470–476 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gergely, G., Bekkering, H. & Király, I. Rational imitation in preverbal infants. Nature 415, 755–755 (2002).

    Article  PubMed  Google Scholar 

  118. Meltzoff, A. N., Waismeyer, A. & Gopnik, A. Learning about causes from people: observational causal learning in 24-month-old infants. Dev. Psychol. 48, 1215–1228 (2012). This study demonstrates that 2-year-old and 3-year-old children learn novel causal relations from observing other agents’ interventions (observational causal learning).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Waismeyer, A., Meltzoff, A. N. & Gopnik, A. Causal learning from probabilistic events in 24‐month‐olds: an action measure. Dev. Sci. 18, 175–182 (2015).

    Article  PubMed  Google Scholar 

  120. Stahl, A. E. & Feigenson, L. Observing the unexpected enhances infants’ learning and exploration. Science 348, 91–94 (2015). This study demonstrates that 11-month-old children pay special visual and exploratory attention to objects that appear to violate the laws of physics as the result of an agent’s intervention.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Perfors, A., Tenenbaum, J. B., Griffiths, T. L. & Xu, F. A tutorial introduction to Bayesian models of cognitive development. Cognition 120, 302–321 (2011).

    Article  PubMed  Google Scholar 

  122. Gopnik, A. & Bonawitz, E. Bayesian models of child development. Wiley Interdiscip. Rev. Cognit. Sci. 6, 75–86 (2015). This paper is a technical introduction and tutorial in the Bayesian framework.

    Article  Google Scholar 

  123. Gopnik, A., Sobel, D. M., Schulz, L. E. & Glymour, C. Causal learning mechanisms in very young children: two-, three-, and four-year-olds infer causal relations from patterns of variation and covariation. Dev. Psychol. 37, 620–629 (2001).

    Article  PubMed  Google Scholar 

  124. Schulz, L. E. & Bonawitz, E. B. Serious fun: preschoolers engage in more exploratory play when evidence is confounded. Dev. Psychol. 43, 1045–1050 (2007).

    Article  PubMed  Google Scholar 

  125. Gopnik, A. & Sobel, D. M. Detecting blickets: how young children use information about novel causal powers in categorization and induction. Child. Dev. 71, 1205–1222 (2000).

    Article  PubMed  Google Scholar 

  126. Schulz, L. E., Gopnik, A. & Glymour, C. Preschool children learn about causal structure from conditional interventions. Dev. Sci. 10, 322–332 (2007).

    Article  PubMed  Google Scholar 

  127. Walker, C. M., Gopnik, A. & Ganea, P. A. Learning to learn from stories: children’s developing sensitivity to the causal structure of fictional worlds. Child. Dev. 86, 310–318 (2015).

    Article  PubMed  Google Scholar 

  128. Schulz, L. E., Bonawitz, E. B. & Griffiths, T. L. Can being scared cause tummy aches? Naive theories, ambiguous evidence, and preschoolers’ causal inferences. Dev. Psychol. 43, 1124–1139 (2007).

    Article  PubMed  Google Scholar 

  129. Kushnir, T. & Gopnik, A. Young children infer causal strength from probabilities and interventions. Psychol. Sci. 16, 678–683 (2005).

    Article  PubMed  Google Scholar 

  130. Walker, C. M. & Gopnik, A. Toddlers infer higher-order relational principles in causal learning. Psychol. Sci. 25, 161–169 (2014). This paper shows that 18–30-month-old infants can learn relational causal rules and generalize them to novel stimuli.

    Article  PubMed  Google Scholar 

  131. Sobel, D. M., Yoachim, C. M., Gopnik, A., Meltzoff, A. N. & Blumenthal, E. J. The blicket within: preschoolers’ inferences about insides and causes. J. Cogn. Dev. 8, 159–182 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Schulz, L. E. & Sommerville, J. God does not play dice: causal determinism and preschoolers’ causal inferences. Child. Dev. 77, 427–442 (2006).

    Article  PubMed  Google Scholar 

  133. Schulz, L. E. & Gopnik, A. Causal learning across domains. Dev. Psychol. 40, 162–176 (2004).

    Article  PubMed  Google Scholar 

  134. Seiver, E., Gopnik, A. & Goodman, N. D. Did she jump because she was the big sister or because the trampoline was safe? Causal inference and the development of social attribution. Child. Dev. 84, 443–454 (2013).

    Article  PubMed  Google Scholar 

  135. Vasilyeva, N., Gopnik, A. & Lombrozo, T. The development of structural thinking about social categories. Dev. Psychol. 54, 1735–1744 (2018).

    Article  PubMed  Google Scholar 

  136. Kushnir, T., Xu, F. & Wellman, H. M. Young children use statistical sampling to infer the preferences of other people. Psychol. Sci. 21, 1134–1140 (2010).

    Article  PubMed  Google Scholar 

  137. Kushnir, T. & Gopnik, A. Conditional probability versus spatial contiguity in causal learning: preschoolers use new contingency evidence to overcome prior spatial assumptions. Dev. Psychol. 43, 186–196 (2007).

    Article  PubMed  Google Scholar 

  138. Kimura, K. & Gopnik, A. Rational higher‐order belief revision in young children. Child. Dev. 90, 91–97 (2019).

    Article  PubMed  Google Scholar 

  139. Goddu, M. K. & Gopnik, A. Learning what to change: young children use “difference-making” to identify causally relevant variables. Dev. Psychol. 56, 275–284 (2020).

    Article  PubMed  Google Scholar 

  140. Gopnik, A. et al. Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. Proc. Natl Acad. Sci. USA 114, 7892–7899 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lucas, C. G., Bridgers, S., Griffiths, T. L. & Gopnik, A. When children are better (or at least more open-minded) learners than adults: developmental differences in learning the forms of causal relationships. Cognition 131, 284–299 (2014). This paper shows that young children learn and generalize unusual causal relationships more readily than adults do.

    Article  PubMed  Google Scholar 

  142. Goddu, M. K., Lombrozo, T. & Gopnik, A. Transformations and transfer: preschool children understand abstract relations and reason analogically in a causal task. Child. Dev. 91, 1898–1915 (2020).

    Article  PubMed  Google Scholar 

  143. Magid, R. W., Sheskin, M. & Schulz, L. E. Imagination and the generation of new ideas. Cogn. Dev. 34, 99–110 (2015).

    Article  Google Scholar 

  144. Liquin, E. G. & Gopnik, A. Children are more exploratory and learn more than adults in an approach–avoid task. Cognition 218, 104940 (2022).

    Article  PubMed  Google Scholar 

  145. Erickson, J. E., Keil, F. C. & Lockhart, K. L. Sensing the coherence of biology in contrast to psychology: young children’s use of causal relations to distinguish two foundational domains. Child Dev. 81, 390–409 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Keil, F. C. Concepts, Kinds, and Cognitive Development (MIT Press, 1992).

  147. Carey, S. Conceptual Change in Childhood (MIT Press, 1987).

  148. Gelman, S. A. The Essential Child: Origins of Essentialism in Everyday Thought (Oxford Univ. Press, 2003).

  149. Ahl, R. E., DeAngelis, E. & Keil, F. C. “I know it’s complicated”: children detect relevant information about object complexity. J. Exp. Child. Psychol. 222, 105465 (2022).

    Article  PubMed  Google Scholar 

  150. Chuey, A. et al. No guts, no glory: underestimating the benefits of providing children with mechanistic details. npj Sci. Learn. 6, 30 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Keil, F. C. & Lockhart, K. L. Beyond cause: the development of clockwork cognition. Curr. Dir. Psychol. Sci. 30, 167–173 (2021).

    Article  Google Scholar 

  152. Chuey, A., Lockhart, K., Sheskin, M. & Keil, F. Children and adults selectively generalize mechanistic knowledge. Cognition 199, 104231 (2020).

    Article  PubMed  Google Scholar 

  153. Lockhart, K. L., Chuey, A., Kerr, S. & Keil, F. C. The privileged status of knowing mechanistic information: an early epistemic bias. Child Dev. 90, 1772–1788 (2019).

    Article  PubMed  Google Scholar 

  154. Kominsky, J. F., Zamm, A. P. & Keil, F. C. Knowing when help is needed: a developing sense of causal complexity. Cogn. Sci. 42, 491–523 (2018).

    Article  PubMed  Google Scholar 

  155. Mills, C. M. & Keil, F. C. Knowing the limits of one’s understanding: the development of an awareness of an illusion of explanatory depth. J. Exp. Child Psychol. 87, 1–32 (2004).

    Article  PubMed  Google Scholar 

  156. Goldwater, M. B. & Gentner, D. On the acquisition of abstract knowledge: structural alignment and explication in learning causal system categories. Cognition 137, 137–153 (2015).

    Article  PubMed  Google Scholar 

  157. Rottman, B. M., Gentner, D. & Goldwater, M. B. Causal systems categories: differences in novice and expert categorization of causal phenomena. Cogn. Sci. 36, 919–932 (2012).

    Article  PubMed  Google Scholar 

  158. Bonawitz, E. B. et al. Just do it? Investigating the gap between prediction and action in toddlers’ causal inferences. Cognition 115, 104–117 (2010). This study demonstrates that the ability to infer causal relations from observations of correlational information without an agent’s involvement or the use of causal language develops at around the age of four years.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317, 1360–1366 (2007).

    Article  PubMed  Google Scholar 

  160. Tomasello, M. Becoming Human: A Theory of Ontogeny (Harvard Univ. Press, 2019).

  161. Henrich, J. The Secret of our Success (Princeton Univ. Press, 2015).

  162. Hesslow, G. in Contemporary Science and Natural Explanation: Commonsense Conceptions of Causality (ed. Hilton, D. J.) 11–32 (New York Univ. Press, 1988).

  163. Woodward, J. The problem of variable choice. Synthese 193, 1047–1072 (2016).

    Article  Google Scholar 

  164. Khalid, S., Khalil, T. & Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In 2014 Science and Information Conf. 372–378 (IEEE, 1988).

  165. Bonawitz, E., Denison, S., Griffiths, T. L. & Gopnik, A. Probabilistic models, learning algorithms, and response variability: sampling in cognitive development. Trends Cogn. Sci. 18, 497–500 (2014).

    Article  PubMed  Google Scholar 

  166. Bonawitz, E., Denison, S., Gopnik, A. & Griffiths, T. L. Win–stay, lose–sample: a simple sequential algorithm for approximating Bayesian inference. Cogn. Psychol. 74, 35–65 (2014).

    Article  PubMed  Google Scholar 

  167. Denison, S., Bonawitz, E., Gopnik, A. & Griffiths, T. L. Rational variability in children’s causal inferences: the sampling hypothesis. Cognition 126, 285–300 (2013).

    Article  PubMed  Google Scholar 

  168. Samland, J., Josephs, M., Waldmann, M. R. & Rakoczy, H. The role of prescriptive norms and knowledge in children’s and adults’ causal selection. J. Exp. Psychol. Gen. 145, 125–130 (2016).

    Article  PubMed  Google Scholar 

  169. Samland, J. & Waldmann, M. R. How prescriptive norms influence causal inferences. Cognition 156, 164–176 (2016).

    Article  PubMed  Google Scholar 

  170. Phillips, J., Morris, A. & Cushman, F. How we know what not to think. Trends Cogn. Sci. 23, 1026–1040 (2019).

    Article  PubMed  Google Scholar 

  171. Gureckis, T. M. & Markant, D. B. Self-directed learning: a cognitive and computational perspective. Perspect. Psychol. Sci. 7, 464–481 (2012).

    Article  PubMed  Google Scholar 

  172. Saylor, M. & Ganea, P. Active Learning from Infancy to Childhood (Springer, 2018).

  173. Goddu, M. K. & Gopnik, A. in The Cambridge Handbook of Cognitive Development (eds Houdé, O. & Borst, G.) 299–317 (Cambridge Univ. Press, 2022).

  174. Gopnik, A. Scientific thinking in young children: theoretical advances, empirical research, and policy implications. Science 337, 1623–1627 (2012).

    Article  PubMed  Google Scholar 

  175. Weisberg, D. S. & Sobel, D. M. Constructing Science: Connecting Causal Reasoning to Scientific Thinking in Young Children (MIT Press, 2022).

  176. Xu, F. Towards a rational constructivist theory of cognitive development. Psychol. Rev. 126, 841 (2019).

    Article  PubMed  Google Scholar 

  177. Xu, F. & Kushnir, T. Infants are rational constructivist learners. Curr. Dir. Psychol. Sci. 22, 28–32 (2013).

    Article  Google Scholar 

  178. Lapidow, E. & Bonawitz, E. What’s in the box? Preschoolers consider ambiguity, expected value, and information for future decisions in explore-exploit tasks. Open. Mind 7, 855–878 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kidd, C., Piantadosi, S. T. & Aslin, R. N. The Goldilocks effect: human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS One 7, e36399 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Ruggeri, A., Swaboda, N., Sim, Z. L. & Gopnik, A. Shake it baby, but only when needed: preschoolers adapt their exploratory strategies to the information structure of the task. Cognition 193, 104013 (2019).

    Article  PubMed  Google Scholar 

  181. Sim, Z. L. & Xu, F. Another look at looking time: surprise as rational statistical inference. Top. Cogn. Sci. 11, 154–163 (2019).

    Article  PubMed  Google Scholar 

  182. Sim, Z. L. & Xu, F. Infants preferentially approach and explore the unexpected. Br. J. Dev. Psychol. 35, 596–608 (2017).

    Article  PubMed  Google Scholar 

  183. Siegel, M. H., Magid, R. W., Pelz, M., Tenenbaum, J. B. & Schulz, L. E. Children’s exploratory play tracks the discriminability of hypotheses. Nat. Commun. 12, 3598 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Schulz, E., Wu, C. M., Ruggeri, A. & Meder, B. Searching for rewards like a child means less generalization and more directed exploration. Psychol. Sci. 30, 1561–1572 (2019).

    Article  PubMed  Google Scholar 

  185. Schulz, L. Infants explore the unexpected. Science 348, 42–43 (2015).

    Article  PubMed  Google Scholar 

  186. Perez, J. & Feigenson, L. Violations of expectation trigger infants to search for explanations. Cognition 218, 104942 (2022).

    Article  PubMed  Google Scholar 

  187. Cook, C., Goodman, N. D. & Schulz, L. E. Where science starts: spontaneous experiments in preschoolers’ exploratory play. Cognition 120, 341–349 (2011). This study demonstrates that preschoolers spontaneously perform causal interventions that are relevant to disambiguating multiple possible causal structures in their free play.

    Article  PubMed  Google Scholar 

  188. Lapidow, E. & Walker, C. M. Learners’ causal intuitions explain behavior in control of variables tasks. Dev. Psychol. (in the press).

  189. Lapidow, E. & Walker, C. M. Rethinking the “gap”: self‐directed learning in cognitive development and scientific reasoning. Wiley Interdiscip. Rev. Cogn. Sci. 13, e1580 (2022). This theory paper provides a complementary viewpoint to ‘child-as-scientist’, or Bayesian ‘rational constructivist’, account, arguing that children seek to identify and generate evidence for causal relations that are robust across contexts (and thus will be reliable for causal intervention).

    Article  PubMed  Google Scholar 

  190. Lapidow, E. & Walker, C. M. Informative experimentation in intuitive science: children select and learn from their own causal interventions. Cognition 201, 104315 (2020).

    Article  PubMed  Google Scholar 

  191. Moeller, A., Sodian, B. & Sobel, D. M. Developmental trajectories in diagnostic reasoning: understanding data are confounded develops independently of choosing informative interventions to resolve confounded data. Front. Psychol. 13, 800226 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Fernbach, P. M., Macris, D. M. & Sobel, D. M. Which one made it go? The emergence of diagnostic reasoning in preschoolers. Cogn. Dev. 27, 39–53 (2012).

    Article  Google Scholar 

  193. Buchanan, D. W. & Sobel, D. M. Mechanism‐based causal reasoning in young children. Child. Dev. 82, 2053–2066 (2011).

    Article  PubMed  Google Scholar 

  194. Sobel, D. M., Benton, D., Finiasz, Z., Taylor, Y. & Weisberg, D. S. The influence of children’s first action when learning causal structure from exploratory play. Cogn. Dev. 63, 101194 (2022).

    Article  Google Scholar 

  195. Lapidow, E. & Walker, C. M. The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning (Springer, 2020).

  196. Klayman, J. Varieties of confirmation bias. Psychol. Learn. Motiv. 32, 385–418 (1995).

    Article  Google Scholar 

  197. Zimmerman, C. The development of scientific thinking skills in elementary and middle school. Dev. Rev. 27, 172–223 (2007).

    Article  Google Scholar 

  198. Rule, J. S., Tenenbaum, J. B. & Piantadosi, S. T. The child as hacker. Trends Cogn. Sci. 24, 900–915 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Burghardt, G. M. The Genesis of Animal Play: Testing the Limits (MIT Press, 2005).

  200. Chu, J. & Schulz, L. E. Play, curiosity, and cognition. Annu. Rev. Dev. Psychol. 2, 317–343 (2020).

    Article  Google Scholar 

  201. Schulz, L. The origins of inquiry: inductive inference and exploration in early childhood. Trends Cogn. Sci. 16, 382–389 (2012).

    Article  PubMed  Google Scholar 

  202. Harris, P. L., Kavanaugh, R. D., Wellman, H. M. & Hickling, A. K. in Monographs of the Society for Research in Child Development https://doi.org/10.2307/1166074 (Society for Research in Child Development, 1993).

  203. Weisberg, D. S. in The Oxford Handbook of the Development of Imagination (ed. Taylor, M.) 75–93 (Oxford Univ. Press, 2013).

  204. Gopnik, A. & Walker, C. M. Considering counterfactuals: the relationship between causal learning and pretend play. Am. J. Play. 6, 15–28 (2013).

    Google Scholar 

  205. Weisberg, D. S. & Gopnik, A. Pretense, counterfactuals, and Bayesian causal models: why what is not real really matters. Cogn. Sci. 37, 1368–1381 (2013).

    Article  PubMed  Google Scholar 

  206. Root-Bernstein, M. M. in The Oxford Handbook of the Development of Imagination (ed. Taylor, M.) 417–437 (Oxford Univ. Press, 2013).

  207. Buchsbaum, D., Bridgers, S., Skolnick Weisberg, D. & Gopnik, A. The power of possibility: causal learning, counterfactual reasoning, and pretend play. Phil. Trans. R. Soc. B 367, 2202–2212 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Wente, A., Gopnik, A., Fernández Flecha, M., Garcia, T. & Buchsbaum, D. Causal learning, counterfactual reasoning and pretend play: a cross-cultural comparison of Peruvian, mixed-and low-socioeconomic status US children. Phil. Trans. R. Soc. B 377, 20210345 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Buchsbaum, D., Gopnik, A., Griffiths, T. L. & Shafto, P. Children’s imitation of causal action sequences is influenced by statistical and pedagogical evidence. Cognition 120, 331–340 (2011).

    Article  PubMed  Google Scholar 

  210. Csibra, G. & Gergely, G. ‘Obsessed with goals’: functions and mechanisms of teleological interpretation of actions in humans. Acta Psychol. 124, 60–78 (2007).

    Article  Google Scholar 

  211. Kelemen, D. The scope of teleological thinking in preschool children. Cognition 70, 241–272 (1999).

    Article  PubMed  Google Scholar 

  212. Casler, K. & Kelemen, D. Young children’s rapid learning about artifacts. Dev. Sci. 8, 472–480 (2005).

    Article  PubMed  Google Scholar 

  213. Casler, K. & Kelemen, D. Reasoning about artifacts at 24 months: the developing teleo-functional stance. Cognition 103, 120–130 (2007).

    Article  PubMed  Google Scholar 

  214. Ruiz, A. M. & Santos, L. R. 6. in Tool Use in Animals: Cognition and Ecology 119–133 (Cambridge Univ. Press, 2013).

  215. Walker, C. M., Rett, A. & Bonawitz, E. Design drives discovery in causal learning. Psychol. Sci. 31, 129–138 (2020).

    Article  PubMed  Google Scholar 

  216. Butler, L. P. & Markman, E. M. Finding the cause: verbal framing helps children extract causal evidence embedded in a complex scene. J. Cogn. Dev. 13, 38–66 (2012).

    Article  Google Scholar 

  217. Callanan, M. A. et al. Exploration, explanation, and parent–child interaction in museums. Monogr. Soc. Res. Child. Dev. 85, 7–137 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  218. McHugh, S. R., Callanan, M., Jaeger, G., Legare, C. H. & Sobel, D. M. Explaining and exploring the dynamics of parent–child interactions and children’s causal reasoning at a children’s museum exhibit. Child Dev. https://doi.org/10.1111/cdev.14035 (2023).

  219. Sobel, D. M., Letourneau, S. M., Legare, C. H. & Callanan, M. Relations between parent–child interaction and children’s engagement and learning at a museum exhibit about electric circuits. Dev. Sci. 24, e13057 (2021).

    Article  PubMed  Google Scholar 

  220. Willard, A. K. et al. Explain this, explore that: a study of parent–child interaction in a children’s museum. Child Dev. 90, e598–e617 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Daubert, E. N., Yu, Y., Grados, M., Shafto, P. & Bonawitz, E. Pedagogical questions promote causal learning in preschoolers. Sci. Rep. 10, 20700 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Yu, Y., Landrum, A. R., Bonawitz, E. & Shafto, P. Questioning supports effective transmission of knowledge and increased exploratory learning in pre‐kindergarten children. Dev. Sci. 21, e12696 (2018).

    Article  PubMed  Google Scholar 

  223. Walker, C. M. & Nyhout, A. in The Questioning Child: Insights From Psychology and Education (eds Butler, L. P., Ronfard, S. & Corriveau, K. H.) 252–280 (Cambridge Univ. Press, 2020).

  224. Weisberg, D. S. & Hopkins, E. J. Preschoolers’ extension and export of information from realistic and fantastical stories. Infant. Child. Dev. 29, e2182 (2020).

    Article  Google Scholar 

  225. Tillman, K. A. & Walker, C. M. You can’t change the past: children’s recognition of the causal asymmetry between past and future events. Child. Dev. 93, 1270–1283 (2022).

    Article  PubMed  Google Scholar 

  226. Rottman, B. M., Kominsky, J. F. & Keil, F. C. Children use temporal cues to learn causal directionality. Cogn. Sci. 38, 489–513 (2014).

    Article  PubMed  Google Scholar 

  227. Tecwyn, E. C., Mazumder, P. & Buchsbaum, D. One- and two-year-olds grasp that causes must precede their effects. Dev. Psychol. 59, 1519–1531 (2023).

    Article  PubMed  Google Scholar 

  228. Liquin, E. G. & Lombrozo, T. Explanation-seeking curiosity in childhood. Curr. Opin. Behav. Sci. 35, 14–20 (2020).

    Article  Google Scholar 

  229. Mills, C. M., Legare, C. H., Bills, M. & Mejias, C. Preschoolers use questions as a tool to acquire knowledge from different sources. J. Cogn. Dev. 11, 533–560 (2010).

    Article  Google Scholar 

  230. Ruggeri, A., Sim, Z. L. & Xu, F. “Why is Toma late to school again?” Preschoolers identify the most informative questions. Dev. Psychol. 53, 1620–1632 (2017).

    Article  PubMed  Google Scholar 

  231. Ruggeri, A. & Lombrozo, T. Children adapt their questions to achieve efficient search. Cognition 143, 203–216 (2015).

    Article  PubMed  Google Scholar 

  232. Legare, C. H. & Lombrozo, T. Selective effects of explanation on learning during early childhood. J. Exp. Child. Psychol. 126, 198–212 (2014).

    Article  PubMed  Google Scholar 

  233. Legare, C. H. Exploring explanation: explaining inconsistent evidence informs exploratory, hypothesis‐testing behavior in young children. Child Dev. 83, 173–185 (2012).

    Article  PubMed  Google Scholar 

  234. Walker, C. M., Lombrozo, T., Legare, C. H. & Gopnik, A. Explaining prompts children to privilege inductively rich properties. Cognition 133, 343–357 (2014).

    Article  PubMed  Google Scholar 

  235. Vasil, N., Ruggeri, A. & Lombrozo, T. When and how children use explanations to guide generalizations. Cogn. Dev. 61, 101144 (2022).

    Article  Google Scholar 

  236. Walker, C. M., Bonawitz, E. & Lombrozo, T. Effects of explaining on children’s preference for simpler hypotheses. Psychon. Bull. Rev. 24, 1538–1547 (2017).

    Article  PubMed  Google Scholar 

  237. Walker, C. M. & Lombrozo, T. Explaining the moral of the story. Cognition 167, 266–281 (2017).

    Article  PubMed  Google Scholar 

  238. Walker, C. M., Lombrozo, T., Williams, J. J., Rafferty, A. N. & Gopnik, A. Explaining constrains causal learning in childhood. Child. Dev. 88, 229–246 (2017).

    Article  PubMed  Google Scholar 

  239. Gopnik, A. Childhood as a solution to explore–exploit tensions. Phil. Trans. R. Soc. B 375, 20190502 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Wente, A. O. et al. Causal learning across culture and socioeconomic status. Child. Dev. 90, 859–875 (2019).

    Article  PubMed  Google Scholar 

  241. Carstensen, A. et al. Context shapes early diversity in abstract thought. Proc. Natl Acad. Sci. USA 116, 13891–13896 (2019). This study provides evidence for developmentally early emerging cross-cultural differences in learning ‘individual’ versus ‘relational’ causal rules in children from individualist versus collectivist societies.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Ross, N., Medin, D., Coley, J. D. & Atran, S. Cultural and experiential differences in the development of folkbiological induction. Cogn. Dev. 18, 25–47 (2003).

    Article  Google Scholar 

  243. Inagaki, K. The effects of raising animals on children’s biological knowledge. Br. J. Dev. Psychol. 8, 119–129 (1990).

    Article  Google Scholar 

  244. Cole, M. & Bruner, J. S. Cultural differences and inferences about psychological processes. Am. Psychol. 26, 867–876 (1971).

    Article  Google Scholar 

  245. Rogoff, B. & Morelli, G. Perspectives on children’s development from cultural psychology. Am. Psychol. 44, 343–348 (1989).

    Article  Google Scholar 

  246. Rogoff, B. Adults and peers as agents of socialization: a highland Guatemalan profile. Ethos 9, 18–36 (1981).

    Article  Google Scholar 

  247. Shneidman, L., Gaskins, S. & Woodward, A. Child‐directed teaching and social learning at 18 months of age: evidence from Yucatec Mayan and US infants. Dev. Sci. 19, 372–381 (2016).

    Article  PubMed  Google Scholar 

  248. Callanan, M., Solis, G., Castañeda, C. & Jipson, J. in The Questioning Child: Insights From Psychology and Education (eds Butler, L. P., Ronfard, S. & Corriveau, K. H.) 73–88 (Cambridge Univ. Press, 2020).

  249. Gauvain, M., Munroe, R. L. & Beebe, H. Children’s questions in cross-cultural perspective: a four-culture study. J. Cross-Cult. Psychol. 44, 1148–1165 (2013).

    Article  Google Scholar 

  250. Adolph, K. E. & Hoch, J. E. Motor development: embodied, embedded, enculturated, and enabling. Annu. Rev. Psychol. 70, 141–164 (2019).

    Article  PubMed  Google Scholar 

  251. Schleihauf, H., Herrmann, E., Fischer, J. & Engelmann, J. M. How children revise their beliefs in light of reasons. Child. Dev. 93, 1072–1089 (2022).

    Article  PubMed  Google Scholar 

  252. Vasil, N. et al. Structural explanations lead young children and adults to rectify resource inequalities. J. Exp. Child Psychol. 242, 105896 (2024).

    Article  PubMed  Google Scholar 

  253. Koskuba, K., Gerstenberg, T., Gordon, H., Lagnado, D. & Schlottmann, A. What’s fair? How children assign reward to members of teams with differing causal structures. Cognition 177, 234–248 (2018).

    Article  PubMed  Google Scholar 

  254. Bowlby, J. The Bowlby–Ainsworth attachment theory. Behav. Brain Sci. 2, 637–638 (1979).

    Article  Google Scholar 

  255. Tottenham, N., Shapiro, M., Flannery, J., Caldera, C. & Sullivan, R. M. Parental presence switches avoidance to attraction learning in children. Nat. Hum. Behav. 3, 1070–1077 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Frankenhuis, W. E. & Gopnik, A. Early adversity and the development of explore–exploit tradeoffs. Trends Cogn. Sci. 27, 616–630 (2023).

    Article  PubMed  Google Scholar 

  257. Van IJzendoorn, M. H. & Kroonenberg, P. M. Cross-cultural patterns of attachment: a meta-analysis of the strange situation. Child Dev. 59, 147–156 (1988).

    Article  Google Scholar 

  258. Gopnik, A. Explanation as orgasm. Minds Mach. 8, 101–118 (1998).

    Article  Google Scholar 

  259. Gottlieb, S., Keltner, D. & Lombrozo, T. Awe as a scientific emotion. Cogn. Sci. 42, 2081–2094 (2018).

    Article  Google Scholar 

  260. Valdesolo, P., Shtulman, A. & Baron, A. S. Science is awe-some: the emotional antecedents of science learning. Emot. Rev. 9, 215–221 (2017).

    Article  Google Scholar 

  261. Keil, F. C. Wonder: Childhood and the Lifelong Love of Science (MIT Press, 2022).

  262. Perez, J. & Feigenson, L. Stable individual differences in infants’ responses to violations of intuitive physics. Proc. Natl Acad. Sci. USA 118, e2103805118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Goddu, M. K., Sullivan, J. N. & Walker, C. M. Toddlers learn and flexibly apply multiple possibilities. Child. Dev. 92, 2244–2251 (2021).

    Article  PubMed  Google Scholar 

  264. Cisek, P. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys. 81, 2265–2287 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Pezzulo, G. & Cisek, P. Navigating the affordance landscape: feedback control as a process model of behavior and cognition. Trends Cogn. Sci. 20, 414–424 (2016).

    Article  PubMed  Google Scholar 

  266. Cisek, P. Cortical mechanisms of action selection: the affordance competition hypothesis. Phil. Trans. R. Soc. B 362, 1585–1599 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Tomasello, M. The Evolution of Agency: Behavioral Organization From Lizards to Humans (MIT Press, 2022).

  268. Beck, S. R., Robinson, E. J., Carroll, D. J. & Apperly, I. A. Children’s thinking about counterfactuals and future hypotheticals as possibilities. Child. Dev. 77, 413–426 (2006).

    Article  PubMed  Google Scholar 

  269. Robinson, E. J., Rowley, M. G., Beck, S. R., Carroll, D. J. & Apperly, I. A. Children’s sensitivity to their own relative ignorance: handling of possibilities under epistemic and physical uncertainty. Child. Dev. 77, 1642–1655 (2006).

    Article  PubMed  Google Scholar 

  270. Leahy, B. P. & Carey, S. E. The acquisition of modal concepts. Trends Cogn. Sci. 24, 65–78 (2020).

    Article  PubMed  Google Scholar 

  271. Mody, S. & Carey, S. The emergence of reasoning by the disjunctive syllogism in early childhood. Cognition 154, 40–48 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Shtulman, A. & Carey, S. Improbable or impossible? How children reason about the possibility of extraordinary events. Child Dev. 78, 1015–1032 (2007).

    Article  PubMed  Google Scholar 

  273. Redshaw, J. & Suddendorf, T. Children’s and apes’ preparatory responses to two mutually exclusive possibilities. Curr. Biol. 26, 1758–1762 (2016).

    Article  PubMed  Google Scholar 

  274. Phillips, J. S. & Kratzer, A. Decomposing modal thought. Psychol. Rev. (in the press).

  275. Vetter, B. Abilities and the epistemology of ordinary modality. Mind (in the press).

  276. Kahneman, D. & Tversky, A. Variants of uncertainty. Cognition 11, 143–157 (1982).

    Article  PubMed  Google Scholar 

  277. Rafetseder, E., Schwitalla, M. & Perner, J. Counterfactual reasoning: from childhood to adulthood. J. Exp. Child Psychol. 114, 389–404 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Beck, S. R. & Riggs, K. J. Developing thoughts about what might have been. Child Dev. Perspect. 8, 175–179 (2014).

    Article  Google Scholar 

  279. Kominsky, J. F. et al. The trajectory of counterfactual simulation in development. Dev. Psychol. 57, 253 (2021). This study uses a physical collision paradigm to demonstrate that the content of children’s counterfactual judgements changes over development.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Gerstenberg, T. What would have happened? Counterfactuals, hypotheticals and causal judgements. Phil. Trans. R. Soc. B 377, 20210339 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Gerstenberg, T., Goodman, N. D., Lagnado, D. A. & Tenenbaum, J. B. A counterfactual simulation model of causal judgments for physical events. Psychol. Rev. 128, 936 (2021).

    Article  PubMed  Google Scholar 

  282. Nyhout, A. & Ganea, P. A. The development of the counterfactual imagination. Child Dev. Perspect. 13, 254–259 (2019).

    Article  Google Scholar 

  283. Nyhout, A. & Ganea, P. A. Mature counterfactual reasoning in 4- and 5-year-olds. Cognition 183, 57–66 (2019).

    Article  PubMed  Google Scholar 

  284. Moll, H., Meltzoff, A. N., Merzsch, K. & Tomasello, M. Taking versus confronting visual perspectives in preschool children. Dev. Psychol. 49, 646–654 (2013).

    Article  PubMed  Google Scholar 

  285. Moll, H. & Tomasello, M. Three-year-olds understand appearance and reality — just not about the same object at the same time. Dev. Psychol. 48, 1124–1132 (2012).

    Article  PubMed  Google Scholar 

  286. Moll, H. & Meltzoff, A. N. How does it look? Level 2 perspective‐taking at 36 months of age. Child. Dev. 82, 661–673 (2011).

    Article  PubMed  Google Scholar 

  287. Gopnik, A., Slaughter, V. & Meltzoff, A. in Children’s Early Understanding of Mind: Origins and Development (eds Lewis, C. & Mitchell, P.) 157–181 (Routledge, 1994).

  288. Gopnik, A. & Astington, J. W. Children’s understanding of representational change and its relation to the understanding of false belief and the appearance–reality distinction. Child Dev. 59, 26–37 (1988).

    Article  PubMed  Google Scholar 

  289. Doherty, M. & Perner, J. Metalinguistic awareness and theory of mind: just two words for the same thing? Cogn. Dev. 13, 279–305 (1998).

    Article  Google Scholar 

  290. Wimmer, H. & Perner, J. Beliefs about beliefs: representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition 13, 103–128 (1983).

    Article  PubMed  Google Scholar 

  291. Flavell, J. H., Speer, J. R., Green, F. L., August, D. L. & Whitehurst, G. J. in Monographs of the Society for Research in Child Development 1–65 (Society for Research in Child Development, 1981).

  292. Wellman, H. M., Cross, D. & Watson, J. Meta‐analysis of theory‐of‐mind development: the truth about false belief. Child. Dev. 72, 655–684 (2001).

    Article  PubMed  Google Scholar 

  293. Kelemen, D. & DiYanni, C. Intuitions about origins: purpose and intelligent design in children’s reasoning about nature. J. Cogn. Dev. 6, 3–31 (2005).

    Article  Google Scholar 

  294. Kelemen, D. Why are rocks pointy? Children’s preference for teleological explanations of th natural world. Dev. Psychol. 35, 1440 (1999).

    Article  PubMed  Google Scholar 

  295. Vihvelin, K. Causes, Laws, and Free Will: Why Determinism Doesn’t Matter (Oxford Univ. Press, 2013).

  296. Yiu, E., Kosoy, E. & Gopnik, A. Transmission versus truth, imitation versus innovation: what children can do that large language and language-and-vision models cannot (yet). Persp. Psychol. Sci. https://doi.org/10.1177/17456916231201401 (2023).

  297. Kosoy, E. et al. Towards understanding how machines can learn causal overhypotheses. Preprint at arXiv https://doi.org/10.48550/arXiv.2206.08353 (2022).

  298. Frank, M. C. Baby steps in evaluating the capacities of large language models. Nat. Rev. Psychol. 2, 451–452 (2023).

    Article  Google Scholar 

  299. Frank, M. C. Bridging the data gap between children and large language models. Trends Cogn. Sci. 27, https://doi.org/10.1016/j.tics.2023.08.007 (2023).

  300. Schmidhuber, J. A possibility for implementing curiosity and boredom in model-building neural controllers. In Proc. Int. Conf. on Simulation of Adaptive Behavior: From Animals to Animats 222–227 (MIT Press, 1991).

  301. Volpi, N. C. & Polani, D. Goal-directed empowerment: combining intrinsic motivation and task-oriented behaviour. IEEE Trans. Cogn. Dev. Syst. 15, 361–372 (2020).

    Article  Google Scholar 

  302. Salge, C., Glackin, C. & Polani, D. in Guided Self-Organization: Inception. Emergence, Complexity and Computation Vol. 9 (ed. Prokopenko, M.) 67–114 (Springer, 2014).

  303. Klyubin, A. S., Polani, D. & Nehaniv, C. L. Empowerment: a universal agent-centric measure of control. In 2005 IEEE Congr. on Evolutionary Computation 128–135 (IEEE, 2005).

  304. Gopnik, A. Empowerment as causal learning, causal learning as empowerment: a bridge between Bayesian causal hypothesis testing and reinforcement learning. Preprint at https://philsci-archive.pitt.edu/id/eprint/23268 (2024).

  305. Rovee-Collier, C. K., Sullivan, M. W., Enright, M., Lucas, D. & Fagen, J. W. Reactivation of infant memory. Science 208, 1159–1161 (1980).

    Article  PubMed  Google Scholar 

  306. Kominsky, J. F., Li, Y. & Carey, S. Infants’ attributions of insides and animacy in causal interactions. Cogn. Sci. 46, e13087 (2022).

    Article  PubMed  Google Scholar 

  307. Lakusta, L. & Carey, S. Twelve-month-old infants’ encoding of goal and source paths in agentive and non-agentive motion events. Lang. Learn. Dev. 11, 152–175 (2015).

    Article  PubMed  Google Scholar 

  308. Saxe, R., Tzelnic, T. & Carey, S. Knowing who dunnit: infants identify the causal agent in an unseen causal interaction. Dev. Psychol. 43, 149–158 (2007).

    Article  PubMed  Google Scholar 

  309. Saxe, R., Tenenbaum, J. & Carey, S. Secret agents: inferences about hidden causes by 10- and 12-month-old infants. Psychol. Sci. 16, 995–1001 (2005).

    Article  PubMed  Google Scholar 

  310. Liu, S., Brooks, N. B. & Spelke, E. S. Origins of the concepts cause, cost, and goal in prereaching infants. Proc. Natl Acad. Sci. USA 116, 17747–17752 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  311. Liu, S. & Spelke, E. S. Six-month-old infants expect agents to minimize the cost of their actions. Cognition 160, 35–42 (2017).

    Article  PubMed  Google Scholar 

  312. Nyhout, A. & Ganea, P. A. What is and what never should have been: children’s causal and counterfactual judgments about the same events. J. Exp. Child. Psychol. 192, 104773 (2020).

    Article  PubMed  Google Scholar 

  313. Legare, C. H. The contributions of explanation and exploration to children’s scientific reasoning. Child. Dev. Perspect. 8, 101–106 (2014).

    Article  Google Scholar 

  314. Denison, S. & Xu, F. Twelve‐to 14‐month‐old infants can predict single‐event probability with large set sizes. Dev. Sci. 13, 798–803 (2010).

    Article  PubMed  Google Scholar 

  315. Denison, S., Reed, C. & Xu, F. The emergence of probabilistic reasoning in very young infants: evidence from 4.5-and 6-month-olds. Dev. Psychol. 49, 243 (2013).

    Article  PubMed  Google Scholar 

  316. Alderete, S. & Xu, F. Three-year-old children’s reasoning about possibilities. Cognition 237, 105472 (2023).

    Article  PubMed  Google Scholar 

  317. Scholl, B. J. & Tremoulet, P. D. Perceptual causality and animacy. Trends Cogn. Sci. 4, 299–309 (2000).

    Article  PubMed  Google Scholar 

  318. Hood, B., Carey, S. & Prasada, S. Predicting the outcomes of physical events: two‐year‐olds fail to reveal knowledge of solidity and support. Child. Dev. 71, 1540–1554 (2000).

    Article  PubMed  Google Scholar 

  319. Hood, B. M., Hauser, M. D., Anderson, L. & Santos, L. Gravity biases in a non‐human primate? Dev. Sci. 2, 35–41 (1999).

    Article  Google Scholar 

  320. Hood, B. M. Gravity does rule for falling events. Dev. Sci. 1, 59–63 (1998).

    Article  Google Scholar 

  321. Hood, B. M. Gravity rules for 2-to 4-year olds? Cognit. Dev. 10, 577–598 (1995).

    Article  Google Scholar 

  322. Woodward, A. L. Infants selectively encode the goal object of an actor’s reach. Cognition 69, 1–34 (1998).

    Article  PubMed  Google Scholar 

  323. Woodward, A. L. Infants’ grasp of others’ intentions. Curr. Dir. Psychol. Sci. 18, 53–57 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  324. Woodward, A. L., Sommerville, J. A., Gerson, S., Henderson, A. M. & Buresh, J. The emergence of intention attribution in infancy. Psychol. Learn. Motiv. 51, 187–222 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  325. Meltzoff, A. N. ‘Like me’: a foundation for social cognition. Dev. Sci. 10, 126–134 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  326. Gerson, S. A. & Woodward, A. L. The joint role of trained, untrained, and observed actions at the origins of goal recognition. Infant. Behav. Dev. 37, 94–104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  327. Gerson, S. A. & Woodward, A. L. Learning from their own actions: the unique effect of producing actions on infants’ action understanding. Child. Dev. 85, 264–277 (2014).

    Article  PubMed  Google Scholar 

  328. Sommerville, J. A., Woodward, A. L. & Needham, A. Action experience alters 3-month-old infants’ perception of others’ actions. Cognition 96, B1–B11 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Liu, S. & Almeida, M. Knowing before doing: review and mega-analysis of action understanding in prereaching infants. Psychol. Bull. 149, 294–310 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their funding sources: the Alexander von Humboldt Foundation, the Templeton World Charity Foundation (0434), the John Templeton Foundation (6145), the Defense Advanced Research Projects Agency (047498-002 Machine Common Sense), the Department of Defense Multidisciplinary University Initiative (Self-Learning perception Through Real World Interaction), and the Canadian Institute for Advanced Research Catalyst Award. For helpful discussions, comments, and other forms of support, the authors thank: S. Boardman, E. Bonawitz, B. Brast-McKie, D. Buchsbaum, M. Deigan, J. Engelmann, T. Friend, T. Gerstenberg, S. Kikkert, A. Kratzer, E. Lapidow, B. Leahy, T. Lombrozo, J. Phillips, H. Rakoczy, L. Schulz, D. Sobel, E. Spelke, H. Steward, B. Vetter, M. Waldmann and E. Yiu.

Author information

Authors and Affiliations

Authors

Contributions

M.K.G. wrote the article and created the figures. A.G. contributed substantially to discussion of the content and to multiple revisions. A.G. and M.K.G. together reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Mariel K. Goddu or Alison Gopnik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Jonathan Kominsky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goddu, M.K., Gopnik, A. The development of human causal learning and reasoning. Nat Rev Psychol (2024). https://doi.org/10.1038/s44159-024-00300-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44159-024-00300-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing