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Intelligent wearable allows out-of-the-lab tracking
of developing motor abilities in infants
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Abstract

Background Early neurodevelopmental care needs better, effective and objective solutions

for assessing infants’ motor abilities. Novel wearable technology opens possibilities for

characterizing spontaneous movement behavior. This work seeks to construct and validate a

generalizable, scalable, and effective method to measure infants’ spontaneous motor abilities

across all motor milestones from lying supine to fluent walking.

Methods A multi-sensor infant wearable was constructed, and 59 infants (age 5–19 months)

were recorded during their spontaneous play. A novel gross motor description scheme was

used for human visual classification of postures and movements at a second-level time

resolution. A deep learning -based classifier was then trained to mimic human annotations,

and aggregated recording-level outputs were used to provide posture- and movement-

specific developmental trajectories, which enabled more holistic assessments of motor

maturity.

Results Recordings were technically successful in all infants, and the algorithmic analysis

showed human-equivalent-level accuracy in quantifying the observed postures and move-

ments. The aggregated recordings were used to train an algorithm for predicting a novel

neurodevelopmental measure, Baba Infant Motor Score (BIMS). This index estimates

maturity of infants’ motor abilities, and it correlates very strongly (Pearson’s r= 0.89, p < 1e-

20) to the chronological age of the infant.

Conclusions The results show that out-of-hospital assessment of infants’ motor ability is

possible using a multi-sensor wearable. The algorithmic analysis provides metrics of motility

that are transparent, objective, intuitively interpretable, and they link strongly to infants’ age.

Such a solution could be automated and scaled to a global extent, holding promise for

functional benchmarking in individualized patient care or early intervention trials.
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Plain language summary
Assessment of an infant’s motor

abilities is a key part of regular health

checks of infant development. How-

ever, there is shortage of methods

that would allow objective and user-

friendly tracking of infant motor

abilities. We describe a system that

measures infant’s posture and

movement with sensors that are

attached to the clothing. Movement

signals are analyzed with a deep

learning algorithm to predict maturity

of motor abilities. The accuracy of

analysis is comparable to human

assessments. This system could

enable early diagnosis of develop-

mental delays, and it can be used to

assess motor development in clinical

trials.
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Early neurodevelopmental care is globally challenged by a
scarcity of objective and scalable solutions available for early
neurological assessments1. More than one in ten infants

require active medical follow-up due to perinatal events or
abnormal neurological findings2. Only a small minority of these
infants will be eventually diagnosed with severe disabilities, such
as the severe type of cerebral palsy3, while a larger portion of
infants will develop mild or moderate neurocognitive impair-
ments, such as disorders of communication and attention4,5. All
of these conditions prompt early therapeutic interventions6.
However, how to distinguish these infants from the majority, who
will show a typical range of neurodevelopmental outcomes
despite early concerns, has remained elusive.

The early development of an infant’s motor abilities provides
an essential framework in the developmental cascade related to
language and cognitive abilities7–12. This has prompted a wide
clinical and research approach to survey or observe how the
infant reaches developmental milestones, such as rolling, sitting,
or walking13–15. They are useful for a wide-scale population
screening for developmental delays, and they even generalize
fairly well across different cultures13,15. However, milestone
assessment does not quantitate the spontaneous motor ability of
infants, and it is not sensitive to the wide variability that char-
acterizes natural motor development16,17. More fine-grained
information can be obtained by trained professionals using
standardized neurodevelopmental assessments14,18–20, which
collate empirical sets of clinically observable or testable items,
such as side turning or holding a toy, which requires an evalua-
tion that is at least partly subjective. These test batteries are
performed in a controlled environment, such as a doctor’s
appointment, which is an unnatural situation from an infant’s
perspective, compromising ecological validity from the assessor’s
perspective. There is hence a demand to develop methods for
early neurodevelopmental tracking that are robust to variability in
infant physiology, the skills of the assessor, and the testing
environment1,19,21. This could be solved with an objective mea-
surement of spontaneous behavior at home, the most ecologically
valid environment. Recent progress in sensor technology has
made it possible to record extended periods of infants’ sponta-
neous motor ability in out-of-hospital settings22–24, with quan-
titation of behavior at an accuracy that compares with human
observers22.

Here, we set an overall goal to construct and validate a gen-
eralizable, scalable, and effective method to measure infants’
spontaneous motor ability across all milestone levels of infant
motor development from lying supine to fluent independent
walking. In the current study, we present an infant wearable that
enables widely scalable out-of-hospital studies and recordings of a
total of 59 infants during their spontaneous play. We then
develop a novel, unified structured scheme for classifying infant
postures and movements (hereafter collectively called “motor
ability”) for each second of recording and test its accuracy and
generalizability across infant age groups and human observers.
We train a deep-learning-based classifier to mimic human
annotations of infant motor ability, which in turn enables the
construction of posture- and movement-specific developmental
trajectories. Finally, all the wearable data are combined to train
an algorithm to predict a novel neurodevelopmental index
Baba Infant Motor Score (BIMS), which estimates infants’
maturity of motor ability, to be used in individual tracking of
neurodevelopment.

Methods
Study design. A primarily cross-sectional cohort of infants was
recruited to develop a methodology for quantifying spontaneous

motor ability by using a wearable suit, “MAIJU” (Motor ability
Assessment of Infants with a JUmpsuit) (Fig. 1a, b). Parts of the
sessions were recorded with a synchronized video to allow visual
annotation of posture and movements (Fig. 1c) according to a
novel infant motor ability description scheme. A self-supervised
learning method was employed to confirm that these motor
ability classes are genuinely present in the movement signals.
Then, a deep-learning-based automatic classifier was trained to
analyze infant posture and movement at a second-by-second level
in all wearable recordings. These classifiers were shown to per-
form at a human-equivalent level, enabling the construction of
computational indexes for assessing the maturity of infant motor
ability (or BABA Infant Motor Score, BIMS), which was com-
pared to a clinically-used assessment scale and parental surveys.

Participants and recordings. Infants (N= 59) were recruited
from the Children’s Hospital, Helsinki University Hospital, Hel-
sinki, Finland, to participate in a larger study that assesses neu-
rodevelopment in low-risk term-born infants (N= 38) as well as
infants with mild perinatal asphyxia (N= 10) or prematurity
(N= 11). Respectively, the recruitment criteria in these three
arms were prematurity below 28 weeks gestational age, clinical
suspicion or diagnosis of mild perinatal asphyxia in term-born
infants, as well as no clinical incidents (low-risk, healthy controls)
in term-born infants. For performing MAIJU recordings, we had
no exclusion criteria, as the wearable testing and algorithmic
development was not expected to be affected by the infant’s
clinical condition. As all 59 infants were followed-up, 55 were
found to develop typically, while four developed a neurodeve-
lopmental condition. The recordings from these four infants were
used in the training of the motor ability classifier, but they were
excluded from the training of BIMS score, as well as the analyses
of age correlations. While this cohort was primarily cross-sec-
tional, five infants were recorded twice with an interval of 6 to
12 months, yielding a recording dataset of N= 64 recordings at
ages 4.5 to 19.5 months. Corrected age was used for prematurely
born infants.

The infants were recorded with the MAIJU wearable (see
below) at home (N= 40) or they came to a home-like
environment (see below) in the BABA center due to logistical
convenience (N= 24). The infant was dressed in the MAIJU suit,
and the recordings lasted for 18 to 199 minutes (average 67 min),
with a total recording time in the cohort corresponding to 71 h
30 min. Out of this time, 29 h (18–74 min per infant, average
43 min) in N= 41 infants were video recorded to allow motor
ability annotation for classifier training (Fig. 1b, c). During the
recording, children were allowed and encouraged to move about
and play freely, and with minimal disturbance from the adults.

The recording environment was somewhat variable between
infants, which might have affected their behavior on top of the
situational variance that is naturally present in spontaneous
activity. There may be marked differences between homes in
terms of physical layout, furniture, or child-relevant objects such
as toys. However, a child’s own home is still the environment that
is best known by the given child, hence it may be considered
ecologically relevant for studying natural behavior. Some infants
could not be recorded at home for various reasons (e.g., logistics
or parent’s preference), and they came to our research lab, BABA
center (www.babacenter.fi). BABA rooms are relatively large
(4 × 4 meters) with a large window for natural lighting, as well as
typical household furniture including table, chairs, book chest,
carpet, and age-appropriate toys. While this environment is not
equal to a child’s own home, our experience has shown that it is
natural enough to encourage children in a seemingly normal
exploratory behavior.
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Research governance. The study was carried out in accordance
with the Declaration of Helsinki and good clinical practice
guidelines. Ethical approval was obtained from the Ethical
Committee of Children’s Hospital in Helsinki, the study was
approved by the Children’s Hospital, and informed written par-
ental consent was obtained for each infant. The study was an
observational methodological development study, and thus not
registered as a clinical trial.

Description of the MAIJU wearable. The novel wearable MAIJU
(Fig. 1a) was developed for an unobtrusive and comfortable
tracking of spontaneous movement. The MAIJU suit was
designed and manufactured in different sizes to fit tightly and
comfortably on infants throughout the age range of interest. Little
pockets with sensor connectors were laminated proximally on
each limb to keep the sensors out of the infant’s reach. The
garment was designed to tolerate repetitive laundry washing using
detergents for synthetic materials. The fabric is akin to those used
in swimming suits, i.e., a blend of polyamide and elastane to
enable easy movement and a good fit for variable body shapes.

The additional characteristics of the fabric include moisture
transportation, stain repellency, quick-drying, and mechanical
stability over multiple use cycles. Prior studies22 have shown that
four sensors placed proximally on each limb is enough to provide
a reliable estimate of body posture, and the sampling rate of
52 Hz is sufficient for capturing details relevant to infant-typical
movement types. The waterproof sensors (Movesense, Suunto,
Finland) record tri-axial linear acceleration (accelerometer; m/s2)
and angular velocity (gyroscope; deg/s), streaming the data
wirelessly via Bluetooth 4.0 or 5.0 low energy (BLE) to an iOS
mobile data logger application (Kaasa Solutions GmbH, Düssel-
dorf, Germany).

Development of the motor ability description scheme and
visual annotations. We developed a phenomenological motor
ability description scheme (Fig. 2) for a comprehensive, trans-
parent, and minimally ambiguous annotation of video recordings
during the infants’ spontaneous activity. The scheme had to
adequately fulfill three constraints: (1) Being descriptive of all
time periods of independent movement, (2) being captured by
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Fig. 1 Overview of the MAIJU wearable, infant cohort, and recording data. a A 10-month-old subject crawling at home with the MAIJU jumpsuit,
equipped with movement sensors in the proximal pockets of each limb. The photograph has been published with informed parental consent. b Summary of
the infant cohort (N= 59 infants, N= 64 recordings) recorded in the present study. Bars depict a monthly breakdown of the numbers of infants with
MAIJU recordings with vs without synchronized annotated video recordings, as well as the total length of data available for each age. c An example
recording in the annotation software showing 20 s of the raw 24-channel data obtained from the four MAIJU sensors, as well as the respective human
annotations for postures and movements shown in the bars above the signals, colored according to the motor ability categories shown in Fig. 5a. Note the
frequent transitions in posture and movement categories.
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movement sensors, and (3) retaining an interpretable meaning
from visual assessment. The resultant scheme recognizes five
different postures and four movement levels in a manner that is
physically observable with movement sensors and does not
require observers’ inferences, such as estimating the child’s
intention, which is commonly used in the clinical assessment
scales25. A specific description is given in the supplementary
material (Supplementary Tables S1–3). The description scheme
was developed through an iterative process22 with frequent dis-
cussions using video examples and test annotations, and com-
ments were invited from external informants to ensure both
content and clarity.

Each study with a synchronized video recording was annotated
by two (N= 9) or three (N= 32) independent human annotators
(N= 5) trained for the task and with a background in infant
health care or infant research. The inter-rater agreement was
measured by the Fleiss’ kappa score computed from the
compounded confusion matrices, as well as by confusion
matrix-based metrics such as accuracy, recall, and F1 score (see
Supplementary Figs. S1, 2). The Fleiss’ kappa was used as the
primary performance metric, both in overall multi-class perfor-
mance as well as class-specific classification performance.

Development of the motor ability classifier. The motor ability
classifier was trained as an end-to-end convolutional neural
network (CNN) with a specialized structure that takes in as input
pre-processed sensor signals in 2.3-s (120 signal sample) frames
with 50% overlap and outputs frame-by-frame categorical prob-
abilities for posture and movement. The preprocessing of the
signals consists of the removal of gyroscope bias, linear inter-
polation of received sensor recording packets into a common
ideal time-stamp base (with a sampling frequency of 52 Hz), and
temporal smoothing with a seven-tap median filter. The structure
of the classifier model was similar to the one used in our previous
research22. It consists of an encoder module, which produces a
frame-specific fused representation of the sensor signals, and a
classifier module, which models the frame-to-frame temporal
structure of the signals and finally produces the classification
output. The posture and movement classifiers were trained
separately using the same model architecture. The architecture
and implementation details are presented in Fig. 3. The entire
annotated dataset (N= 41, 29.3 h, 91449 frames) was used for
training the system to be used for the classification of unan-
notated data, and the annotated data was classified with tenfold
cross-validation.

Fig. 2 Study design and the infant motor ability description scheme. a Flowchart depicting the overall study design. Coloring of the classification
comparisons between humans (red) and human vs algorithm (blue) correspond to the same colors in section B. b Illustrations of the posture and
movement categories identified in our motor ability description scheme. Numbers in each cell depict the proportion of each category within the annotated
dataset (black), and the Fleiss’ kappa agreement between human observers (red) or between the algorithmic analysis and human observers (blue) in the
classification of 2.3-s signal frames. c Correlation between infant age and the proportions of motor ability types (N= 42) identified from the video
recordings by the human observers (individual points; the line indicates a quadratic regression model with 95% confidence intervals; r represents the
Pearson’s correlation coefficient). Note a robust age-related decrease in prone posture, increases in standing and fluent movement, as well as the bell-
shaped developmentally transient occurrence of the crawling posture.
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The performance of supervised machine learning classifiers
depends on the consistency of the training annotations. Here, we
wanted to utilize all available human input, including time
instances with a varying agreement between the annotators. The
inter-rater ambiguities in the classifier training data were resolved
by combining human- and machine-generated labels in a
probabilistic fashion using the iterative annotation refinement
(IAR) procedure introduced in ref. 22. In IAR, contested frame
annotations (which might suffer from human inconsistency) are
weighted with a classifier’s probabilistic decision (which can be
thought of as being consistent for all samples) to obtain more
consistent ground-truth targets for classifier training.

Analysis of latent signal structures with self-supervised learn-
ing. To obtain a general understanding of the signal structure
present in MAIJU recordings, we employed contrastive predictive
coding (CPC26) to learn a robust latent signal representation
based on 42 h of unannotated MAIJU data (Fig. 4a). CPC is a self-
supervised machine learning method, which utilizes a learnable
encoder model to map the raw signals of an analysis frame at time
t into an n-dimensional latent representation Zt. In CPC training,
the time structure of these latent states is modeled with a
recurrent neural network (RNN) model to obtain a time-
compounded representation Ct for each analysis frame, captur-
ing the history of the encoded signal up to that point in time.
From Ct, future states of the encoder latent representations Zt+k

are predicted with a simple linear projection. The training is done
by applying the InfoNCE loss26 between the target encoder value
Zt+k, the predicted value Ẑt+k, and a set of contrastive samples
Z≠(t+k) that are negative samples drawn from another section of
the recording. As a result of the training, CPC learns an encoder
representation that best supports the separation of true future
signal states from false potential future signal states, hence cap-
turing structural discriminative properties of the data without
data labels. In the present work, the encoder model trained with
CPC was identical to the supervised motor ability classifier
(Fig. 3). The latent dimension was n= 128, the gated recurrent
unit (GRU) was used as the RNN model, a prediction distance of
k= 5 frames (~5.8 s) into the future was used, and the InfoNCE

loss utilized ten negative samples randomly drawn from the same
recording. The model was trained for 50 epochs.

Development of the carrying detection classifier. Since MAIJU
is primarily a wearable method for out-of-hospital recordings, it
was essential to minimize the need for active parental input
during the recording. The at-home recordings were instructed to
contain a designated “playtime” of at least an hour, during which
the parents were encouraged to let the infants play independently
as much as possible. Since the parents would still be allowed to
guide or possibly carry the infant during such playtimes, we
found it important to build an additional layer of preprocessing
that would automatically detect periods of independent infant
movement versus movements due to external forces, such as
parental carrying. To this end, we annotated the data and trained
an additional frame-level binary classifier for active carrying
detection (ACD) to be run at the preprocessing stage before
motor ability classification. The ACD dataset consists of a subset
of 17 videoed recordings from the full dataset that were per-
formed at infants’ homes (total length of 17 h). The annotations
for the ACD task were performed with a scheme of five cate-
gories: independent movement (i.e., an infant has no contact with
anyone), passive support (e.g., infant sits and leans on the parent),
active support (e.g., parent supports walking by holding hands),
passive carrying (i.e., an infant is being held but no movement is
present), and active carrying (i.e., an infant is moved by carrying)
(see Supplementary Figs. S3, 4). The deep-learning classifier
structure was identical to the motor ability classifiers (cf. Fig. 3).
The most reliable detection performance (leave-one-subject-out
a.k.a. LOSO cross-validation) was achieved with binary classifi-
cation for active carrying (97.2% accuracy; 54.5% recall, 58.1%
precision for carrying; 98.7% recall, 98.5% precision for non-
carrying), which means that roughly half of the frames with
carrying can be automatically filtered out from further analysis at
the expense of only very few false detections. The trained (and
cross-validated where applicable) ACD classifier was applied to all
analyses on MAIJU recording distributions (Supplementary Fig.
S5), which means that these results are obtained with a realistic
use-case scenario.

Fig. 3 Block diagram of the deep-learning-based motor ability classifier architecture. Abbreviations: activation function (act), average (AVG), channels
(ch), convolution operation (conv), dilation (dil), filter size (fw), leaky rectified linear unit (lrelu), padding (pad). The encoder module performs frame-level
sensor fusion to obtain a 160-dimensional latent expression of the raw accelerometer and gyroscope signals. The classifier module models the frame-to-
frame time dynamics of these features and outputs softmax probabilities for each category separately for each of the classification tracks (posture,
movement, and carrying). The training was performed with minibatch gradient descent using the ADAM algorithm (batch size 100 consecutive frames,
learning rate 10−4, beta1= 0.9, beta2= 0.999, epsilon= 10−8) with a weighted categorical cross-entropy loss. In the loss function, each frame’s error was
weighted with the inverse probability of the target class’s occurrence in the training data to mitigate the effects of unbalanced category distributions within
the training data. Sample dropout (p= 0.3), as well as sensor dropout (p= 0.3), was also applied randomly to the input signals during training to ensure
the robustness of the trained models. The training was run for 200 epochs and held out validation data (20% of training data) was used to select the best
performing model in terms of the unweighted average F1 score. The code for the motor ability classifier was implemented with Tensorflow (v.1.12.0) and
Python (v.3.6.9). The code is available at request.
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Performance assessment of the motor ability detection algo-
rithm. The performance of the motor ability classifier was tested
at multiple levels. At the lowest level, the performance of the
frame-to-frame classification was measured based on a com-
pounded confusion matrix: Recording-level tenfold cross-
validation was utilized to produce test-set predictions from the
left-out recordings. Similar to the inter-rater agreement analysis,
the predictions from all folds were compounded against all of the
original human annotations into a single (posture- or movement-
specific) confusion matrix (Fig. 4b and Supplementary Fig. S6).
Additionally, the compounded confusion matrices against
the IAR-derived training targets are presented in Supplementary
Fig. S7.

The practically most relevant performance measure is the
accuracy of the recording-level motor ability distributions, which

provides the primary output to be used in subsequent analyses.
Notably, if the errors on the short-term signal frame classification
are unbiased, they will average out with sufficiently long
recordings. Hence, recording-level distributions combined with
recording length analysis are the most informative for estimating
the overall feasibility of the method. We measured this
performance by a two-stage analysis for each annotated category
(Fig. 4c; full set in Supplementary Figs. S8, 9): first by measuring
the correlation of the annotated and classifier-produced category
distributions (as measured by Pearson’s r and its p value), and
second, by the Bland–Altman plot analysis between the annotated
distributions and the classifier error. The two-tailed t-test is used
to test for the null hypothesis (at p < 0.05) that the errors have a
mean of zero. To add further context to the Bland–Altman
analysis, we estimated the standard deviance of the error (±2 SD
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Fig. 4 Classifier development and computational analyses of MAIJU recordings. a t-SNE plots obtained from self-supervised feature embeddings (CPC)
with color codings for posture (top) and movement (bottom). Note the clear clustering of posture categories, while the movement categories show
relatively more dispersion. b Confusion matrices showing recall values (in %) of the algorithm output (“Predicted class”) and the compounded human
expert annotations (“Target class”). Note the high numbers in the diagonal line indicating high agreement. c Comparison of quantified motor ability
between the classifier and human annotations (N= 42). In the upper graphs, the scatter plots show the proportion of time spent in the given postures or
movements as estimated by the classifier algorithm (Y-axis) and the human annotations (X-axis). The Pearson’s r (and its p value) denotes the linear
correlation between the proportion values. Below, the Bland–Altman plots of annotations vs classification errors are shown for assessing whether the
classification errors have a systematic bias and/or are dependent on the amount of posture/movement identified by the algorithm. The stippled lines
depict an average one-month developmental change (percentage points per month) as taken from a linear regression model fitted between the age (in
months) and the given motor ability occurrence (cf. Fig. 2c). Note that 100 and 88% of the measurements in posture and fluent movement categories,
respectively, are within these stippled lines. The shaded zone depicts the 95% confidence interval (in percentage points) of the classifier error. The t value
depicts the two-tailed t-test result (with 40 degrees of freedom) on the null hypothesis that the error has a mean of zero; this shows that the proportional
estimates are unbiased.
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error area, colored) and we also compared the error to a monthly
age-related change Δ (as percentage points per month of age;
drawn with dashed lines). The Δ-values were computed as the
slope of a least-squares linear regression model fitted into the
[age, distribution value] scatter pairs from the annotated dataset.
Notably, this representation is informative only for categories
with monotonical age-dependent distributions (e.g., standing and
fluent movement).

Development of the BABA infant motor score (BIMS) metric.
The BABA infant motor score (BIMS) predictor was designed to
predict the relative maturity of an infant’s motor ability, which in
the typical infants reflects the most likely age of the infant based
on the classifier-produced category distributions of MAIJU
recordings (see Supplementary Fig. S10): the posture and posture-
conditional movement distributions. In the classifier, age-
dependent multivariate Gaussian distribution models of the
MAIJU motor ability distributions were estimated from the
dataset of typically developing infants (N= 55 infants; N= 60
recordings) using an age resolution of 1 month, and including
recordings within ±1 month from the center age in the estimation
process. After the estimation, the BIMS of a new unseen
recording was computed by first computing multivariate Gaus-
sian likelihood for all of the age-dependent models, given the
motor ability distributions from the present recording, followed
by calculation of the weighted average of the ages corresponding
to the Gaussian models using the relative likelihoods of the
models as weights. The evaluation of the method was performed
with LOSO cross-validation to produce age estimates for all of the
held-out subjects, after which Pearson correlation between the
target and predicted ages was used as the performance metric.
Due to the limited availability of data for all age groups, diagonal
covariance matrices were used in the multivariate Gaussian
models. At least 3 recordings were used to determine the means
and standard deviations of each age bin. The standard deviations
were set to have a minimum value of 10−4 to ensure model
stability. If at least three recordings were not found in the
±1 month range from the center age, recordings with the smallest
age difference to the center bin were added into the group until 3
recordings were obtained. The modeled age ranges were from
4 months to 16 months, where the 16 months age pool included
all recorded children who were over 16 months of age. This was
motivated by the fact (see also Fig. 4a) that infant motor ability in
our description scheme saturates at around this age27,28, just like
the well-known ceiling effect of AIMS values after 18 months of
age27. Likewise, the target age within BIMS prediction evaluation
for children over 16 months was set to 16, and the oldest age
group was labeled as “16+” in Fig. 4b. Similar logic would also
apply for infants younger than 4 months (not present in the
dataset), which makes BIMS a bounded scale of continuous values
(4 to 16 months) that are normalized into a scale of [0–100] with
BIMS= (predicted_age_in_months−4) × 100/(16−4), where 0
denotes “non-mature” motor ability (as in the ≤4-month-olds’
group), and 100 denotes “fully matured motor ability” (as in the
≥16-month-olds’ group).

We tested the robustness of the BIMS estimates in relation to
the length of the recording time from which the MAIJU
distributions are computed. To reach this end, we systematically
measured the mean absolute error (MAE) on the BIMS-classifier
(with LOSO cross-validation) with recordings of varying lengths.
The classifier was trained with the full dataset (same as in the
main BIMS experiment), but for testing, we utilized only the
recordings with usable length over 120 min (N= 12) to ensure
the underlying uniformity of the test data. From these recordings,
we sampled subsegments (with random start times) ranging from

10 to 100 min at 10-min intervals and computed the BIMS age
based on each segment’s distribution. The sampling of the
segments was performed for 1000 iterations, and finally, the MAE
between the BIMS scores and the true ages were computed. The
MAE variability as a function of recording segment length is
visualized with a boxplot where the median, interquartile range,
and range of the data distributions are shown.

Comparison of the algorithmic output to clinical development.
We devised a visualization approach (Fig. 5a) to provide an
intuitive and easy-to-interpret picture of the MAIJU-classifier
derived distributions that capture developmental change in infant
motor ability as a function of age. Within the visualization, the
age-category pooled (same as in the BIMS classifier; center bins
1 month apart, pooled with recordings from ±1 months) averages
of category distribution values are plotted with a violin plot to
highlight their deviance from zero. For the sake of visual clarity,
the left/right categories have been fused for both the movement
and posture tracks, and for the movement track, only a selected
number of posture-dependent movement categories are shown,
which highlight the development of the typical movement mod-
alities: prone crawling, crawling, and walking.

A subset (N= 28, age range 8–17 months) of the recorded
dataset was clinically evaluated by an experienced physiotherapist
(T.H.) according to the Alberta Infant Motor Scale (AIMS27) on
the same day as the MAIJU recordings. The Pearson correlations
(rAGE, rBIMS) between the raw (not age-adjusted) AIMS score and
infant age (chronological age and BIMS) were measured. To test
the hypothesis that the BIMS classifier corrects infants’ ages in the
direction of their motor developmental level, we utilized the two-
tailed comparing correlations (coror29) test between rAGE and
rBIMS.

Finally, another subset (N= 20) of the infant cohort had an
additional parental survey collected to evaluate the parents’
assessment of the amount of time the child typically spends in
different postures. We used a larger custom-made questionnaire
to assess many aspects of the project, including MAIJU design,
infant development, and parents’ perception of various things.
This questionnaire was delivered on paper and it was requested to
be filled by the parents/caregivers at the time of MAIJU
recording. For the present study, we chose two questions to be
compared with MAIJU outputs: estimate the average amount of
infant’s free playing time spent in (1) crawl posture and (2) sitting
posture. The answers were given on a verbally explained scale (in
Finnish), whose scale ranged from 1 to 9 (never, very rarely,
rarely, sometimes, often, very often, most of the time). The survey
answers were compared to the MAIJU-derived posture distribu-
tion values using Spearman’s rho (Fig. 4e) to estimate the
reliability of such quantitative assessment. As the MAIJU-derived
posture distributions can be assumed to be very close to the
ground truth for the given recording session, discrepancies
between the recorded distributions and survey answers can be
mainly attributed to two sources: (1) the normal day-to-day
variability of infant movements, and (2) estimation error of the
parents. Our setup does not allow differentiating the relative sizes
of these effects, but valuable intuitive insights can be gained by
comparing the results between multiple posture categories.

Statistics and reproducibility. Data preprocessing and analysis
were performed using custom Matlab codes (version 2021a). The
analysis codes are publicly available at Zenodo30. The raw figure
data have been made available in Supplementary Data S1.

Due to the large class frequency imbalance expected for the
recordings (e.g., older infants rarely crawl, whereas younger
infants do not stand), classification performance and inter-rater
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agreement were measured using a compounded confusion matrix.
Each individual recording’s (posture or movement-specific)
confusions were summed into a total confusion matrix for all
data, from which relevant statistics were computed (kappa, F1,
accuracy).

Standard tenfold cross-validation was utilized for classifier
evaluation, where the individual recordings were split into ten
equal-sized groups (folds) at the recording (participant) level,
from which nine folds were used to train a classifier while testing
on the remaining unseen data fold. The process was then repeated
for each possible test fold. Within the training data, 80% of the
frames were used for classifier training and 20% for validation.
The training was stopped when the classifier had reached
maximum performance for the unseen validation data based on
the unweighted average F1 score.

Correlations were computed using Pearson’s r, where p values
were computed using the two-tailed null hypothesis that the
correlation is zero, except for the parental questionnaire data
where standard Spearman’s rho was applied with the same two-
tailed null hypothesis. In Bland–Altman analysis, the two-tailed t-
test was used to test the null hypothesis (at p < 0.05) that the
errors have a mean of zero.

The comparing correlations (cocor29) test battery was used to
study the statistical significance of different correlation values
with the following settings: two dependent groups, overlapping
correlations, null hypothesis: r.jk = r.jh, alternative hypothesis:
r.jk ≠ r.jh, alpha level 0.05. The cocor test includes the following
ten sub-tests: (1) Pearson and Filon’s z, (2) Hotelling’s t,
(3) Williams’ t, (4) Olkin’s z, (5) Dunn and Clark’s z,
(6) Hendrickson, Stanley, and Hills’ modification of Williams’ t,
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Fig. 5 Assessing maturation of infant motor ability with MAIJU. a Graphs showing the occurrence of each posture (left) and motor ability class (right) as
a function of infants’ prematurity-corrected age (N= 60). The black lines denote the interquartile range (IQR) of the age-related occurrence, and the red
cross depicts the median age for the occurrence. The measures combine all analyzed 2.3 s time frames of the recording session, and all infants exhibit
motor ability in several classes, which show clear developmental trajectories. Note also the clear developmental sequence in the movement categories
within each posture. b Scatter plot showing a correlation between infants’ (N= 60) chronological age and the age prediction from the BIMS algorithm.
c Dependence of BIMS estimate on the length of recordings between 10 and 100min of data. Data were taken as randomly sampled segments from N= 12
recordings whose length was over 120min (range 121–150min). The findings in the Y-axis are expressed as the mean absolute error (MAE) in the age
prediction as in b) (bars show the median, IQR, and the range). Note how the MAE stabilizes with recording lengths over one hour. d Correlation between
BIMS and AIMS score (purple) compared to the correlation between true age and AIMS score (green) (N= 28). The result indicates that the BIMS score is
biased towards the actual developmental level, as the correlation is significantly higher (cocor tests; p < 0.05; N= 28) compared to the chronological age
correlation. e Comparison between a parental estimate of infant’s time spent in various postures and the MAIJU-derived corresponding measures
(N= 20).
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(7) Steiger’s modification of Dunn and Clark’s z using average
correlations, (8) Meng, Rosenthal, and Rubin’s z, (9) Hittner,
May, and Silver’s modification of Dunn and Clark’s z using a
backtransformed average Fisher’s Z procedure, and (10) Zou’s
confidence interval. No outlier or other exclusion criteria were
applied to the data, as we assumed all data to be representative of
data captured in and outside the lab.

Sample size calculation. This study was observational, not
interventional, hence sample size was not calculated.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Design of and recording with the infant wearable. For a reliable
assessment of infant motor ability, we designed a wearable
solution MAIJU (Motor ability Assessment of Infants with a
Jumpsuit; Fig. 1a) by equipping a garment commonly used as a
swimming suit in many cultures with sensors. Altogether 59
infants, with an age range of 4.5 to 19.5 months, participated in
64 recording sessions (Fig. 1b), performed either at home
(N= 40) or in the research facility (N= 24). All recording ses-
sions included a spontaneous play that could be encouraged with
minimal active physical contact by an adult. Part of the cohort
(total N= 41 infants; 29.3 h; both at home and in the lab) were
videotaped to allow visual annotation of the infants’ posture and
movement (Fig. 1c) for later training and validation of the
automated classifier algorithms and to measure inter-annotator
consistency for the novel annotation protocol (Fig. 2a).

Development of a unified, structured scheme for infant motor
ability. Leveraging MAIJU’s full potential in motor ability
assessment calls for motor ability descriptors that strike a balance
between (1) having high temporal accuracy for moments of
independent movement, (2) being captured by movement sen-
sors, while also (3) retaining an interpretable general meaning
that is visible from visual assessment. Aiming to optimize for
these three constraints, we developed a novel motor ability
description scheme for recognizing two parallel tracks that
together are able to comprehensively describe infants’ motor
ability (Fig. 2b): five different postures (lying supine, lying prone,
crawling, sitting, and standing) and four different movement
qualities within them (still, proto, elementary, and fluent). We
also included two intermediate postures (lying on the left or right
side) and five intermediate movement types (pivoting left/right,
rolling left/right, and transitioning between postures). This
scheme perceives motor ability via a posture state during which
the infant will exhibit a graded quality of movement, encom-
passing stillness, general activity (“proto”), developing movement
patterns (“elementary”), and mature movement patterns (“flu-
ent”). The detailed descriptions behind the motor ability
description scheme are presented in the supplementary material
(Supplementary Tables 1–3). Five researchers were trained to
independently annotate these motor ability types in videotapes of
MAIJU recording sessions (N= 41 infants, total duration
1758 min), in order to provide a reliable benchmark for super-
vised classifier training, as well as to assess human inter-rater
agreement (Fig. 2a, b).

A comparison of the second-level posture annotations showed
a very high overall inter-rater agreement for all posture types
(Supplementary Figs. S1, 2; Fleiss’ kappa k= 0.95). The clear-cut
postures reached a nearly perfect agreement (supine k= 0.97,
prone k= 0.97, standing k= 0.98, sitting k= 0.95), while the

other postures exhibited somewhat lower levels of agreement
(crawl k= 0.88; side-lying k= 0.79). Comparison of the move-
ment annotations at a second-level timescale showed an overall
inter-rater agreement of k= 0.60) However, it varied widely
between different movement types, ranging from substantial
agreement with recognizing still (k= 0.67) and fluent movement
(k= 0.71) to far lower agreement in recognizing transitions
(k= 0.51) or elementary movements (k= 0.4). Note that for
chance-level agreement, k= 0. Though unideal, an inter-rater
agreement around k= 0.6 is typically described as “moderate”
(k < 0.6) or “substantial” (k > 0.6)31. Such agreement rates are
common in annotation tasks with naturally ambiguous categories,
such as various EEG tasks32 or general movements assessment33.
The inter-rater confusion matrix for movement (Supplementary
Fig. S1b) shows that the confusions between the categories occur
between conceptually related motor ability types: e.g., fluent
movement is primarily confused with elementary movement, but
not with proto or still. The detailed metrics of agreements
between human raters and algorithms for posture-conditional
movement categories are presented in Supplementary Fig. S1c.

We then tested how the novel motor ability descriptors reflect
developmental change over the age range from 4.5 to 16.2 months
(based on the full annotated dataset). All metrics of posture and
most metrics of movement were found to exhibit a strong
correlation to infant age (Fig. 2c and Supplementary Fig. S11).
For instance, there was a strong, expected developmental decline
in lying prone (Pearson’s r=−0.71, p < 0.001, N= 42) and being
still (rho=−0.62, p < 0.001), while standing posture (r= 0.8,
p < 0.001) and fluent movement (r= 0.79, p < 0.001) showed an
expected strong developmental increase. Meanwhile, crawl
posture (r= 0.16, p= 0.3) and transitions (r= 0.68, p < 0.001)
showed a nonlinear U-shaped transient hump peaking around the
end of the first year. Finally, these motor ability descriptors
correlated strongly to the internationally well-known motor
assessment Alberta Infant Motor Scale, AIMS15 (Supplementary
Fig. S12); there was a clear negative correlation with proto
movement (r=−0.71, p < 0.01, N= 13) and a strong positive
correlation with standing posture (r= 0.8, p < 0.001) and fluent
movement (r= 0.59, p= 0.03).

Confirming the presence of motor ability categories in wear-
able signals with self-supervised learning. Devising an auto-
mated motor ability analysis is critically dependent on the
genuine presence of the target motor ability categories in the
recorded wearable data. To evaluate this, we used a self-
supervised learning method (contrastive predictive coding,
CPC26) for robust learning of latent representations from the
recorded signals26,34. A two-dimensional view35 (Fig. 4a) of the
results reveal clear clusters in the data, which match very closely
to the posture categories identified independently by the human
observers from the corresponding video recordings. In contrast,
the different movement qualities exhibit less clear category
boundaries. These observations are fully in line with the high
human inter-rater agreement for posture, as well as the relative
inherent ambiguity in the movement categories, also seen as a
lower inter-rater agreement. Taken together these findings sug-
gest that the phenomenologically identified, intuitively, and
clinically reasoned motor ability classes (Fig. 2b) are genuinely
present in the signals recorded with the MAIJU wearable.

Construction of a deep-learning-based classifier for infant
motor ability assessment. Comparison of the motor ability
classifier outputs to human annotations showed a very high
overall agreement for both posture and movement (Fig. 4b and
Supplementary Fig. S6) that were on a par with the inter-rater
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agreement (Fig. 2b and Supplementary Figs. S1, 2). The average
kappa between algorithmic and human annotations for the pos-
ture categories was 0.93 (class-specific; e.g., prone k= 0.97;
supine k= 0.97; standing k= 0.85), while there was only a
modest and expected confusion between nearby postures, such as
side versus prone or supine, as well as sitting versus crawling.
Confusion matrices between movement categories (combined for
all postures) indicate a substantial agreement between algorithm
and human for the phenomenologically most distinct categories
of still (k= 0.68), rolling (k= 0.62), pivot (k= 0.61), and fluent
movement (k= 0.73).

The performance metrics from classifier-to-human vs. human-
to-human (Fig. 2b and Supplementary Figs. S1, 2) comparisons
suggest that a human annotator can be replaced by the classifier
algorithm without notable loss of agreement; this indicates a
human-equivalent level of performance for both posture and
movement classifications.

Finally, we assessed how accurately the algorithm is able to
provide individual-level quantitation of the time spent in different
postures and movements normalized by the total recording time
(see Supplementary Fig. S5 for procedural details). We found a
very high correlation between human annotation and classifier
outputs (Fig. 4c; full list in Supplementary Figs. S8, 9) for the
fractional time that the infant spends in prone posture (r= 0.999,
p < 0.001), standing posture (r= 0.999, p < 0.001), and fluent
movement (r= 0.96, p < 0.001). A Bland–Altman analysis indi-
cates that the correspondence between algorithm- and human-
based motor ability classification is not significantly biased (two-
tailed t-test; p > 0.05) by the amount of time in a given posture or
movement of each individual. Moreover, we compared the
classification errors to the population-level change in motor
ability distributions per one month of development (obtained with
a linear fit to the annotated data) (Fig. 2c). For all infants, the error
was below the one-month developmental change for the prone
and standing postures. The fluent movement was also quantified
within one-month bounds in 88% of infants.

Assessing infant motor development with the BABA infant
motor score (BIMS). Pediatric developmental assessments
are always challenged by the substantial inter-individual
variability in both the rate and shape of developmental
trajectories13,14,16,17,20,21. A child may also spontaneously depart
from the expected milestone pathway and adopt alternative
strategies in movement repertoire, such as bottom shuffling until
walking onset7,16,17. Therefore, an experienced child neurologist
combines all motor ability patterns of an infant into a holistic,
clinical assessment of neurodevelopmental maturity.

Here, we studied whether a global maturity of motor ability can
be obtained from the MAIJU data. All posture and movement
patterns were found to correlate strongly with the child’s age at
the recording time (Fig. 2c and Supplementary Fig. S11; age
corrected for possible prematurity), and the data pooled over all
typically developing infants (N= 56 infants; N= 60 recordings)
confirmed that our motor ability metrics comply with the
sequence of motor milestones1,13,36. Moreover, there was a strong
developmental succession from supine to standing postures, as
well as from still to fluent movement patterns within each posture
category (Fig. 5a). These age-related changes in the motor ability
distributions support the training of a probabilistic prediction
algorithm that provides a maximum likelihood estimate of a
child’s age from the MAIJU data distributions (Supplementary
Fig. S10). A transparent interpretation of such classifier output is
“motor ability age” in months, which compares directly with the
everyday clinicians’ aim to benchmark a child’s motor ability with
age-typical performance36. We found a very strong correlation

(Pearson’s r= 0.89, p < 1e-20; Fig. 5b) between infants’ chron-
ological age and the cross-validated algorithm-generated age
prediction, with the mean absolute error (MAE) of 1.4 (1.1)
months (IQR range −1.2–0.9, median −0.3) indicating that our
quantified motor ability measures follow infant chronological age
with striking accuracy. We also assessed how much the prediction
accuracy is affected by the recording length, which is a practical
challenge in all infant studies. For a subset of the recordings that
exceed 120 min in length (N= 12), the average MAE decreases
from 2.4 (0.5) months to about 1.9 (0.2) months when the length
of MAIJU recordings increases from 10 to 100 min, respectively.
A reasonably stable result was obtained when the recording
length exceeded 1 h (Fig. 5c).

Next, we wanted to render the motor ability age prediction to a
clinically more suitable metric that generalizes across user cases
by providing an age-free estimate of infants’ maturity of motor
ability. This was done by re-scaling the motor ability age
prediction to a continuous scale bounded between [0, 100] so that
the lowest and highest values represent the least and the most
advanced performance, respectively. This re-scaled score was
called BABA Infant Motor Score (BIMS), with the range bounded
from the youngest (i.e., 4.5 mos) to the oldest (over 16 mos)
infants in our cohort. The clinical value of a novel measure like
BIMS is measured by its ability to provide added informational
value in a clinical context. To estimate such potential, we
evaluated the nature of prediction errors in the BIMS estimates
and we hypothesized that the error in an infant’s age prediction is
linked to the actual motor maturity of the given infant. We took
the Alberta Infant Motor Scale (AIMS) score as an established
metric of a child’s motor maturity27, and we compared the
correlation between infants’ chronological age and AIMS score to
the correlation between BIMS and AIMS (cocor29) (Fig. 5d). The
correlation between BIMS and AIMS was significantly higher
than the correlation between chronological age and AIMS (all
two-tailed cocor tests; N= 28; p < 0.05), increasing from
Pearson’s r= 0.56 to 0.83 (Spearman’s rho= 0.6 to 0.82), which
indicates that BIMS discloses genuine diagnostic information in
that it is more closely linked to infants’ actual motor maturity
than to estimating their chronological age.

Example uses of the MAIJU wearable in the clinical assessment.
Quantified motor ability assessment can be used in diverse con-
texts. Here, we compared the potential value of algorithmically
assessed motor ability maturity in some common clinical and
clinical research scenarios. First, we compared the quantified
MAIJU category distributions to the widely-used AIMS score27.
We found expected, robust correlations between multiple
MAIJU-derived measures (Supplementary Fig. S12). Akin to the
BIMS-classifier, we trained an AIMS predictor that showed a very
high correlation with the actual AIMS score (Supplementary Fig.
S13; Pearson’s r= 0.93, p < 0.001).

Second, we compared the MAIJU-derived quantitative motor
ability measures with information from parent surveys, the key
source of clinical information37,38. The parents were asked to
estimate the amount of time that the child spends in different
postures. While there was an expected overall correlation between
the by-nature subjective parental estimates and the objective
MAIJU-derived results, there was also a salient scatter in many
parents’ observations (Fig. 5e). The parental surveys assessing
quantitative information may be readily confounded by the
highly variable motor ability of infants39. This was also clearly
seen in the MAIJU recording as very high rates of transitions in
both posture (average 3.6/min, IQR 1.5–5.2) and movement
(average 13.5/min, IQR 10.7–16.1), which both also exhibited a
significant correlation to infant age (Supplementary Fig. S14).
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Discussion
We constructed and validated a potentially clinically applicable
method for accurate, objective, and quantitative tracking of an
infant’s gross motor performance throughout the full develop-
mental sequence from lying supine to fluent walking. Our work
first conceived a novel description scheme for a transparent and
intuitively interpretable classification of an infant’s postures and
movements, collectively called motor ability. This scheme was
shown to correlate with the infant’s motor maturation, and it
reaches acceptable inter-rater agreement to serve as a reference
for training computational classifiers. We then developed a novel
infant wearable, MAIJU, for recording an infant’s spontaneous
movements within both in- and out-of-hospital environments. A
self-supervised learning method26 was employed to verify that
these motor ability categories are genuinely present in the infant’s
movement recording data, which forms a strong foundation for
training deep-learning-based classifiers to analyze the MAIJU
recordings. The classifier algorithms were shown to perform at
the accuracy of human observers. Finally, quantified motor ability
metrics correlated strongly with the established sequence of
developmental milestones, which supported the training of an
algorithmic predictor of age in typically developing infants. This
predictor yields a novel, transparent summary measure of motor
development, BIMS, which holds promise as an objective uni-
versal metric in early neurodevelopmental assessment, supporting
individualized neurodevelopmental care as well as benchmarking
of clinical trials40–42.

The potential utility of a reliable, objective, and quantitative
method for tracking infant neuromotor development is con-
siderable. Prior work has shown that movement sensors can be
used to follow a subject’s posture22,43,44 or motor activity in
health and disease, with mild to modest statistical correlation to
salient clinical conditions23,45–47. However, most of the prior
work has been constrained by practical limitations in the
recording configuration and data analytics, such as using only one
or two accelerometer sensors to quantify only the gross amounts
of movements23,43,48,49. Here we show that even more sensitive
recognition of different motor ability types in the child’s spon-
taneous behavior16,17,36 may be achieved by combining modern
deep-learning signal analysis methods with multisensory
recordings. Moreover, the computational analysis is substantially
boosted when the classifier training is founded on a well-struc-
tured, physiologically reasoned motor ability description to
enable second-by-second activity recognition by both human
observers and the sensor signals. Our findings back up the
everyday observation that infants’ spontaneous behavior is
characterized by very frequent transitions that jointly provide
crucial diagnostic clinical information17,50,51, hence calling for
high temporal resolution in both data capture and analyses.

An unambiguous phenomenological description of infant
motor ability is crucial for building objective quantification scales.
Several assessment scales14,15,18 have been developed and are
widely used for clinical assessment purposes. They typically
consist of a larger set of categorical items, except for the detection
of fidgety movements in the context of general movement
assessments during the first postnatal months52,53. The assess-
ment items could be reported by the parents or observed by a
health care professional from video recordings or during a lab
appointment. The outcomes of such scales are usually summed
scores compacted from multidimensional observations of an
infant’s overall behavior, which typically include the viewer’s
interpretations of the infant’s intentions and/or other subjective
and qualitative items. Notably, none of the existing assessment
scales is directly suitable for characterizing infants’ motor ability
at a high enough temporal accuracy needed to capture the rapid
motor ability transitions of a naturally behaving infant17,36,51.

Our work conceived a template for motor ability description that
shows good to excellent agreement between human raters, while
it also allows direct translation from the MAIJU recordings to
deep-learning-based analytics. The visual and automatic detec-
tions of these motilities in an infant’s behavior are per se inter-
pretable and meaningful for a human observer, and they also link
strongly to both the infant’s age and the clinical assessment scale
AIMS. Yet, it is important to note that this motor ability
description scheme was designed with three constraints: it had to
support a comprehensive classification of each 2-s epoch of
infant’s movement into visually recognizable categories that
could, at least in theory, be extractable from movement sensor
data, and which would be easily interpretable by humans (e.g.,
clinicians) in order to build trust on any “overall measure of
motility” (such as BIMS) by grounding the measure to real-world
observable motor phenomena. Our present motor ability
descriptors are therefore not informative for attempts to under-
stand other qualities of an infant’s behavior, such as intentionality
or fine manual operations characteristic of a child’s exploratory
behavior.

It has recently become popular to directly train deep-learning-
based classifier algorithms to turn raw signals into high-
level categorical outputs, such as diagnostic54,55 or clinical
outcomes41,56,57. A direct clinical diagnostic prediction from the
raw data could have been used in our context as well. However,
several issues argue against such a strategy. First, a direct pre-
diction from the sensor data would need datasets that are orders
of magnitude larger to accommodate the very high complexity in
the raw sensor data. Second, a direct prediction would ignore the
intermediate and per se interpretable result, the detailed class-wise
motor ability quantitation, thereby greatly limiting the transpar-
ency and flexibility of the approach. For instance, it is easy to
envision a wide potential for metrics of individual motor ability
classes as independent biomarkers in neurodevelopmental
assessment. Movement recognition in the context of posture also
provides a straightforward front-end to building further context-
dependent movement analyses, such as assessing asymmetry in
crawling or walking16,18,58, which are key aspects in predicting
the development of the common condition, unilateral cerebral
palsy59. Moreover, reliable tracking of postures, such as tummy
time, may be essential for studying developmental correlates of
infant behavior60.

A child’s age is the most important benchmark in all pediatric
assessments, and both structural and functional developments are
expected to follow predictable trajectories, the basis of established
growth charts61. With the development of advanced machine
learning-based methods, several novel computational indices
have been proposed to predict age from structural, functional,
and molecular measures62–66. Our study shows that the predic-
tion of an infant’s age from the MAIJU data is accurate until it
saturates by about 16 months when the typically developing
infants reach the upper boundary of our motor ability description
scheme13,21,36,67. This limits the conceptual utility of direct age
prediction, which is overcome by converting the output into the
novel BIMS metric. Since BIMS is tightly linked to the age of
healthy infants, it readily supports continual learning and
validation68 from new infant cohorts as needed. Moreover, such a
unidirectional metric allows direct use of an infant’s motor ability
tracking in statistical assessments with any other scalar measures
from the clinical or other sources. For instance, BIMS provides a
straightforward measure for the challenging but topical studies on
the developmental cross-domain interactions, such as is seen
between infant neuromotor development, later cognitive out-
comes, and/or environmental enrichment interventions42.

Our present results are based on one type of movement sensor
and placements to capture the essential characteristics of an
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infant’s spontaneous motor ability22. It is possible that different
sensor placements69,70 and/or modalities could capture some
peripheral movements at even higher fidelity. However, we are
not aware of wireless technology that would be currently available
for constructing such viable solutions in clinical and home
environments. The present work only focuses on the range of
movement patterns during infancy, while different movement
types will continue qualitative development beyond the infantile
period by adapting the variability of motor control to changing
developmental needs12,67, considered to also be essential for later
cognitive development12,71,72. Any other motor ability classifi-
cation will need new training of the respective classifiers. Finally,
our study shows clearly the feasibility of tracking motor ability
and building growth charts from their metrics or combined
indices like BIMS; However, establishing clinically accepted
reference values will require larger prospective collection of
normative data, preferably across different cultures to accom-
modate possible cultural differences28 and possible changes over
time73.

Our work demonstrates a fully functional solution for motor
ability tracking, which is already being used in the first clinical
research trials. However, there are several technical, practical, and
regulatory steps before it can be applied widely in the clinic. First,
more experience is needed from different medical centers, health
care environments, and user groups to define the practical issues
related to infant recordings and analysis logistics. For instance, it
will be essential to study the utility of such an approach in early
diagnostics and follow-up of neurodevelopmental compromise or
therapeutic efficacies. Here we examined how recording length
affects the accuracy of BIMS estimate, however, future studies will
be needed to fully explore the relationships between recording
times and study results, which will likely vary between clinical
questions and metrics of interest74–76. Another aspect of our
method’s sensitivity is to see the minimal detectable change in
BIMS or any other MAIJU-derived metric, which can only be
studied in appropriately designed longitudinal cohorts. It will also
be essential to evaluate the cost-benefit questions that are partly
specific to different health care settings. An important aspect of
that work will be to establish the added clinical or scientific value
of the new method relative to all the existing methods, such as
AIMS. Second, coordinated manufacturing and compilation of
the technological components in the full MAIJU solution is
needed to support higher production volumes. Third, sufficiently
large normative datasets are needed from different health care
settings and diagnostic groups to test the practical diagnostic
reliability14,19,77, as well as to establish internationally approved
reference data for both the motor ability metrics and the BIMS
growth charts. Fourth, while clinical research can be carried out
with investigational permissions, a prospective clinical use as a
registered medical device needs an accurate definition of user
cases78. This will likely involve the development of the respective
legislations to accommodate continual learning that characterizes
medical devices based on machine learning algorithms79. Since
wearables of this kind are conceptually novel and they potentially
change health care processes, it is also essential to define the user
cases together with the relevant communities in neurodevelop-
mental research and medical care.

In summary, the present study shows proof of concept that the
full sequence of infant motor ability development, from lying
supine to walking fluently, can be quantified objectively by using
a wearable method combined with a motor ability description
scheme that is automatically analyzed using a deep-learning-
based algorithm. These novel metrics of motor ability are trans-
parent, intuitively interpretable, and they link strongly to infant
age. Moreover, the metrics can be used further in training an
algorithmic estimation of maturation of infant motor ability,

BIMS, which is robust to variations in the recording length and
the child’s age, and it also correlates significantly to other clinical
and parental assessments of infant’s performance. A solution of
this kind is readily automated and widely scalable to a global
extent; hence it holds significant promise for the early assessment
of neurodevelopmental delays, as well as providing a functional
benchmark for individualized patient care or early intervention
trials.

Data availability
An example dataset of three recordings is made publicly available at https://doi.org/10.
5281/zenodo.641748630. The other original (raw) movement data can be made available
upon request to the authors (S.V.). The use of this dataset in further scientific work will
require a data-sharing agreement with Helsinki University Hospital. Processed data, such
as motility classifier outputs, can be made available upon request.

Code availability
Data preprocessing and analysis were performed using custom Matlab codes (version
2021a). The analysis codes are made publicly available at Zenodo30 (https://doi.org/10.
5281/zenodo.6417486). The video recordings were annotated with Anvil software
(version 6.0; https://www.anvil-software.org/). The motility classifier was implemented as
custom code using Python (version 3.6.9) and Tensorflow (version 1.12.0). The motility
classifier can be run through the BABA cloud (www.babacloud.fi) with credentials that
are freely available at request (M.A.).
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