Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intermittent fasting protects against Alzheimer’s disease in mice by altering metabolism through remodeling of the gut microbiota

Abstract

Alzheimer’s disease (AD) is the most common form of dementia without effective clinical treatment. Here, we show that intermittent fasting (IF) improves cognitive functions and AD-like pathology in a transgenic AD mouse model (5XFAD). IF alters gut microbial composition with a significant enrichment in probiotics such as Lactobacillus. The changes in the composition of the gut microbiota affect metabolic activities and metabolite production. Metabolomic profiling analysis of cecal contents revealed IF leads to a decreased carbohydrate metabolism (for example, glucose) and an increased abundance in amino acids (for example, sarcosine and dimethylglycine). Interestingly, we found that the administration of IF-elevated sarcosine or dimethylglycine mimics the protective effects of IF in 5XFAD mice, including the amelioration of cognitive decline, amyloid-β (Aβ) burden and glial overactivation. Our findings thus demonstrate an IF regimen is a potential approach to prevent AD progression, at least through the gut-microbiota-metabolites-brain axis, and constitutes an innovative AD therapeutic avenue.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IF improves cognitive declines in 5XFAD mice.
Fig. 2: IF reduces Aβ burden and the extent of glial activation in 5XFAD mice.
Fig. 3: IF alters the composition of gut microbiota in 5XFAD mice.
Fig. 4: Gut microbiota is required for the beneficial effects of IF against AD.
Fig. 5: Metabolomic profiles of cecal contents in IF-treated 5XFAD mice.
Fig. 6: Sar or DMG treatment ameliorates cognitive declines and LTP impairment in 5XFAD mice.
Fig. 7: Sar or DMG treatment reduces Aβ burden and the extent of glial activation in 5XFAD mice.

Similar content being viewed by others

Data availability

16S rRNA sequence data have been deposited at NCBI Sequence Read Archive and are available under accession number: PRJNA872262. Metabolomics data are provided in Supplementary Table 1. Source data are provided within this paper. Any additional data generated and analyzed in this study are available from the corresponding authors upon reasonable request.

References

  1. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).

  2. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Huang, Y. & Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204–1222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18, 794–799 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. New Engl. J. Med. 370, 311–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. New Engl. J. Med. 370, 322–333 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Morris, J. K., Honea, R. A., Vidoni, E. D., Swerdlow, R. H. & Burns, J. M. Is Alzheimer’s disease a systemic disease. Biochim. Biophys. Acta 1842, 1340–1349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Cabo, R. & Mattson, M. P. Effects of intermittent fasting on health, aging, and disease. New Engl. J. Med. 381, 2541–2551 (2019).

    Article  PubMed  Google Scholar 

  9. Ulgherait, M. et al. Circadian autophagy drives iTRF-mediated longevity. Nature 598, 353–358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vernieri, C. et al. Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in patients with cancer. Cancer Discov. 12, 90–107 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Longo, V. D., Di Tano, M., Mattson, M. P. & Guidi, N. Intermittent and periodic fasting, longevity and disease. Nat. Aging 1, 47–59 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou, Z. L. et al. Neuroprotection of fasting mimicking diet on MPTP-induced Parkinson’s disease mice via gut microbiota and metabolites. Neurotherapeutics 16, 741–760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ehrnhoefer, D. E. et al. Preventing mutant huntingtin proteolysis and intermittent fasting promote autophagy in models of Huntington disease. Acta Neuropathol. Commun. 6, 16 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang, H. B. et al. Time-restricted feeding improves circadian dysfunction as well as motor symptoms in the Q175 mouse model of Huntington’s disease. eNeuro 5, ENEURO.0431-17.2017 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Halagappa, V. K. et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 26, 212–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, J. et al. Intermittent fasting protects against Alzheimer’s disease possible through restoring Aquaporin-4 polarity. Front. Mol. Neurosci. 10, 395 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shin, B. K., Kang, S., Kim, D. S. & Park, S. Intermittent fasting protects against the deterioration of cognitive function, energy metabolism and dyslipidemia in Alzheimer’s disease-induced estrogen deficient rats. Exp. Biol. Med. 243, 334–343 (2018).

    Article  CAS  Google Scholar 

  18. Liu, Y. et al. SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nat. Commun. 10, 1886 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jiang, C., Li, G., Huang, P., Liu, Z. & Zhao, B. The gut microbiota and Alzheimer’s disease. J. Alzheimers Dis. 58, 1–15 (2017).

    Article  PubMed  Google Scholar 

  20. Vogt, N. M. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhuang, Z. Q. et al. Gut microbiota is altered in patients with Alzheimer’s disease. J. Alzheimers Dis. 63, 1337–1346 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, X. et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 29, 787–803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Minter, M. R. et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep. 6, 30028 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonfili, L. et al. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep. 7, 2426 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun, J. et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl. Psychiatry 9, 189 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim, M. S. et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut 69, 283–294 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Li, G. et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 26, 672–685.e674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cignarella, F. et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 27, 1222–1235.e1226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Z. et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat. Commun. 11, 855 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heneka, M. T. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 493, 338–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mu, Q., Tavella, V. J. & Luo, X. M. Role of Lactobacillus reuteri in human health and diseases. Front. Microbiol. 9, 757 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chan, M. H., Chung, S. S., Stoker, A. K., Markou, A. & Chen, H. H. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice. Toxicol. Appl. Pharmacol. 265, 158–165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hsieh, C. P., Chen, H., Chan, M. H., Chen, L. & Chen, H. H. N,N-dimethylglycine prevents toluene-induced impairment in recognition memory and synaptic plasticity in mice. Toxicology 446, 152613 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, G. et al. Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment. J. Proteome Res. 13, 2649–2658 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Horgusluoglu, E. et al. Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer’s disease. Alzheimers Dement. 18, 1260–1278 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wei, M. et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl. Med. 9, eaai8700 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nasaruddin, M. L., Syed Abd Halim, S. A. & Kamaruzzaman, M. A. Studying the relationship of intermittent fasting and β-amyloid in animal model of Alzheimer’s disease: a scoping review. Nutrients 12, 3215 (2020).

  40. Saeedi, B. J. et al. Gut-resident Lactobacilli activate hepatic Nrf2 and protect against oxidative liver injury. Cell Metab. 31, 956–968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Panpetch, W. et al. Additional Candida albicans administration enhances the severity of dextran sulfate solution induced colitis mouse model through leaky gut-enhanced systemic inflammation and gut-dysbiosis but attenuated by Lactobacillus rhamnosus L34. Gut Microbes 11, 465–480 (2020).

  42. Costanzo, M. et al. Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation. Benef. Microbes 9, 389–399 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Gupta, N., Ferreira, J., Hong, C. H. L. & Tan, K. S. Lactobacillus reuteri DSM 17938 and ATCC PTA 5289 ameliorates chemotherapy-induced oral mucositis. Sci. Rep. 10, 16189 (2020).

  44. Tenorio-Jiménez, C. et al. Lactobacillus reuteri V3401 reduces inflammatory biomarkers and modifies the gastrointestinal microbiome in adults with metabolic syndrome: the PROSIR Study. Nutrients 11, 1761 (2019).

  45. Wang, G. et al. Lactobacillus reuteri ameliorates intestinal inflammation and modulates gut microbiota and metabolic disorders in dextran sulfate sodium-induced colitis in mice. Nutrients 12, 2298 (2020).

  46. Usami, M., Miyoshi, M. & Yamashita, H. Gut microbiota and host metabolism in liver cirrhosis. World J. Gastroenterol. 21, 11597–11608 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Article  PubMed  Google Scholar 

  48. Talbot, K. et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 122, 1316–1338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. An, Y. et al. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Alzheimers Dement. 14, 318–329 (2018).

    Article  PubMed  Google Scholar 

  50. Fernando, W. et al. Sodium butyrate reduces brain amyloid-β Levels and improves cognitive memory performance in an alzheimer’s disease transgenic mouse model at an early disease stage. J. Alzheimers Dis. 74, 91–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Jiang, Y., Li, K., Li, X., Xu, L. & Yang, Z. Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem. Biol. Interact. 341, 109452 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Colombo, A. V. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. Elife 10, e59826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dias, G. P. et al. Intermittent fasting enhances long-term memory consolidation, adult hippocampal neurogenesis, and expression of longevity gene Klotho. Mol. Psychiatry 26, 6365–6379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Park, S., Zhang, T., Wu, X. & Yi Qiu, J. Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model. J. Clin. Biochem. Nutr. 67, 188–198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Walters, R. O. et al. Sarcosine is uniquely modulated by aging and dietary restriction in rodents and humans. Cell Rep. 25, 663–676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lazic, D. et al. Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Dis. 136, 104745 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Pan, R. Y. et al. Sodium rutin ameliorates Alzheimer’s disease-like pathology by enhancing microglial amyloid-beta clearance. Sci. Adv. 5, eaau6328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pei, J. C. et al. Therapeutic potential and underlying mechanism of sarcosine (N-methylglycine) in N-methyl-D-aspartate (NMDA) receptor hypofunction models of schizophrenia. J. Psychopharmacol. 33, 1288–1302 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Pan, R. Y. et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 34, 634–648 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, J., Zhang, J., Zhang, W. & Chen, Z. Sensitive determination of the potential biomarker sarcosine for prostate cancer by LC-MS with N,N’-dicyclohexylcarbodiimide derivatization. J. Sep. Sci. 37, 14–19 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grants 82230042, 81930029 and 81630026 to Z.Y.), the National Major Project of Support Program (grant 2019-JCJQ-ZD-195 to Z.Y.) and the China Postdoctoral Science Foundation (grant 2020M683748 to R.-Y.P.).

Author information

Authors and Affiliations

Authors

Contributions

Z.Y. conceived and directed the project. R.-Y.P. and J.Z. designed and performed the experiments, analyzed the data and wrote the manuscript. J.W. and Yang Liao provided assistance with animal behavioral tests. Y.W. performed electrophysiological recording. Z.L. provided assistance with the bioinformatic analysis of the gut microbiome. Yajin Liao, C.Z., Z.L., L.S. and J.Y. contributed to data analysis. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Rui-Yuan Pan or Zengqiang Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Mark Mattson, Yvonne Nolan, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 IF reduces the expression levels of Aβ in 5XFAD mice.

Western blotting analysis of Aβ in hippocampal lysates from 5XFAD-AL and 5XFAD-IF mice (left panel), with quantification of Aβ levels (right panel, n = 4 mice per group). Data are represented as the mean ± SEM. **p < 0.01. Two-tailed unpaired Student’s t-test.

Source data

Extended Data Fig. 2 IF suppresses mTOR signaling and activates autophagy in 5XFAD mice.

a, Western blotting analysis of indicated proteins (or modifications) in the hippocampal lysates of WT-AL, 5XFAD-AL, and 5XFAD-IF mice. b, Quantification of indicated protein levels shown in a (n = 4 mice per group). Data are represented as the mean ± SEM. *p < 0.05 and **p < 0.01; N.S., not significant. One-way ANOVA, followed by Tukey’s multiple comparisons test.

Source data

Extended Data Fig. 3 IF leads to significant metabolic changes in gut microbiota.

a, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showing the significantly different biological processes of the gut microbiota. b, Heatmap showing the predicted functions of the gut microbiota involved in the indicated pathways among WT-AL, 5XFAD-AL, and 5XFAD-IF mice.

Extended Data Fig. 4 Effects of IF and ABX on body weight and food intake in 5XFAD mice.

a, Bacterial colony formation of the fecal homogenates from 5XFAD mice after 7 days of oral gavage with vehicle or ABX (left panel) and the bacterium were collected with PBS and the optical density (O.D.) was measure at 600 nm (right panel, n = 3 per group). b, The images of ceca collected from indicated group mice at 6-month-old (left panel), with quantification of the relative cecum volume (right panel, n = 4 per group). c, Body weight of indicated group mice monitoring every day during the experiments. d, Body weight of indicated group mice at the beginning and the end of the experiments. e and f, Food intake per two days (c) and cumulative food intake (d) of indicated group mice. The number of mice were: n = 12 mice for the WT-AL; n = 10 mice for the 5XFAD-AL group; n = 11 mice for the 5XFAD-IF and 5XFAD-IF + ABX groups. Data are represented as the mean ± SEM. **p < 0.01 and ***p < 0.001; N.S., not significant. Two-tailed unpaired Student’s t-test (a and b) or one-way ANOVA (d), followed by Tukey’s multiple comparisons test.

Source data

Extended Data Fig. 5 UPLC-MS analysis of Sar and DMG in the serum and brain of mice.

a and b, Sar and DMG levels in the serum and brain samples of WT-AL, 5XFAD-AL, and 5XFAD-IF mice (n = 3 mice per group). c and d, Sar and DMG levels in the serum and brain samples of mice 1 h post i.p. injected with saline, Sar or DMG (n = 3 mice per group). Data are represented as the mean ± SEM. *p < 0.05 and **p < 0.01. Two-tailed unpaired Student’s t-test (c and d) or one-way ANOVA (a and b), followed by Tukey’s multiple comparisons test.

Source data

Extended Data Fig. 6 Effects of Sar or DMG on body weight, food intake, and cognition in WT mice.

a, Schematic diagram showing the drug treatment strategy in WT mice. b, Body weight of indicated group mice was monitoring every day during the experiments. c and d, Every day food intake (c) and cumulative food intake (d) of indicated group mice. e, Distance travelled to the platform during the training period in the MWM test. f-i, Latency of first time to enter the target (f), target entries (g), time spent in target quadrant (h), and mean swimming speed in the probe trial of the MWM test (i). j, NOR test recognition index of mice. The number of mice were: n = 11 mice for the WT and WT + Sar groups; n = 9 mice for the WT + DMG group. Data are represented as the mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001; N.S., not significant. Two-tailed unpaired Student’s t-test (j) or one-way ANOVA (f-i), followed by Tukey’s multiple comparisons test.

Source data

Extended Data Fig. 7 Sar or DMG treatment reduces the expression levels of Aβ in 5XFAD mice.

Western blotting analysis of Aβ in hippocampal lysates from 5XFAD, 5XFAD + Sar, and 5XFAD + DMG mice (left panel), with quantification of Aβ levels (right panel, n = 4 mice per group). Data are represented as the mean ± SEM. *p < 0.05. Two-tailed unpaired Student’s t-test.

Source data

Supplementary information

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Source Data Fig. 6

Statistical Source Data.

Source Data Fig. 7

Statistical Source Data.

Source Data Extended Data Fig. 1

Statistical Source Data.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 2

Statistical Source Data.

Source Data Extended Data Fig. 2

Unprocessed western blots.

Source Data Extended Data Fig. 4

Statistical Source Data.

Source Data Extended Data Fig. 5

Statistical Source Data.

Source Data Extended Data Fig. 6

Statistical Source Data.

Source Data Extended Data Fig. 7

Statistical Source Data.

Source Data Extended Data Fig. 7

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, RY., Zhang, J., Wang, J. et al. Intermittent fasting protects against Alzheimer’s disease in mice by altering metabolism through remodeling of the gut microbiota. Nat Aging 2, 1024–1039 (2022). https://doi.org/10.1038/s43587-022-00311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-022-00311-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing