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Humans and animals are not always rational. They not only rationally
exploit rewards but also explore an environment owing to their curiosity.
However, the mechanism of such curiosity-driven irrational behavior is

largely unknown. Here, we developed a decision-making model for atwo-
choice task based on the free energy principle, whichis a theory integrating
recognition and action selection. The model describes irrational behaviors
depending on the curiosity level. We also proposed a machine learning
method to decode temporal curiosity from behavioral data. By applying
ittorat behavioral data, we found that the rat had negative curiosity,
reflecting conservative selection sticking to more certain options and that
thelevel of curiosity was upregulated by the expected future information
obtained from an uncertain environment. Our decoding approach canbe
afundamental tool for identifying the neural basis for reward-curiosity
conflicts. Furthermore, it could be effective in diagnosing mental disorders.

Animals and humans perceive the external world through their sensory
systems and make decisions accordingly'’. Generally, they cannot make
optimal decisions because of the uncertainty of the environment as
well as the limited computational capacity of the brain and time con-
straints associated with decision-making®. In fact, they perform irra-
tional actions. For example, people play lotteries and gamble despite
low reward expectations. In this case, they face a dilemma between
low expected reward and curiosity regarding whether a reward will
be acquired. Thus, understanding how animals control the balance
between reward and curiosity is important for clarifying the whole
decision-making process. However, amethod s yet to be established for
quantifying the reward-curiosity balance has yet been established. In
this study, we developed amachine learning method to decode the time
series of the reward-curiosity balance from animal behavioral data.
Some irrational behaviors emerge because of the strength of
curiosity*’. For example, conservative individuals avoid uncertainty
and prefer to select an action that leads to predictable outcomes.
Conversely, inquisitive individuals strongly desire to know the envi-
ronment rather than rewards and prefer to select an action that leads
to unpredictable outcomes. Too conservative and inquisitive natures
can beinterpreted as autism spectrum disorder and attention deficit

hyperactivity disorder, patients with which are known to substantially
avoid and seek novel information, respectively® . Rational individuals
fall midway between these two extremes. In an ambiguous environ-
ment, they select an action to efficiently understand the environ-
ment, and if the environment becomes clear, they select an action to
efficiently exploit the rewards. Therefore, curiosity has amajorimpact
onbehavioral patterns, and it is believed that animals control the bal-
ance between reward and curiosity in a context-dependent manner.

Decision-making has been modeled primarily by reinforcement
learning (RL), whichisatheory for describing reward-seeking adaptive
behavior in which animals not only exploit rewards but also explore
the environment. In RL, explorative behavior was addressed by a
passive, random choice of action®. However, animals actively explore
the environment by selecting actions that minimize the uncertainty
of the environment given their curiosity.

Recently, thefreeenergy principle (FEP)wasproposedbyKarlFriston
under the Bayesian brain hypothesis, in which the brain optimally
recognizes the outside world according to Bayesian estimation'® %,
The FEP addresses not only the recognition of the external world but
also the information-seeking action selection, which minimizes the
uncertainty of the recognition of the external world, known as “active
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inference””?". Furthermore, FEP proposed a score of action, called
expected free energy, which consists of the expected reward and curi-
osity with the same unit?>. Thus, action selection can be formulated
by maximizing both reward and curiosity. Note that curiosity can be
regarded asinformationgain, thatis, the extent to which we expect our
recognition to be updated by the new observation through the action.
However, FEP assumes that the weighting of rewards and curiosity is
always even and constant. Although a previous FEP study modeled
activeinferenceinatwo-choicetask, it assumed a constantintensity of
curiosity and thus could not treat actual animal behaviors in which the
weights of rewards and curiosity are expected to change over time®.
Hence, conventional theories suchas RLand FEP are limited in describ-
ing the conflict between reward and curiosity.

Identifying the temporal variability of curiosity is important for
future clarifying the neural mechanisms of the reward and curiosity
conflicts in decision-making. Many FEP studies have been devoted to
the construction of theory, assuming that the decision-making pro-
cesses of animals are Bayes optimal. Thus, there was not eventheidea
thatanimalsirrationally make decisions depending on the reward and
curiosity conflicts. For this reason, a method to decode the temporal
balance between reward and curiosity from behavioral data is yet to
be established. Such amethod would enable us to analyze neural cor-
relates with the temporal variability of curiosity, and consequently, it
would help us clarify how the brain controls the balance of reward and
curiosity in a context-dependent manner.

Inthis study, we extended FEP by incorporating ameta-parameter
that controls the conflict dynamics between reward and curiosity,
called the reward-curiosity decision-making (ReCU) model. The ReCU
model can exhibit various behavioral patterns, such as greedy behavior
toward reward, information-seeking behaviors with high curiosity and
conservative behaviors avoiding uncertainty. Moreover, we developed
amachinelearning method called the inverse FEP (iFEP) method to esti-
matetheinternal variables of decision-making information processing.
Applying the iFEP method to a behavioral time series in a two-choice
task, we successfully estimated the internal variables, such as varia-
tionsin curiosity, recognition of reward availability and its confidence.

Results

Decision-making with the reward-curiosity dilemma

Animals perceive the environment by inferring causes such as reward
availability from observation, and then they make decisions based on
their own inferences. In this study, we developed an ReCU model of a
decision-making agent facing adilemmabetween reward and curiosity
in a two-choice task, wherein the agent selects either of two choices
associated with the same rewards but with different reward probabili-
ties (Fig. 1a). If the agent aims to maximize cumulative rewards, the
agent must select an option with a higher reward probability. However,
inanimal behavioral experiments, even after they learned which option
was more associated with areward, they did not exclusively select the
best choice, but also often selected the option with a smaller reward
probability, which seems unreasonable.

Here, we hypothesized the following: Animals assume that the
reward probability for each option might fluctuate over time, and
therefore, the continuous selection of one option decreases the
confidence of the reward probability estimation for the other option.
Thus, they become curious about the ambiguous option even with a
smaller reward probability, and so selecting the ambiguous option is
reasonable for increasing the confidence of the estimation for both
options. Therefore, we considered that the agent should make deci-
sionsdriven by reward and curiosity inasituation-dependent manner.

ReCUmodel

Inthe ReCU model, we divided information processing in the braininto
two processes. Inthe first process, the agent updates the recognition of
thereward probability of each option (Fig.1a, process1).Inthe second

process, the agent selects an action based on the current recognition
and curiosity (Fig. 1a, process 2). The agent repeats these two processes
in the two-choice task.

We modeled the first process by sequential Bayesian estimation,
under the assumption that reward probabilities latently fluctuate in
time (Fig. 1b). The agent updates the belief about the reward prob-
abilities, which are expressed as estimation distributions, inresponse
toactionsand consequence reward observations (Fig. 1c). We derived
theequations of the beliefupdate (Fig. 1d and Methods). We modeled
the second process by action selection based on two kinds of motiva-
tions: the desires to maximize the reward and to gain the information
from the environment (Fig. 1e). This sum, called ‘expected net utility’
inthis study, can be expressed by

U, () = E[Reward, ]| + ¢, - E[Info4], @

whereaandtindicatetheactionandtrialindex, respectively, and E[x]
denotes the expectation value of x based on current recognition. The
firstand second terms represent expectations of reward and informa-
tion derived from a new observation, respectively, for the nextaction
a,.,based on current recognition. c,denotes ameta-parameter describ-
ing the intensity of curiosity, which weighs the expected information
gain (see Methods for detail). We assumed anirrational mental conflict
asc,varies over time (Fig. 1f). In decision-making, the agents prefer to
selectaction a,,; with the higher expected net utility, in which the action
is selected probabilistically following a sigmoidal function

1

1+exp (-BAU,)’ @

P(ag) =

where AU,=U(a,+1) - U(a,;;),and B denotes the inverse temperature
controlling the randomness of action selection®>***°,

Recognition and decision-making in the simulation

To validate our model, we performed simulations with constant curi-
osity ¢,=1for two cases. In the first case, where reward probabilities
were constant and different between the two options (Fig. 2a), the
agent preferred to select the option with the higher reward probability
(Fig. 2b). The recognized reward probabilities converged to ground
truths, indicating that the agent accurately recognized the reward
probabilities (Fig. 2c). The recognition confidence changed over time
dependingonthebehaviorineachtrial; the confidence of the selected
optionincreased withinformation from the observation, whereas that
oftheunselected option decreased because of the agent’s assumption
regarding the fluctuation in reward probabilities (Fig. 2d). Similarly,
the expected information gain of an option increased and decreased
when that option was selected and unselected, respectively. Thus,
the expected information gain was lower for the option with higher
confidence (Fig. 2e). The expected reward followed the recognized
reward probability (Fig. 2f). Initially, decreasing expected informa-
tion gain and increasing expected reward eventually cross at some
number of trials, which correspond to switching between information
explorationand reward acquisition (Supplementary Fig.1a). These two
factors are negatively correlated, indicating a trade-off relationship
(Supplementary Fig.1b). The expected net utility, which is the sum of
the expected information gain and reward, represents the value of each
selection (Fig. 2g), resulting in the agent’s preferentially selecting the
optionwith the higher expected net utility.

In the second case, we assumed a dynamic environment with a
time-dependent reward probability (Fig. 2h). In the simulation, the
agent adaptively changed its recognition of the reward probability
following the change in the true reward probability, and selected the
option with the higher estimated reward probability (Fig. 2i,j). The
confidence was affected by the uncertainty of the reward probability
at each time; the confidence was high where the reward probabilities
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Fig.1| Decision-making model for the two-choice task with reward-curiosity
dilemma. a, Decision-making in the two-choice task. Reward is provided at
different probabilities for each option. The agent does not know those
probabilities. Through repeated trial and error, the agent recognizes the world by
inferring the latent reward probability of each option, and decides to choose the
nextaction, thatis, option, based onits own inference. b, Sequential Bayesian
estimation as arecognition process. The agent assumes that the reward
probabilities change over time owing to the fluctuation in the latent variable
controlling reward probability. ¢, Belief updating. The agent recognizes the
latent variable as a probability distribution. d, The update rule of the mean and

Process 2:
action selection

Action selection process

Ua,,)) = E[Reward] + ¢,

@

G, =C,, + ) noise

Curiosity

variance of the estimation distribution for each option. &, K,and f(i,) indicate the
learning rate, Kalman gain, and the prediction of the reward probability,
respectively. The second term in both equations disappears if the option is not
selected. e, The action selection process by the agent. The agent evaluates the
expected net utility U,(a.,;) of each action using the weighted sum of the
expected reward and information gain, as shown in the equation. The agent
compares the expected net utilities for both actions and prefers the option with
the larger expected net utility. f, Time-dependent curiosity. The intensity of
curiosity changes over time owing to the fluctuation of c,.

were near-deterministic, around 1 and O, but low where the reward
probabilities were uncertain, i.e., approximately 0.5 (Fig. 2k). The
expected information gain of an option was negatively correlated
with the confidence of the option (Fig. 21), suggesting that the agent
was curious about the uncertain option. The expected reward just
varied depending on the recognized reward probability (Fig. 2m).
Inthis case, we also observed a switching between information explo-
ration and reward acquisition at the initial phase (Supplementary
Fig.1c).Incontrastto the above case, the expected reward and expected
information gain did not show clearly linear correlation because of the
dynamicenvironment (Supplementary Fig.1d). The expected net util-
ity changed similarly to the expected reward; however, the difference
between the left and right options was less pronounced because of

curiosity (Fig.2n). These two demonstrationsindicate that our model
canrepresent the process of cognition and decision-making based on
reward and curiosity.

Discrimination of passive and curiosity-dependent behaviors
The behavioral difference based on curiosity is interesting. The
expected net utility can be rewritten as

AU; = AE[Reward ;] + ¢, - AE[Infoy,], 3)
where the first and second terms represent the differences between

the expected reward and information gain of two options, respectively.
Thus, the agent is decided based on the balance between AE [Reward,]
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and AE [Info,,;]. Here, we created a diagram visualizing the selected
actions in the space of AE[Reward,,;]and AE[Info,,,]. Depending on
the intensity of curiosity c,, the left and right actions can be separa-
tedbyaboundary of AE[Reward,,;] + ¢, - AE [Info,,;]| = O (Fig.20-q).
The agent with ¢, = O selected an option based only on AE [Reward, ;|
(Fig.2p).In contrast, if c,was anonzero value, the boundary leaned to
adifferent direction depending onthe positive and negative values of
¢, (Fig. 20,q). These results indicate that passive choice (c,= 0) and
curiosity-dependent choice (¢, # 0) canbe discriminated based on the
distributed pattern of selected actions in the space of AF [Reward, ;|
and AE [Info,].

Curiosity-dependent irrational behaviors
We examined how behavioral patterns are regulated by the intensity
of curiosity and the degree of reward seeking (Fig. 3). In a scenario
where the reward probabilities were zero for the left and 0.5 for the
right (Fig. 3a), we simulated a model by varying the meta-parameters
cand P,, whichisacontrol parameter of the reward amount (Fig. 3b and
Methods). When the agent strongly desired the reward (P, = 0.99)
with no curiosity (c = 0), the agent preferred the right option with a
higher reward probability (Fig. 3¢, point a). If the agent had no desire
forareward (P, = 0.5) with high curiosity (c = 0), the agent preferred
the option with ahigher reward probability (Fig. 3c, point b). Although
this behavior seems tobe rational at first glance, the agent did not seek
thereward, butrather sought theinformation (i.e., beliefupdate) driven
by curiosity, which resulted in a preference for the uncertain option.
When the agent has negative curiosity (c = -10), the agent continuously
selected either of the two options depending on the first selection
(Fig. 3¢, point ¢). In this behavior, the agent conservatively selected
the more certain option, as patients with autism spectrum disorder
irrationally avoid new information and repeat the same choices®™.
In addition, we obtained a nontrivial result in another scenario,
where the reward probabilities were 0.5 for the left and 1 for the right
(Fig.3d-f). Asinthe previous scenario, the agents with a strong desire
for the reward (P,=0.99, nearly equal to 1) preferred the right option
with a higher reward probability (Fig. 3f, point a). The agent with no
desire for reward (P, = 0.5) and high curiosity (c =10) preferred the
left option with a lower reward probability (Fig. 3f, point b). This
seemingly irrational behavior was the outcome of focusing on satis-
fying curiosity and not seeking rewards, which recalls patients with
attention deficit hyperactivity disorder irrationally exploring new
information'> ™. In addition, as seen in the previous scenario (Fig. 3c,
point ¢), the agents with negative curiosity (c=-10), irrespective of
the desire for the reward, exhibited conservative selection (Fig. 3f,
pointc).Incombination, these results clearly indicate that behavioral
patterns largely depend on the degree of conflict between reward
and curiosity.

Inverse FEP: Bayesian estimation of the internal state

In the above cases, we assumed a constant balance between reward
and curiosity. However, our feelings swing in a context-dependent
manner. Although it is important to decipher the temporal swinging
ofthe conflict between reward and curiosity in terms of neuroscience
and psychology, it is difficult to quantify the conflict because of its

temporal dynamics. Here, we addressed the inverse problem to esti-
mate the internal states of the agent from behavioral data, known as
computational phenotyping or meta-Bayesian inference® . To this
end, we developed amachine learning method called iFEP to quantita-
tively decipher the temporal dynamics of the internal state including
the curiosity meta-parameter from behavioral data.

For developing iFEP, we needed to switch the viewpoint from the
agent to the observer of the agent, that is, from animals to us. In the
state-space model (SSM) from the viewpoint of the agent, we described
the sequential recognition of reward probabilities by the agent (Figs. 1b
and 4a,b). Conversely, we developed a state-space model from the
observer’s eye (the observer-SSM) to determine the internal state
of the agent, for example, the intensity of curiosity ¢, recognition
n;.andits confidence P, (i.e., inverse of the variance of the estimation
distribution) (Fig. 4c). In the observer-SSM, the intensity of curios-
ity was assumed to change continuously over time, and the agent’s
recognition of the reward probability was updated by using the equa-
tions shownin Fig. 1c following the FEP; however, they were unknown
to the observers. In addition, the agent’s actions were assumed to be
generated depending on the intensity of its curiosity, recognition and
confidence, as described in equation (2), but the observers can only
monitor the agent’s actionand the presence of areward. IniFEP, based
on the observer-SSM, we estimate the latent internal state of agent z
from observationxin aBayesian manner as

P(zy.7|X1.7) < P(X1.7l21.7) P(217) (4)

where zi.r = {ft1.7. i1 1.7} X1.7 = {a1. 1, 017}, and the subscript L. T
indicates steps1to T.Inthis Bayesian estimation, a posterior distribu-
tion P(z,.7|x;.7) represents the observer’s recognition of the
estimated z;.; given observation x;.;with uncertainty. A prior distribu-
tion P(z;.7)represents our belief, whichis expressed as the ReCU model
with the random motion of the curiosity meta-parameter c as

C; = Crq + €, 5)

where ; indicates the white standard Gauss noise and € indicates its
noise intensity. Thelikelihood P(x,.;|z,.;) represents the probability that
X..-wWas observed assuming z,., which also follows the ReCU model.
This Bayesian estimation, namely iFEP, was conducted using a particle
filter and Kalman backward algorithm (Methods).

Validation of iFEP with artificial data

We tested the validity of the iFEP method by applyingit to the artificial
data generated by the ReCU model. We simulated a model agent with
nonconstant curiosity in the two-choice task, where reward probabil-
ities varied temporally. We then demonstrated that iFEP estimated the
ground truth of the internal state of the simulated agent, that is, the
agent’s intensity of curiosity, recognition and confidence (Supplemen-
tary Fig. 2). We also confirmed that the estimation performance is
robust against the value of € (Supplementary Fig. 3). Therefore, iFEP
isin a position to provide efficient estimators of belief updating to
clarify decision-making processing and the accompanying temporal
swingin the conflict between reward and curiosity.

Fig. 2| Simulations of the decision-making model. a, The two-choice task with
constant reward probabilities. b, The selection probabilities for the left and right
options, plotted as amoving average with window width of 101. ¢, The recognized
reward probabilities for the left and right options compared with the ground
truths depicted by dashed lines. d, The confidences of reward probability
recognitions for left the and right options. e-g, The expected brief updates (e),
expected reward (f) and expected net utility (g) for the left and right options.

h, The two-choice task with constant and temporally varying reward probabilities
for the left and right options. i-n, The same as b-g with parameter values of

c=1,P,=0.8,a =0.05, B8 =2and g, = 0.63.0-q, The selected optionsina
space of left-right differences of the expected reward and information gain. The
ReCU model was simulated with dynamically changing reward probabilities for
different intensities of curiosity: c = —1(0), ¢ = 0 (p) and ¢ = 3 (q). The reward
probabilities were generated by the Ornstein-Uhlenbeck process of w for1,000
trials: w;r = w; ¢y — 0.01w;,_; + 0.15;, where & indicates the standard Gauss
noise. The heatmap represents the probability of action selection in the space
(equation (2)).
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Fig.3 | Curiosity-dependentirrational behaviors. a, The two-choice task with
different, constant reward probabilities: 0% for the left and 50% for the right.

b, The heatmap of the selection probability of the right option as a function of the
parameters of curiosity and reward intensity. The probability was obtained
empirically by running 1,000 simulations for each set of curiosity and reward.
Three representative conditions are indicated by black dots: reward-seeking
(pointa; c = 0, P, = 1),information-seeking (pointb; ¢ = 10, P, = 0.5) and
information-avoiding (pointc; ¢ = —10, P, = 0.75).¢c, Box plots showing the
selection ratios of the right option for the conditions at points a-c, where the
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central lineindicates the median, the edges are the lower and upper quantiles and
the upper and lower whiskers represent the highest and lowest value after
excluding outliers, respectively. At point ¢, the model agent dominantly selected
either theright or left option, where the left- and right-dominantly selected
simulations occurred 505 and 495 times, respectively. The box plots for point ¢
appear crushed because the data points are too densely packed. d-f, The same as
a-cforthe two-choice task with different, constant reward probabilities: 50% for
theleft and 100% for the right. At point cinf, the left- and right-dominantly
selected simulations occurred 489 and 511 times, respectively.

iFEP-decoded internal state behind rat behaviors
We applied iFEP to actual rat behavioral data from the two-choice
task experiment with temporally varying reward probabilities®
(Fig. 5a). In this experiment, once the reward probabilities were sud-
denly changed in a discrete manner, the rat slowly adapted to select
the option with the higher reward probability (Fig. 5b), suggesting that
theratsequentially updated its recognition of the reward probability.
Based on these behavioral data of the rat, iFEP estimated the internal
state, that is, the intensity of curiosity, the recognized reward prob-
abilities and their confidence levels (Fig. 5c-e). We found that the rat
was not perfectly aware of the true reward probabilities but was able
torecognize increases and decreases in reward probability (Fig. 5d,e).
We also found that confidence increased with choice and decreased
with no choice (Fig. 5f,g).

WithiFEP, we can examine whether the rat subjectively assumed
fluctuating or constant environments, that is, reward probabilities.

We estimated the degree of fluctuation of the reward probabilities the
rat assumes p,, = 1.785 (that s, 62, = 0.560) from the rat behavioral
data. This estimated valueimplied that the latent variable controlling
the reward probabilities showed a random walk with increasing s.d.

with trials as 4/ 0% t. Compared with a reward probability represented

by the sigmoidal of the latent variable, the estimated reward probability
canlargely change from 0.5t0 0.5 + 0.4 during only ten trials (Supple-
mentary Fig. 4). Therefore, it was suggested that the rat assumed
fluctuating environments and, thus, easily forgot its recognition and
lost its confidence.

Negative curiosity and its dynamics decoded by iFEP

Interestingly, the curiosity held by the rat was estimated to be negative
for almost all trials (Fig. Sh). In other words, the rat conservatively
preferred certain choices but did not explore uncertain choices.
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a, An agent performing a two-choice task from the observer’s perspective.

b, The observer’s assumption about the agent’s decision-making. The agent is
assumed to follow the decision-making model, as described in Fig. 1. ¢, The SSM

ofthe observer’s eye. For the observer, the agent’s reward-curiosity conflict,
recognized reward probabilities and their uncertainties are temporally varying
latent variables, whereas the agent’s action and the presence/absence of areward
are observable. The observer estimates the latent internal states of the agent.

This negative curiosity is reasonable for the starved animals because
animals desired to obtain more reward with higher confidence. To
validate the negative curiosity, we visualize the selected action in the
space of AE[Reward,,;] and AE[Info,,;], as shown in Fig. 20-q
(Fig. 6a-c). When the estimated c, was negative, the rat dominantly
selected the left action in a region with positive AE [Reward,,;]| and
negative AE [Info,,, ] (Fig. 6a for ¢,< -L1; Fig. 6b for —1.1 < ¢, < —-0.7),
clearlyindicating that the rat has positive subjective reward and nega-
tive curiosity. When the estimated c, was close to O, the rat selected
both actions based on AE [Reward,,;], independent of AE [Info,,;|
(Fig. 6¢ for —0.7 < ¢,). These results clearly supported the expected
net utility with positive weight for the expected reward and time-
dependent weight for the expected information gain. In addition, we
statistically tested negative curiosity (P < 0.01for Monte Carlo testing
in Supplementary Fig. 5).

Further, wenoticed anincreasein the estimated level of curiosity at
which the reward probabilities changed suddenly (Fig. 5h). This curios-
ity dynamics can be interpreted such that the rat recognized the rule
change and adaptively controlled the extent to which the rat sought
new information. We further examined how the curiosity is regulated
by recognized environmental information. We did not detect the cor-
relation between the estimated curiosity and expected information
gains (Fig. 6d,e). Moreover, we found that the temporal derivative of

the estimated curiosity highly correlated with the sum of the expected
information gains for both options (Fig. 6f,g). These resultsimplied that
the rat actively upregulated the curiosity level when the uncertainty
intherecognized reward probabilities increases, such as,

‘;—i o< zi)E[lnfo,-]. (6)

Evaluations of alternative models from rat behaviors

Finally, to further confirm the validity of the ReCU model, we compared
itwithother decision-making models based on the rat behavioral data.
Asanalternative version of the expected net utility, weintroduced the
time-dependent desire for reward as

U, (agyy) = d, - E[Reward,] + E[Info,], @

where d,denotes ameta-parameter describing subjective reward (see
Methods for details). With this alternative model, the time series of d,
were estimated by iFEP from the rat behavioral data. We found that the
estimation of the subjective reward meta-parameter d,changed dynam-
ically and sometimes became close to zero when the rat encountered
drastic changes in the reward probabilities (Supplementary Fig. 6),
whichindicated that the rat suddenly no longer needed rewards. This
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Fig. 5| Estimation of therat’sinternal state by iFEP. a, A rat in the two-choice
task with temporally switching reward probabilities. b, Rat’s behaviors from a
public dataset at https://groups.oist.jp/ja/ncu/dataref. 5. Vertical lines indicate
the selections of left (L) and right (R) options, respectively. The time series
indicates the moving average of the selection probability of the left option with
25window width backward. ¢, The moving average of the selection probabilities
for the left and right options. d,e, The rat behavior data-driven estimations of

agent-recognized reward probabilities for the left (d) and right (e) options.

f-h, The rat behavior-driven estimations of agent’s confidence about recognized
reward probabilities for the left (f) and right (g) options, and the agent’s curiosity
(h). The estimated parameter values were a = 0.058, 8 = 6.991and o2, = 0.560.
The number of particles was 100,000 in the particle filter. Continuous shaded
ranges represent the s.d. for all the particlesin d-h.

should be unnatural for animals that were starved before the experi-
mental task to motivate them to obtain food. Thus, the alternative
modelis not suitable for describing the rat behavior.

Another possible model is Q-learning in the framework of RL,
which has been widely used to model the decision-making tasks. Fol-
lowing previous studies® >, we introduced the time-dependent inverse
temperature B,, which controls the randomness of the action selec-
tion; however, it does not lead to information-seeking behaviorin the
ReCUmodel. Withthe Q-learning model, we estimated time series of B,
(Methods). Then, we determined that the B,decreased when the reward
probabilities suddenly changed (Supplementary Fig. 7), meaning that
the rat tends to perform a random selection of actions in response
to the environmental rule change. Although this dynamic behavior

of the inverse temperature seems reasonable, it is unknown how it is
regulatedin the Q-learning model. Here, we hypothesized that B,could
be regulated by the uncertainty of our recognition. To probe this, we
compared B, and the expected information gain, where the former
was estimated based on Q-learning and the latter was estimated by
iFEP in the ReCU model. We found that they are positively correlated
(Supplementary Fig. 7) as

B « 3 E[Infoy]. 8)

Therefore, Q-learning requires a cue regarding the uncertainty of
recognition, that s, the expected information gain, which supports the
ReCU model for explaining the curiosity-driven behavior.
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Fig. 6 | Negative curiosity and its dynamics. a-c, The selected options in aspace
of left-right differences of the expected reward and information gain. All actions
were separated into three: when the estimated curiosity is negatively large

(c £ -1.1, n = 110) (a), negatively medium (-1.1 < ¢ < —0.7,n=93) (b) and close
to0(-0.7 < ¢, n = 187) (c). Theleft and right options were discriminated by a
logistic regression with P (a, = 1) = f(wgAE [Reward,; | + w,AE [Info.,, ), where
wgand w,indicate the weight parameters. Two linear lines indicate discrimination
boundaries using the estimated wy and w, from this scattered data and using

wg =landw, = 3 c,/N, whichis anaverage of the estimated curiosity,
respectively. the heatmap represents the probability of selecting the left option
based on the estimated w;and w,. d,e, Time series of the intensity of curiosity and
the sum of the expected information gains for both options (d), and their
cross-correlation (e). f,g, Time series of the temporal derivative of curiosity and
the sum of the expected information gains for both options (f), and their
cross-correlation (g). The temporal derivative was computed by linear regression
within a time window of seven trials.

Discussion

The advancement realized in this study is the modeling and decod-
ing of mental conflict between reward and curiosity, which is yet to
be quantified. The proposed approach can potentially improve our
understanding of how mental conflict is regulated and highlight its
neural mechanismsinthe future by combining neural recording data.

Our decoding approach has some limitations. The iFEP requires
long trial behavioral data in the two-choice task because the particle
filter needs certain trials for converging the estimation. Thus, the
iFEP is not applicable to short behavioral data. In addition, the iFEP
assumed gradual change in curiosity in time and cannot follow the
pathologically rapid dynamics of curiosity in the estimation process
of the particle filter.

Comparing the ReCUmodel and other modelsincluding Q-learn-
ing is difficult. In all these models, the action selection is commonly
formulated with the sigmoidal function. Thus, any models canbe made
to fit the observed behaviors, i.e., increase likelihood, by adjusting
the time-dependent meta-parameters. Therefore, model selection

based solely onlikelihoodis not very helpful and determining whether
animals use the ReCU model or other models to make decisions seems
inherently challenging. However, a potential advantage of the ReCU
modelisits ability to capture the dynamics of curiosity and the inter-
play between curiosity and reward-based learning.

Thereisarelated theoretical model, which differs from RLand FEP.
Ortegaand Braun formulated FEP, which describes irrational decision
making®*. Interestingly, their formulation was based on microscopic
thermodynamics and the temperature parameters controlled this
irrationality. However, the thermodynamics-based FEP did not treat
the sequential update of the recognition from the observations.

Finally, it is worth discussing future perspectives of our iFEP
approach in medicine. In general, mental diagnosis relies on medical
interviews and has not been evaluated quantitatively. Our iFEP method
canquantitatively estimate the psychological state of patients based on
their behavioral data. For example, patients with social withdrawal, also
known as ‘Hikikomori, have no interest inanything. In this case, social
withdrawal would be characterized by a negative value of curiosity in
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our FEP model. Therefore, the iFEP method could be considered
effective for diagnosing mental disorders.

Methods

Amount of reward

Inthe two-choice task, the reward is given as all-or-none; however, its
intensity depends on the agent’s own feeling as

R=0orlIn

P,

1-p,’ ©)
where P, represents the desired probability of how much the agent
wants the reward and controls the reward intensity felt by the agent
(Supplementary Fig. 8). In Friston’s formulation, the presence and
absence of rewards are given by log preference with natural unit asIn
P,and In(1-P,), which take negative values*?. In this equation, the
reward is the difference between log preferences to ensure that the
reward intensity is positive.

State space model for reward probability recognition
Theagentassumed that thereward is generated probabilistically from
the latent cause w, and probabilities A; are represented by

Ai=fwy), (10)
where i indicates the indices of the options and f(x)=1/(1+e™).
In addition, the agent assumed an ambiguous environment
in which the reward probabilities are fluctuated by a random
walk as

Wi = W1+ 0uSe, (11)
where ¢, &, and ¢, denote the trial of the two-choice task, standard

Gaussian noise and the noise intensity, respectively. Thus, the agent
assumes an environment expressed by an SSM as

P (W W_1) = N (W, IW,_p, 02 ]), (12)

P (0w, a,) = H [f(wi,t)()[ {1 _f(wi’t)}l_‘)t]al’[ ’

i

13)

where w, and o, denote the latent variables controlling the reward
probabilities of both options atstep ¢ (w, = (wy, wz,t)T) and the observa-
tionof the presence of thereward (o, € {0,1}), respectively. Meanwhile,
a,denotestheagent’sactionatstep ¢, whichisrepresented by aone-hot
vector (a[ € {(1, o', (o, 1)T}) , V (x|, ) denotes the Gaussian distribu-
tion mean p and variance X, ¢2 denotes the variance of the transition
probability of w, I denotes anidentity matrix, and flw;,) = 1/(1 + e~%:),
whichrepresents the probability of the reward of optioniatstept. The
initial distribution of w; is given by P(w;) = v (w; |0, kI), where k denotes
variance.

FEP for reward probability recognition
We modeled the agent’s recognition process of reward probability
using sequential Bayesian updating as

P(wtlolzt’alzt)‘xP(otlwt’at)/P(w[‘wt—l)P(wt—llolzt—l’al:[—l)dw[—1~ (14)

Because of the non-Gaussian P(o,w,, a,), the posterior distribution of
W,, P(W0;.;-a;.,), becomes non-Gaussian and cannot be calculated
analytically. To avoid this problem, we introduced a simple posterior
distribution approximated by a Gaussian distribution:

Q(Wlg,) = N(Wt||1ts At_l) =P(Wel01:,21:0) (15)

where ¢, = {p,, A}, and p, and A, denote the mean and precision,
respectively (i, = (0. f12,) : Ac = diag (pr.c.p2c))- Q(Wel,) denotes the
recognition distribution. The model agent aims to update the recog-
nition distribution through ¢, at each time step by minimizing
the surprise, which is defined by —InP(0,|0,.,_;). The surprise can be
decomposed as follows:

[CAS)

Ao gy,
P(0¢We|01:¢-1,81.¢)

—InP(00r,c1) = f QW lpyIn
16)

—KL[Q(W¢|@,) [|P(W¢|01.(,a1.0)],
where KL[g (x) ||p (x)] denotes the Kullback-Leibler (KL) divergence
between the probability distributions g(x) and p(x). Because of the

nonnegativity of KL divergence, the first term is the upper bound of
the surprise:

F(o,, @) = fQ (Wel@) InQ (Welg,) dw, + fQ(Wt|¢t)j(0tv wodw,, (17)

whichis called the free energy, where J(0,,W,) = —InP(0;, W|01.;_1,a;.,).
Thefirst term of the free energy corresponds to the negative entropy
of a Gaussian distribution:

F = f QW9 In Q(Welgp) dw,. as)

The second termis approximated as

Fy = f QW00 (0 W) dW,

= [Qwioo0um)+ & wim )+ } 22 (e dw, 19

1 d¥y
=JOuWIly—p + 5 2

AL

We=He

Note that £(o,,w,) is expanded by a second-order Taylor series
around p,. At each time step, the agent updates ¢, by minimizing
F (0, 00)-

Calculation of free energy
The free energy is derived as follows: F; simply becomes

F= % In anl"[l + % In anz‘i + const. (20)

For computing £,
P(0¢, We[01:¢1,21.0) = P(0|Wp, @) _/.P(Wt|wr71)P(Wt71|01:r71,31:r71) dw,;

= P(o/w:a) /P(wtlwt—l)N(wt—llpt—laAt__ll) dw,_;.
(21)

In the second line of this equation, we use the approximated recogni-
tion distribution as the previous posterior P(w,_;|0;.;_1,a;.,_1) . This
equation can be written as

Qi

P (0, W0y, ar) = H [f(wi,t)or {1 —f(wi,t)}l_ut] y N(wi,t|ﬂi, t—lva} + Oﬁ,)
(22)
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Then

E(o;, Wz)|w[=,h =1 (0. t11) + )2 (04, 1) + cONSE., (23)

where

Ji (06, Hie) = aie [0 Inf(pie) + (L —0) In{1 = f(p;)}]
(24)
1 (”Ltfll[,t—l)z _1

—-fuhe) S qn(p7l 4 02).
2 prl+a 2 (pl,t W)

Thus, F, is calculated by substituting this equation into equation (19).
Taken together,

F(o, @) = Z {/i (0 i) + LA (25)

2 duw?

-1, 1 -1
Pe+; ln2r[pi,t .
S W=y

Sequential updating of the agent’s recognition

The updating rule for ¢, was derived by minimizing the free
energy. The optimized p,, can be computed by aF/ap;} =0, which
leadsto

Pie= 3 : 26)

S we=pie

By substituting p,.into equation (25), the second termin the summation
becomes constant, irrespective of ;.. Thus, 1, is updated by minimiz-
ingonly the first term as

¥,
Hig = Hig1 —a6;q — > (27)
‘ ! v Oty Hie=Hi 1
where ais the learning rate. These two equations finally lead to
Hie = Hi1 + 0K (0, — f(Hi-1)) s (28)
Pie = K} +f(pie) A= f (i) 29)

where K;; = (p;._1 + 0%) / (pir—105%), which is called the Kalman gain. If
optioniwasnotselected, the second termsinbothequations will van-
ish, which results in belief y;, staying the same, while its precision
decreases (thatis, p;.,; < p;,). Ifitis selected, the belief is updated by
the prediction error (thatis, o, — f(u;,)), and its precision isimproved.
The confidence of the recognized reward probability should be evalu-
ated notin w;, spacebutin A;, space; hence, the confidenceis defined

by vie = piclf (I‘i,t)z-

Expected net utility
The expected net utility is described by

Ur(@ps1) = € - Epo,,yja,) [KL[Q (We411041, @11) [|Q (Wega|a41)]]

+EP(0.'+1|3r+1) [R (0t+1)] >

(30)

where R(04,1) = 0441 In(P,/ (1 - P,)); thefirstand second terms represent
the expected information gain and expected reward, respectively; and
c. denotes the intensity of curiosity at time ¢. The heuristic idea of
introducing the curiosity meta-parameter c,was also proposed in the
RL field™.

We briefly show how to derive it based onref. 41. The free energy
atcurrent time ¢is described by

F (0, @) = Eqw, o) [In QW@ —1In P(ot’wtlol:[—lvalzt)] > (3D

which is a rewriting of equation (17). Here, we attempt to express the
future free energy attime ¢ + 1, conditioned on actiona,; as

F(0t41,8041) = Equag,lpn [INQ(Wei1|@) — INP (01, Wit |01, 81:041)] - (32)

However, thereis an apparent problemin this equation: o,,; has not yet
beenobserved becauseitisafuture observation. To resolve thisissue,
we take an expectation withrespectto o,,; as

F(ag,) = EQ(Om\Wmvam)Q(WmW:)

(33)
[In Q(Wes1l®@r) — INP (0441, Wei1|01 a1:r+1)] .
This canbe rewritten as
F(@1) = EQo,y wenloreacy [N Q (Wei1l®r) (34)

—INP(Wei1|01: 041, 81:041) — INP(0441101:1 81 441) ]

Although P(0,,1]01.,»a;.,41) can be computed by the generative model
as

P(041101:1,A1:041) = fP(0t+1|wt+l’al:t+1)P(wt+1|01:t) dw,yy
(35)
Ev/.P(ot+l‘wt+l’al:t+1)Q(wt+l‘(pt) dwg,1,

it is assumed that P(o,,,/0;.,,a;..,1) Was heuristically replaced with
P(0.,1) as the prior agent’s preference of observing o,,;, so that
In P(o.,;)canbe addressed asaninstrumental reward. The equation (34)
was further transformed into

F@41) = EQopann@Wenloncnann [N Q (Wer1|90)

—INQ(Wes1101:041,A1:041) = INP(0141) ]

(36)

Finally, we obtained the so-called expected free energy as

F@1) = Equoglan [—KL [Q(We41l0641,8041) [1Q (Wey)] = In P(0[+1)]- (37)

where the KL divergenceis called a Bayesian surprise, representing the
extenttowhichthe agent’sbeliefs are updated by observation, whereas
thesecondtermInP(o.,;)canbe addressed as the agent’s prior prefer-
ence of observing o,,;, which can be interpreted as an instrumental
reward. Therefore, the expected free energy is derived in an ad hoc
manner.

Inthefirst termof equation (30), the posterior and prior distribu-
tions of w,,; inthe KL divergence are derived as

QWeir) = / P (Wesa|We) Q (W) dwy, (38)

P(Or41|Wea1,3e41) QWes1[8r41)
P(0c1lacs1)

Q(Wes1l0p41,8p41) = (39)

respectively. o, is afuture observation, and therefore, the first term
was expected by P(o,,,|a.,;), which can be calculated as

P(Oes1[ac) = f P(OcsiWer1r8es1) Q Wernlaes) AWy (40)

Inthe second term, the reward is quantitatively interpreted as the
desired probability of o,,,. For the two-choice task, we use

P(0py1) = Pgm 1- Po)(l—om) , (41)

where P, indicates the desired probability of the presence of a
reward. According to the probabilistic interpretation of reward**?*,
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the presence and absence of a reward can be evaluated by In P, and
In(1-P,), respectively.

In this study, we changed the sign of the expected free energy as
the expected net utility, because we modeled decision-making as the
maximization of the expected free energy. We ventured to introduce
the curiosity meta-parameter c,to expressirrational decision-making.
Because rewards are relative, in this study, we set In{P,/ (1 - P,)} and O
for the presence and absence of a reward, respectively. Thus, our
expected net utility can be described by equation (30), in which there
is a gap between the original expected free energy and our expected
net utility.

Model for action selection
The agent probabilistically selects a choice with higher expected net
utility as

exp(BU(ac1))

P(agy) = ¥, exp(BUc@)’

(42)

where U(a,,;) indicates the expected net utility of action a,,;.
Equation (42) isequivalent to equation (2). To derive equation (42), we
considered the expectation of the expected net utility with respect to
probabilisticaction as

E[U] = Eqa,,y [U@) - B InQ(an)], 43)

where findicates aninverse temperature, and the entropic constraint
of action probability is introduced in the second term. This equation
canberewrittenas

E[U] = —BKL[Q(@) | exp (BU (i) /2] + 1 InZ, (44)

where Zindicates a normalization constant. Thus, its maximization
respective to Q(a,;) leads to the optimal action probability as shown
inequation (42).

Alternative expected net utility
For comparison, we consider an alternative expected net utility by intro-
ducing atime-dependent meta-parameter inthe second termasfollows:

U@es1) = Epoyyylay [KL[Q (Wes110241, 3041) [|Q (Wega @y 1)]]

+d; - Epo,jany) [R(00D],

45

whered,denotes the subjective intensity of reward at time ¢. In this case,
the agent with high d, will show more exploitative behavior, whereas
the agent with d, = 0 shows more explorative behavior driven by the
expected information gain.

Calculation of expected net utility
Here, we present the calculation of the expected net utility. The KL
divergencein the first term of equation (30) can be transformed into

Epo,ijags) [KLIQ (Wei110p41,3041) [1Q (Wegalap )] = H (0p41) — H(0441|Wet) s

46)

where the first and second terms represent the conditional and mar-
ginal entropies, respectively:

H (01111Wes1) = Epoywen,asn)@wenlacy) [— NP 01| Weat, @er) ] » 47)

H(0¢11) = Epo,jais) [— In P(Ot+l|at+l)]' 48)

The conditional entropy H (o,,,|w.,;)canbe calculated by substitut-
ing equation (13) into equation (47) as

H(0p11|Wer1) = —Equw,ilany) [Z, Air18 (wi,t+1)] > (49)

where

gw) =fw)Inf(w) +(1—f(w))In(1-f(w)). (50)

Here, we approximately calculate this equation by using the sec-
ond-order Taylor expansion as

g(ﬂl t+1) + (wl t+1 — Vl t+1)
H(0¢41|1Wes1) = —Eqw,1acs) Z Aj 41 1 g

! 2 sz ( it+1 —H; t+1)

(51)
whichleadsto
H(0p41|Wes1) =
S (i) I0f (i ea1) + U= (Riee1)) In (1= F (R 041))
— S | 5 JFl0) (= Flpican)) (1 (1= 2 () I Sl ] |
(pi +pdt)
(52)
The marginal entropy H (o,,,) can be calculated as

H (0t+1) == Zai,ul {P(OHI = Olat+1) lnP(0t+1 = Olat+1) >

! (53)
+P(0t+1 = 1|at+1)lnp(ot+1 = 1|at+1)}
where
POlae) = [ PO West 80s) QWefar, ) e
= /H {f(wi,n-l)oM (1 —f(LUi,H—l))liom} - Q(Wt+1|ar+1) dWH_l
Opy1 1-0.41 it
- FlHien)”™ (U= f (eer))
| 1o (=) 2 () {1 = F (o) VL= 2F (100)} (P + P2
(54)

The second term of the expected net utility (equation (36)) is
calculated as

Epopiface [ 1P (0e41)] = Epo,ylagey) [06+1I0Po + (1 — 0p1) IN(1 = Py)]
(55)
Po) + P(0ry1 = 1la ) In(1—Py).

=P (0141 = 0lagy)In(1 -

Observer-SSM

We constructed the observer-SSM, which describes the temporal
transitions of the latent internal state z of agent and the generation
of action, from the viewpoint of the observer of the agent. This is
depicted graphically in Fig. 4. As prior information, we assumed that
the agent acts based on the internal state, that is, the intensity of
curiosity, the recognized reward probabilities and their confidence
levels. The intensity of curiosity was assumed to change temporally
asarandomwalk:

€ =Cr1 + €, (56)
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where {, denotes white noise with zero mean and unit variance, and ¢
denotesits noise intensity. Other internal states, that s, g;and p;, were
assumed to update as equations (28) and (29). The transition of the
internal state is expressed by the probability distribution

P(z;|z,_1) = N (Z:|F (Z;-1,2,1), 1), (57)
0
h (/'ll,t—lspl,t—l’ O, ‘11)
Fzey.a) = | A(a1.P2-1.0n @) |, (58)

k (-1, P1e-1, @)
k(Hp,e-1,P2-1 a2)

where z, = (ct,yg,pf)T and I = €2diag(1,0,0,0,0) . A (f;;_1, Pir1,0r, ;)
and k (p; 1. pir1. a;) represent the right-hand sides of equations (28)
and (29), respectively; and 1" and diag (x) denote the variance-covari-
ance matrix and square matrix whose diagonal componentis x, respec-
tively. In addition, the agent was assumed to select an action a,,;
based on the expected net utilities, as follows:

exp(BUac.1))

P(ay,) = 3, explAU@)’

(59)

and the reward was obtained by the following probability distribution:

Poda) = TT{A% @A™

i

(60)

Q-leaning in two-choice task and its observer-SSM
The decision-making in the two-choice task was also modeled by
Q-learning. Reward prediction for the ith option Q;, is updated as

Qi = Qipy + Ay (@i — Qipo1) (61)

where a, indicates alearning rate at trail t. The agents selected action
following a softmax function:

exp(B,Qi)

P(ai,=1)= > exp(B:Qi)’

(62)

where B, indicates the inverse temperature at trail ¢ controlling the
randomness of the action selection.

The time-dependent parameters a, and B, in Q-learning were
estimated from behavioral data®. These parameters were assumed
to change temporally asarandom walk:

0, = 0,1 +€9lp (63)

where 6 € {a,B}, {5, denotes white noise with zero mean and unit
variance and ¢4 denotes its noise intensity. Thus, the transition of
theinternal state is expressed by the probability distribution

iFEP by particle filter and Kalman backward algorithm
Based on the observer-SSM, we estimated the posterior distribution
of the latent internal state of agent z, given all observations from1to
T (x;.7)inaBayesian manner, thatis, P (z,|x;. ). Thisestimation was done
by forward and backward algorithms, which are called filtering and
smoothing, respectively.

Infiltering, the posterior distribution of z, given observations until
t (x;.,) is sequentially updated in aforward direction as

PZl%1.0) o P(X|2,, ) f P(2201,0)P@ilXre) dZey,  (66)

where x, = (a, o[)T and 6 = {¢?,a, P,}. The prior distribution of z is

P(z) = [H N(WialHo, 03)Gam(p; | dg, bg)] Uni(ci|ay, by), (67)

where o and ¢} denote means and variances, Gam(x|ay, b,) indicates
the Gammadistribution with shape parameter a, and scale parameter
b,, and Uni (x|a,, b,) indicates uniform distribution from a, to b,. We
used a particle filter*’ to sequentially calculate the posterior
P(z;|x;..), which cannot be analytically derived because of the nonlinear
transition probability.

After the particle filter, the posterior distribution of z, given all
observations (x;.7) is sequentially updated in abackward direction as

P(Z:|x1.7) = /P(ZI+IIX1:T)P(ZI|Zt+1’xl:t’ 0)dz,
(68)

,0)P( 0,0
=/P(Zt+1|X1:T) PP(ZHl‘Zl )P(z|X,:0,0) dzt+1-
S @ l20)P(z I%1..0)dz,

However, this backward integration is intractable because of
the non-Gaussian P(z;|x;.r), which was represented by the particle
ensemblein the particle filter, and the nonlinear relationship between
z, and z,, in P(z,,|z,.0) (equation (57)). Thus, we approximated
P(z;|X;.;) as N(z;/m,,V,), where m, and V, denote a sample mean and
a sample variance of the particles at ¢, whereas we linearized
P(z;|z,_;,0)as

P(z/z,_1,0) = N (z;|Az,_; + b,T), (69)
_ OFz i)

A= Flole) 'm, : (70)

b = F(m,a,_;) - Am,, (71)

where A denotes a Jacobian matrix. Because these approximations
make the integration of equation (68) tractable, the posterior distribu-
tion P(z,x;.7) can be computed by a Gaussian distribution as

P(z|x1.7) = N (z|f,, V) (72)

P(z/z,1) = N (z,|F (Z,-1,2,1) . 1), (64)
whose mean and variance were analytically updated by Kalman back-
0 ward algorithms as*
0
F(z;y,a,9) = > (65) m, =m, + ), (M., — (Am, + b)}, (73)
hy (“t, Q-1 at—l)
hy (a, Q1. @, - N
2(% Qo1 3c1) V.=V, + ), {fii, — (AV,AT + D}JT, (74)
where z, = (a;, B;, Q. Qz,t)T , T = €2diag(1,1,0,0), h; (a;, Q;r1,a;) repre-
sents theright-hand side of equation (61); and I and diag (x)denotethe =~ where
variance-covariance matrix and square matrix whose diagonal com- »
ponentis x, respectively. Je=VAT(AVAT+T) . 75
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Impossibility of model discrimination
IntheRReCU and Q-learning models, the action selections were formu-
lated with the same softmax functions as

1) — _xp(B(E[Reward; ]+cE[Info;,]))
P(a.,t = 1) - 3, exp(B(E[Reward; 1 +c,E[Info, 1)) 7o
1) )
Paie=1) = 5 e v

which correspond to that of the ReCU and Q-learning models, respec-
tively. These equations contain the time-dependent meta-parameters,
thatis, c,and .. Forbothmodels, the goodness of fit (that s, likelihood)
for the actual behavioral data can be freely improved by tuning the
time-dependent meta-parameters. Thus, discriminationbetween the
ReCU and Q-learning models must be essentially impossible.

Estimation of parameters iniFEP
The ReCUmodel has several parameters: a2, &, 3, P,and e. In the estima-
tion, we set ¢ to 1, which was the optimal value for estimation in the
artificial data (Supplementary Fig. 3). We assumed the unit intensity
ofreward, thatis, InP,/(1 — P,) = 1,becauseitisimpossible to estimate
both P,and S caused by multiplying Sand InP,/(1 - P,) inthe expected
net utility (equations (30) and (42)). This treatment is suitable for rela-
tive comparison between the curiosity meta-parameter and the reward.
In addition, we addressed fBc,as alatent variable as ¢, = Bc; because of
the multiplication of § in the expected net utility (equations (30)
and (42)). Thus, the estimation of ¢, can be obtained by dividing the
estimated ¢, by the estimated 8. Therefore, the hyperparameters tobe
estimated were o2, aand 8.

To estimate these parameters 6 = {0}, a, 8}, we extended the
observer-SSM to a self-organizing SSM** in which 6 was addressed as
constantlatent variables:

P(z,01Xq.¢) & P(Xc|Z,) SP (2|21, 0) P (21, O1X1: 1) A2y, (78)

where P(8) = Uni (d?|a,, b,) Uni(ala,, b )N (Bimg, vg). To sequentially cal-
culate the posterior P(z.,0)x,..) using the particle filter, we used
100,000 particles and augmented the state vector of all particles by
adding the parameter 8, which was not updated from randomly sam-
pledinitial values.

The hyperparameter values used in this estimation were u, =0,
o; = 0.01?,a,=10,b,=0.001, a,=-15,b,=15,a,=0.2,b,=0.7,a,= 0.04,
b,=0.06,a,=0andb;=50, whichwere heuristically givenas parameters
correctly estimated using the artificial data (Supplementary Fig. 2).

Statistical testing with Monte Carlo simulations

Supplementary Fig. 5 shows statistical testing of the negative curiosity
estimated in Fig. 5. A null hypothesis is that an agent has no curiosity
(thatis, c,= 0) decides onachoice only depending onits recognition of
thereward probability. Under the null hypothesis, model simulations
were repeated 1,000 times under the same experimental conditions as
inFig.5andthe curiosity was estimated for each using iFEP. We adopted
the temporal average of the estimated curiosity as a test statistic and
plotted the null distribution of the test statistic. Compared with the
estimated curiosity of the rat behavior, we computed the Pvalue for a
one-sided left-tailed test.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source data for Figs. 2,3, 5and 6 are available with this paper. Source
datafor Supplementary Figures are available in Supplementary Data.

We used the rat behavioral data published in ref. 36, which is publicly
available at https://groups.oist.jp/ja/ncu/data. These rat behavioral
dataarealsoincluded in the Source Data for Fig. 5and on Zenodo™®.

Code availability

The computer simulation and data analysis were performed using
MATLAB (version R2020b) software. The code used for this work
is available on GitHub at https://github.com/YukiKonaka/Konaka_
Honda_2023. The specific version used to produce the results in this
manuscript is also available on Zenodo®.

References

1. Helmholtz, H. Handbuch der Physiologischen Optik (Andesite
Press, 1867).

2. VYuille, A. &Kersten, D. Vision as Bayesian inference: analysis by
synthesis? Trends Cogn. Sci. 10, 301-308 (2006).

3. Millett, J. D. & Simon, H. A. Administrative behavior: a study of
decision-making processes in administrative organization.

Polit. Sci. Q. 62, 621(1947).

4. Dubey, R. & Griffiths, T. L. Understanding exploration in humans
and machines by formalizing the function of curiosity. Curr. Opin.
Behav. Sci. 35, 118-124 (2020).

5. Kidd, C. & Hayden, B. Y. The psychology and neuroscience of
curiosity. Neuron 88, 449-460 (2015).

6. Klein, U. & Nowak, A. J. Characteristics of patients with autistic
disorder (AD) presenting for dental treatment: a survey and chart
review. Spec. Care Dentist. 19, 200-207 (1999).

7.  Lockner, D. W., Crowe, T. K. & Skipper, B. J. Dietary intake and
parents’ perception of mealtime behaviors in preschool-
age children with autism spectrum disorder and in typically
developing children. J. Am. Diet. Assoc. 108, 1360-1363 (2008).

8. Schreck, K. A. & Williams, K. Food preferences and factors
influencing food selectivity for children with autism spectrum
disorders. Res. Dev. Disabil. 27, 353-363 (2006).

9. Esposito, M. et al. Sensory processing, gastrointestinal symptoms
and parental feeding practices in the explanation of food
selectivity: clustering children with and without autism.

Int. J. Autism Relat. Disabil. 2, 1-12 (2019).

10. Hobson, R. P. Autism and the development of mind. Essays Dev.
Psychol. (Routledge, 1993).

1. Burke, R. Personalized recommendation of Pols to people with
autism. Commun. ACM 65, 100 (2022).

12. Ghanizadeh, A. Educating and counseling of parents of children
with attention-deficit hyperactivity disorder. Patient Educ. Couns.
68, 23-28 (2007).

13. Sedgwick, J. A., Merwood, A. & Asherson, P. The positive
aspects of attention deficit hyperactivity disorder: a qualitative
investigation of successful adults with ADHD. ADHD Atten. Deficit
Hyperact. Disord. 11, 241-253 (2019).

14. Redshaw, R. & McCormack, L. ‘Being ADHD': a qualitative study.
Adv. Neurodev. Disord. 6, 20-28 (2022).

15. Sutton, R. S. & Barto, A. G. Reinforcement Learning: an Introduction
(MIT Press, 1998).

16. Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B
360, 815-836 (2005).

17.  Friston, K., Kilner, J. & Harrison, L. A free energy principle for the
brain. J. Physiol. Paris 100, 70-87 (2006).

18. Friston, K. The free-energy principle: a unified brain theory?

Nat. Rev. Neurosci. 11,127-138 (2010).

19. Lindley, D. V. On a measure of the information provided by an
experiment. Ann. Math. Stat. 27, 986-1005 (1956).

20. MacKay, D. J. C. Information-based objective functions for active
data selection. Neural Comput. 4, 590-604 (1992).

21. Berger, J. O. Statistical Decision Theory and Bayesian Analysis,
Springer Series in Statistics (Springer, 2011).

Nature Computational Science | Volume 3 | May 2023 | 418-432

431


http://www.nature.com/natcomputsci
https://groups.oist.jp/ja/ncu/data
https://github.com/YukiKonaka/Konaka_Honda_2023
https://github.com/YukiKonaka/Konaka_Honda_2023

Article

https://doi.org/10.1038/s43588-023-00439-w

22. Friston, K. et al. Active inference and epistemic value. Cogn.
Neurosci. 6, 187-214 (2015).

23. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P. & Pezzulo, G.
Active inference: a process theory. Neural Comput. 29, 1-49 (2017).

24. Attias, H. Planning by probabilistic inference in Proc. 9th Int. Work.
Artif. Intell. Stat. 4, 9-16 (2003).

25. Botvinick, M. & Toussaint, M. Planning as inference. Trends Cogn.
Sci. 16, 485-488 (2012).

26. Kaplan, R. & Friston, K. J. Planning and navigation as active
inference. Biol. Cybern. 112, 323-343 (2018).

27. Matsumoto, T. & Tani, J. Goal-directed planning for habituated
agents by active inference using a variational recurrent neural
network. Entropy 22, (2020).

28. Schwartenbeck, P. et al. Computational mechanisms of curiosity
and goal-directed exploration. eLife 8, 1-45 (2019).

29. Millidge, B., Tschantz, A. & Buckley, C. L. Whence the expected
free energy? Neural Comput. 33, 447-482 (2021).

30. Houthooft, R. et al. VIME: variational information maximizing
exploration. Adv. Neural Inf. Process. Syst. 0, 1117-1125 (2016).

31. Smith, R. et al. Greater decision uncertainty characterizes a
transdiagnostic patient sample during approach-avoidance
conflict: a computational modelling approach. J. Psychiatry
Neurosci. 46, E74-E87 (2021).

32. Smith, R. et al. Long-term stability of computational parameters
during approach-avoidance conflict in a transdiagnostic
psychiatric patient sample. Sci Rep. 11, 1-13 (2021).

33. Schwartenbeck, P. & Friston, K. Computational phenotyping in
psychiatry: a worked example. eNeuro 3, 1-18 (2016).

34. Daunizeau, J. et al. Observing the observer (I): meta-Bayesian models
of learning and decision-making. PLoS ONE 5, €15554 (2010).

35. Patzelt, E. H., Hartley, C. A. & Gershman, S. J. Computational
phenotyping: using models to understand individual differences
in personality, development, and mental illness. Personal.
Neurosci. 1, €18 (2018).

36. Ito, M. & Doya, K. Validation of decision-making models and
analysis of decision variables in the rat basal ganglia. J. Neurosci.
29, 9861-9874 (2009).

37. Samejima, K., Doya, K., Ueda, Y. & Kimura, M. Estimating internal
variables and parameters of a learning agent by a particle filter.
Adv. Neural Inf. Process. Syst. 16 (2003).

38. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Neuroscience:
representation of action-specific reward values in the striatum.
Science (80-.) 310, 1337-1340 (2005).

39. Ortega, P. A. & Braun, D. A. Thermodynamics as a theory of
decision-making with information-processing costs. Proc. R. Soc.
London. A 469, 20120683 (2013).

40. Gottwald, S. & Braun, D. A. The two kinds of free energy and the
Bayesian revolution. PLoS Comput. Biol. 16, (2020).

A1, Parr, T. & Friston, K. J. Generalised free energy and active
inference. Biol. Cybern. 113, 495-513 (2019).

42. Kitagawa, G. Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models. J. Comput. Graph. Stat. 5, 1-25 (1996).

43. Bishop, C. M. Pattern Recognition and Machine Learning
(Springer, 2006).

44, Kitagawa, G. A self-organizing state-space model. J. Am. Stat. 93,
1203-1215 (1998).

45, Konaka, Y. & Naoki, H. Codes for Konaka and Honda 2023. Zenodo
https://doi.org/10.5281/zenodo.7722905 (2023)

Acknowledgements

We are grateful to K. Doya and M. Ito for providing rat behavioral
data. We thank the organizers of the tutorial on the free energy
principle in 2019, which inspired this research, and |. Higashino
and M. Fujiwara-Yada for carefully checking all the equations in
the manuscript. This study was supported in part by a Grant-in-Aid
for Transformative Research Areas (B) (no. 21H05170), AMED
(grant no. JP21wm0425010), Moonshot R&D-MILLENNIA program
(grant no. JPMIMS2024-9) by JST, the Cooperative Study

Program of Exploratory Research Center on Life and Living Systems
(ExXCELLS) (program no. 21-102) and the grant of Joint Research

by the National Institutes of Natural Sciences (NINS program no.
01112102).

Author contributions

H.N. conceived of the project. Y. K. and H.N. developed the method,
and Y.K. implemented the model simulation. Y.K. and H.N. wrote
the manuscript.

Competinginterests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s43588-023-00439-w.

Correspondence and requests for materials should be addressed to
Honda Naoki.

Peer review information Nature Computational Science thanks
Junichiro Yoshimoto and Karl Friston for their contribution to the
peer review of this work. Primary Handling Editors: Ananya Rastogi
and Jie Pan, in collaboration with the Nature Computational Science
team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

Nature Computational Science | Volume 3 | May 2023 | 418-432

432


http://www.nature.com/natcomputsci
https://doi.org/10.5281/zenodo.7722905
https://doi.org/10.1038/s43588-023-00439-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

natureresearch

Last updated by author(s): March 29,2023

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

=
Q
—t
-
=
()
=
D
wv
D
Q
=
(@)
o
=
D
o
¢}
=.
>
(e]
wv
e
)
Q
=
A

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|Z| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|Z| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXO O OO0OX O XOS

|Z| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection

Data analysis The computer simulation and data analysis were done using Matlab software (Version R2020b). The code used for this work are available on
GitHub at: https://github.com/YukiKonaka/Konaka_Honda_2023. The specific version used to produce the results in this manuscript is also
available on Zenodo at https://doi.org/10.5281/zenodo.7722905.

The algorithm used in this study is particle filter in control system toolbox (Version R2020b). We also used shaded ErrorBar (GNU LESSER
GENERAL PUBLIC LICENSE Version 3, 29 June 2007), which is public MATLAB function located at https://github.com/raacampbell/
shadedErrorBar/blob/master/shadedErrorBar.m. The file of shaded ErrorBar was also uploaded at our GitHub (https://github.com/
YukiKonaka/Konaka_Honda_2023) and our Zenodo (https://doi.org/10.5281/zenodo.7722905).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

020¢ 1dy

Source data for figures 2, 3, 5 and 6 are available with this paper. Source data for Supplementary Figures are available in Supplementary Data. We used the rat




behavioral data published by Makoto Ito and Kenji Doya, Validation of Decision-Making Models and Analysis of Decision Variables in the Rat Basal Ganglia, Journal of
Neuroscience (Publisher: the Society for Neuroscience), 2009 (DOI: 10.1523/JNEUROSCI.6157-08.2009), which is publicly available at Prof. Doya Kenji’'s homepage:
https://groups.oist.jp/ja/ncu/data. This rat behavioral data is also included in Source data for figure 5 and Zenodo at https://doi.org/10.5281/zenodo.7722905.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
[X] Life sciences [ ] Behavioural & social sciences | | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.
Sample size Data size is based on the rat behavioral data from Ito & Doya Journal of Neuroscience 2009, which was cited in the manuscript.
Data exclusions  In the rat data of the two-choice task (Ito & Doya Journal of Neuroscience 2009), a rat selected left or right, but sometimes fail to select. In
our analysis, we excluded no-choice trials from the behavioral time-series because we assumed the rat cannot update the recognition
because of no observation of reward in the no-choice trials.

Replication We checked the estimation performance by replicating the estimations (Supplementary Fig. 3).

Randomization  Thisis not relevant to our study because we only decipher the temporal dynamics of the internal state including curiosity meta-parameter
from the datasets. There is not allocation procedure.

Blinding No data collection was involved in the present study. Blinding was not possible because we only decode curiosity from the datasets, there is
no allocation procedure.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

X X X X X X X
Oooodoog

Dual use research of concern

>
Q
—
C
=
(D
=
()
wn
(D
Q
=
e
o
=
(D
©
]
=
>
(e}
%)
c
=
Q
=
<




	Decoding reward–curiosity conflict in decision-making from irrational behaviors

	Results

	Decision-making with the reward–curiosity dilemma

	ReCU model

	Recognition and decision-making in the simulation

	Discrimination of passive and curiosity-dependent behaviors

	Curiosity-dependent irrational behaviors

	Inverse FEP: Bayesian estimation of the internal state

	Validation of iFEP with artificial data

	iFEP-decoded internal state behind rat behaviors

	Negative curiosity and its dynamics decoded by iFEP

	Evaluations of alternative models from rat behaviors


	Discussion

	Methods

	Amount of reward

	State space model for reward probability recognition

	FEP for reward probability recognition

	Calculation of free energy

	Sequential updating of the agent’s recognition

	Expected net utility

	Model for action selection

	Alternative expected net utility

	Calculation of expected net utility

	Observer-SSM

	Q-leaning in two-choice task and its observer-SSM

	iFEP by particle filter and Kalman backward algorithm

	Impossibility of model discrimination

	Estimation of parameters in iFEP

	Statistical testing with Monte Carlo simulations

	Reporting summary


	Acknowledgements

	Fig. 1 Decision-making model for the two-choice task with reward–curiosity dilemma.
	Fig. 2 Simulations of the decision-making model.
	Fig. 3 Curiosity-dependent irrational behaviors.
	Fig. 4 The scheme of iFEP by an observer of a decision-making agent.
	Fig. 5 Estimation of the rat’s internal state by iFEP.
	Fig. 6 Negative curiosity and its dynamics.




