Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

A guide to single-particle tracking

Abstract

Individual proteins and protein complexes undergo various motion types, including free diffusion, confinement, subdiffusion and directed motion. Different motion behaviours reflect different microenvironments, activity states, kinetics and interaction partners. Single-particle tracking (SPT) is a powerful method for analysing these behaviours directly and in live cells. However, SPT is confounded by multiple sources of experimental noise and biases. Interpreting tracks in terms of quantitative models thus remains a challenging task. We start this Primer by briefly presenting experimental setups and labelling techniques often employed for SPT, followed by a focus on the variety of tools available for analysing noisy tracks with multiple states. This includes tools designed to identify and characterize state fractions and diffusion coefficients, detect and quantify state transitions, predict the number of states and identify and parameterize various motion behaviours. We then highlight some of the many applications of SPT in cellular biology and discuss the limitations of current methods and what future developments are needed to address the current challenges of the SPT analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical framework for single-particle tracking.
Fig. 2: Methods to estimate state fractions.
Fig. 3: Jump-distance-based methods estimate diffusion coefficients and transition rates.
Fig. 4: ExTrack, an integration method that considers localization error.
Fig. 5: Examples of types of motions.
Fig. 6: Improving transition models.

Similar content being viewed by others

References

  1. Delarue, M. et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174, 338–349.e20 (2018).

    Article  Google Scholar 

  2. Ptacin, J. L. et al. Bacterial scaffold directs pole-specific centromere segregation. Proc. Natl Acad. Sci. USA 111, E2046–E2055 (2014).

    Article  Google Scholar 

  3. Laurent, F. et al. Mapping spatio-temporal dynamics of single biomolecules in living cells. Phys. Biol. 17, 015003 (2019).

    Article  ADS  Google Scholar 

  4. Elf, J. & Barkefors, I. Single-molecule kinetics in living cells. Annu. Rev. Biochem. 88, 635–659 (2019).

    Article  Google Scholar 

  5. Kapanidis, A. N., Uphoff, S. & Stracy, M. Understanding protein mobility in bacteria by tracking single molecules. J. Mol. Biol. 430, 4443–4455 (2018).

    Article  Google Scholar 

  6. Shashkova, S. & Leake, M. C. Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci. Rep. 37, BSR20170031 (2017).

    Article  Google Scholar 

  7. Tuson, H. H. & Biteen, J. S. Unveiling the inner workings of live bacteria using super-resolution microscopy. Anal. Chem. 87, 42–63 (2015).

    Article  Google Scholar 

  8. Heyza, J. R., Mikhova, M. & Schmidt, J. C. Live cell single-molecule imaging to study DNA repair in human cells. DNA Repair 129, 103540 (2023).

    Article  Google Scholar 

  9. Brown, R. Mikroskopische Beobachtungen über die im Pollen der Pflanzen enthaltenen Partikeln, und über das allgemeine Vorkommen activer Molecüle in organischen und unorganischen Körpern. Ann. Phys. 90, 294–313 (1828).

    Article  Google Scholar 

  10. Kapanidis, A. N., Lepore, A. & El Karoui, M. Rediscovering bacteria through single-molecule imaging in living cells. Biophys. J. 115, 190–202 (2018).

    Article  ADS  Google Scholar 

  11. Gahlmann, A. & Moerner, W. E. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat. Rev. Microbiol. 12, 9–22 (2014).

    Article  Google Scholar 

  12. Liao, Y. et al. Polymerase dynamics at a bacterial replisome in live cells. Biophys. J. 111, 2562–2569 (2016).

    Article  ADS  Google Scholar 

  13. Katz, Z. B. et al. Mapping translation ‘hot-spots’ in live cells by tracking single molecules of mRNA and ribosomes. eLife 5, e10415 (2016).

    Article  Google Scholar 

  14. Mickolajczyk, K. J. & Hancock, W. O. Kinesin processivity is determined by a kinetic race from a vulnerable one-head-bound state. Biophys. J. 112, 2615–2623 (2017).

    Article  ADS  Google Scholar 

  15. Monnier, N. et al. Inferring transient particle transport dynamics in live cells. Nat. Methods 12, 838–840 (2015).

    Article  Google Scholar 

  16. Vagnoni, A. & Bullock, S. L. A cAMP/PKA/kinesin-1 axis promotes the axonal transport of mitochondria in aging Drosophila neurons. Curr. Biol. 28, 1265–1272.e4 (2018).

    Article  Google Scholar 

  17. Milenkovic, L. et al. Single-molecule imaging of Hedgehog pathway protein smoothened in primary cilia reveals binding events regulated by Patched1. Proc. Natl Acad. Sci. USA 112, 8320–8325 (2015).

    Article  ADS  Google Scholar 

  18. Oswald, F., Varadarajan, A., Lill, H., Peterman, E. J. G. & Bollen, Y. J. M. MreB-dependent organization of the E. coli cytoplasmic membrane controls membrane protein diffusion. Biophys. J. 110, 1139–1149 (2016).

    Article  ADS  Google Scholar 

  19. Lenne, P.-F. et al. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25, 3245–3256 (2006).

    Article  Google Scholar 

  20. Höfling, F. & Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 76, 046602 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  21. Chechkin, A. V., Hofmann, M. & Sokolov, I. M. Continuous-time random walk with correlated waiting times. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 031112 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  22. Beattie, T. R. et al. Frequent exchange of the DNA polymerase during bacterial chromosome replication. eLife 6, e21763 (2017).

    Article  Google Scholar 

  23. Stracy, M. et al. Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli. Nat. Commun. 7, 12568 (2016).

    Article  ADS  Google Scholar 

  24. Vigouroux, A., Oldewurtel, E., Cui, L., Bikard, D. & van Teeffelen, S. Tuning dCas9’s ability to block transcription enables robust, noiseless knockdown of bacterial genes. Mol. Syst. Biol. 14, e7899 (2018).

    Article  Google Scholar 

  25. Izeddin, I. et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3, e02230 (2014).

    Article  Google Scholar 

  26. Uphoff, S. Super-resolution microscopy and tracking of DNA-binding proteins in bacterial cells. Methods Mol. Biol. 1431, 221–234 (2016).

    Article  Google Scholar 

  27. Pierobon, P. et al. Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biophys. J. 96, 4268–4275 (2009).

    Article  ADS  Google Scholar 

  28. Özbaykal, G. et al. The transpeptidase PBP2 governs initial localization and activity of the major cell-wall synthesis machinery in E. coli. eLife 9, e50629 (2020).

    Article  Google Scholar 

  29. Cho, H. et al. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 1, 16172 (2016).

    Article  Google Scholar 

  30. Domínguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228 (2011).

    Article  ADS  Google Scholar 

  31. Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011).

    Article  ADS  Google Scholar 

  32. van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl Acad. Sci. USA 108, 15822–15827 (2011).

    Article  ADS  Google Scholar 

  33. Du, X. et al. Insights into protein–ligand interactions: mechanisms, models, and methods. Int. J. Mol. Sci. 17, 144 (2016).

    Article  Google Scholar 

  34. Simon, F., Tinevez, J.-Y. & van Teeffelen, S. ExTrack characterizes transition kinetics and diffusion in noisy single-particle tracks. J. Cell Biol. 222, e202208059 (2023).

    Article  Google Scholar 

  35. Icha, J., Weber, M., Waters, J. C. & Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays 39, 1700003 (2017).

    Article  Google Scholar 

  36. Weiss, L. E., Naor, T. & Shechtman, Y. Observing DNA in live cells. Biochem. Soc. Trans. 46, 729–740 (2018).

    Article  Google Scholar 

  37. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

    Article  Google Scholar 

  38. Dunsby, C. Optically sectioned imaging by oblique plane microscopy. Opt. Expr. 16, 20306–20316 (2008).

    Article  ADS  Google Scholar 

  39. Ambrose, E. J. A surface contact microscope for the study of cell movements. Nature 178, 1194 (1956).

    Article  ADS  Google Scholar 

  40. Axelrod, D. Cell–substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 141–145 (1981).

    Article  Google Scholar 

  41. Voie, A. H., Burns, D. H. & Spelman, F. A. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170, 229–236 (1993).

    Article  Google Scholar 

  42. Kreplin, L. Z. & Arumugam, S. High-resolution light-sheet microscopy for whole-cell sub-cellular dynamics. Curr. Opin. Cell Biol. 85, 102272 (2023).

    Article  Google Scholar 

  43. Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article  Google Scholar 

  44. Minsky, M. Memoir on inventing the confocal scanning microscope. Scanning 10, 128–138 (1988).

    Article  Google Scholar 

  45. Elliott, A. D. Confocal microscopy: principles and modern practices. Curr. Protoc. Cytom. 92, e68 (2020).

    Article  Google Scholar 

  46. Egger, M. D. & Petrăn, M. New reflected-light microscope for viewing unstained brain and ganglion cells. Science 157, 305–307 (1967).

    Article  ADS  Google Scholar 

  47. Wells, N. P. et al. Time-resolved three-dimensional molecular tracking in live cells. Nano Lett. 10, 4732–4737 (2010).

    Article  ADS  Google Scholar 

  48. Welsher, K. & Yang, H. Imaging the behavior of molecules in biological systems: breaking the 3D speed barrier with 3D multi-resolution microscopy. Faraday Discuss. 184, 359–379 (2015).

    Article  ADS  Google Scholar 

  49. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    Article  ADS  Google Scholar 

  50. Schmidt, R. et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12, 1478 (2021).

    Article  ADS  Google Scholar 

  51. Schütz, G. J., Axmann, M. & Schindler, H. Imaging single molecules in three dimensions. Single Mol. 2, 69–74 (2001).

    Article  ADS  Google Scholar 

  52. Ram, S., Prabhat, P., Chao, J., Ward, E. S. & Ober, R. J. High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. Biophys. J. 95, 6025–6043 (2008).

    Article  ADS  Google Scholar 

  53. von Diezmann, L., Shechtman, Y. & Moerner, W. E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem. Rev. 117, 7244–7275 (2017).

    Article  Google Scholar 

  54. Shechtman, Y., Weiss, L. E., Backer, A. S., Sahl, S. J. & Moerner, W. E. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions. Nano Lett. 15, 4194–4199 (2015).

    Article  ADS  Google Scholar 

  55. Yamamoto, S. et al. A comparative study of EM-CCD and CMOS cameras for particle ion trajectory imaging. Appl. Radiat. Isot. 204, 111143 (2024).

    Article  Google Scholar 

  56. Brown, J. & Beer, S. Igniting questions, detecting answers: Hamamatsu Photonics introduces the world’s first photon-number-resolving scientific camera. in Quantum Technology: Driving Commercialisation of an Enabling Science III Vol. 8 (eds Bongs, K., Padgett, M. J., Fedrizzi, A. & Politi, A.) (SPIE, 2023).

  57. Huang, F. et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013).

    Article  Google Scholar 

  58. Rodriguez, E. A. et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42, 111–129 (2017).

    Article  Google Scholar 

  59. Lambert, T. J. FPbase: a community-editable fluorescent protein database. Nat. Methods 16, 277–278 (2019).

    Article  Google Scholar 

  60. Grimm, J. B. & Lavis, L. D. Caveat fluorophore: an insiders’ guide to small-molecule fluorescent labels. Nat. Methods 19, 149–158 (2022).

    Article  Google Scholar 

  61. Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).

    Article  Google Scholar 

  62. Kikuchi, K., Adair, L. D., Lin, J., New, E. J. & Kaur, A. Photochemical mechanisms of fluorophores employed in single-molecule localization microscopy. Angew. Chem. Int. Ed. 62, e202204745 (2023).

    Article  Google Scholar 

  63. Swoboda, M. et al. Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6, 6364–6369 (2012).

    Article  Google Scholar 

  64. Schwartz, S. L. et al. Fluorogen-activating proteins provide tunable labeling densities for tracking FcεRI independent of IgE. ACS Chem. Biol. 10, 539–546 (2015).

    Article  Google Scholar 

  65. Ryu, S. H. et al. Super-photostable organic dye for long-term live-cell single protein imaging. Preprint at https://doi.org/10.21203/rs.3.rs-3948627/v1 (2024).

  66. Zsok, J. et al. Nuclear basket proteins regulate the distribution and mobility of nuclear pore complexes in budding yeast. Preprint at https://doi.org/10.1101/2023.09.28.558499 (2023).

  67. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  Google Scholar 

  68. Ghosh, R. P. et al. A fluorogenic array for temporally unlimited single-molecule tracking. Nat. Chem. Biol. 15, 401–409 (2019).

    Article  Google Scholar 

  69. Naor, T. et al. Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking. iScience 25, 104197 (2022).

    Article  ADS  Google Scholar 

  70. Thorn, K. Genetically encoded fluorescent tags. Mol. Biol. Cell 28, 848–857 (2017).

    Article  Google Scholar 

  71. Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    Article  Google Scholar 

  72. Hirano, M. et al. A highly photostable and bright green fluorescent protein. Nat. Biotechnol. 40, 1132–1142 (2022).

    Article  Google Scholar 

  73. Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    Article  Google Scholar 

  74. Li, H. & Vaughan, J. C. Switchable fluorophores for single-molecule localization microscopy. Chem. Rev. 118, 9412–9454 (2018).

    Article  Google Scholar 

  75. Zhang, M. et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat. Methods 9, 727–729 (2012).

    Article  Google Scholar 

  76. Bayle, V. et al. Single-particle tracking photoactivated localization microscopy of membrane proteins in living plant tissues. Nat. Protoc. 16, 1600–1628 (2021).

    Article  Google Scholar 

  77. Mishra, K. et al. Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nat. Biotechnol. 40, 598–605 (2022).

    Article  Google Scholar 

  78. Shelby, S. A., Castello-Serrano, I., Wisser, K. C., Levental, I. & Veatch, S. L. Membrane phase separation drives responsive assembly of receptor signaling domains. Nat. Chem. Biol. 19, 750–758 (2023).

    Article  Google Scholar 

  79. Hughes, T. E., Zhang, H., Logothetis, D. E. & Berlot, C. H. Visualization of a functional Galpha q-green fluorescent protein fusion in living cells. Association with the plasma membrane is disrupted by mutational activation and by elimination of palmitoylation sites, but not be activation mediated by receptors or AlF4. J. Biol. Chem. 276, 4227–4235 (2001).

    Article  Google Scholar 

  80. Ouzounov, N. et al. MreB orientation correlates with cell diameter in Escherichia coli. Biophys. J. 111, 1035–1043 (2016).

    Article  ADS  Google Scholar 

  81. Mealer, R., Butler, H. & Hughes, T. Functional fusion proteins by random transposon-based GFP insertion. Methods Cell Biol. 85, 23–44 (2008).

    Article  Google Scholar 

  82. Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    Article  ADS  Google Scholar 

  83. Blair, K. M., Turner, L., Winkelman, J. T., Berg, H. C. & Kearns, D. B. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320, 1636–1638 (2008).

    Article  ADS  Google Scholar 

  84. Ellison, C. K., Dalia, T. N., Dalia, A. B. & Brun, Y. V. Real-time microscopy and physical perturbation of bacterial pili using maleimide-conjugated molecules. Nat. Protoc. 14, 1803–1819 (2019).

    Article  Google Scholar 

  85. Wang, L., Xie, J. & Schultz, P. G. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006).

    Article  Google Scholar 

  86. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  Google Scholar 

  87. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    Article  Google Scholar 

  88. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  Google Scholar 

  89. Hoelzel, C. A. & Zhang, X. Visualizing and manipulating biological processes by using HaloTag and SNAP-Tag technologies. ChemBioChem 21, 1935–1946 (2020).

    Article  Google Scholar 

  90. Zhao, C. et al. Single-cell multi-omics of human preimplantation embryos shows susceptibility to glucocorticoids. Genome Res. 32, 1627–1641 (2022).

    Article  Google Scholar 

  91. England, C. G., Luo, H. & Cai, W. HaloTag technology: a versatile platform for biomedical applications. Bioconjug. Chem. 26, 975–986 (2015).

    Article  Google Scholar 

  92. Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).

    Article  Google Scholar 

  93. Saurabh, S., Perez, A. M., Comerci, C. J., Shapiro, L. & Moerner, W. E. Super-resolution imaging of live bacteria cells using a genetically directed, highly photostable fluoromodule. J. Am. Chem. Soc. 138, 10398–10401 (2016).

    Article  Google Scholar 

  94. Kudalkar, E. M., Deng, Y., Davis, T. N. & Asbury, C. L. Coverslip cleaning and functionalization for total internal reflection fluorescence microscopy. Cold Spring Harb. Protoc. 2016, pdb.prot085548 (2016).

    Article  Google Scholar 

  95. Erdmann, R. S. et al. Labeling strategies matter for super-resolution microscopy: a comparison between HaloTags and SNAP-tags. Cell Chem. Biol. 26, 584–592.e6 (2019).

    Article  Google Scholar 

  96. Grimm, J. B. et al. Bright photoactivatable fluorophores for single-molecule imaging. Nat. Methods 13, 985–988 (2016).

    Article  Google Scholar 

  97. Ding, D.-Q. & Hiraoka, Y. Visualization of a specific genome locus by the lacO/LacI-GFP system. Cold Spring Harb. Protoc. 2017, pdb.prot091934 (2017).

    Article  Google Scholar 

  98. Zhang, B., Zerubia, J. & Olivo-Marin, J.-C. Gaussian approximations of fluorescence microscope point-spread function models. Appl. Opt. 46, 1819–1829 (2007).

    Article  ADS  Google Scholar 

  99. Manzo, C. & Garcia-Parajo, M. F. A review of progress in single particle tracking: from methods to biophysical insights. Rep. Prog. Phys. 78, 124601 (2015).

    Article  ADS  Google Scholar 

  100. Shen, H. et al. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117, 7331–7376 (2017).

    Article  Google Scholar 

  101. Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1, 39 (2021).

    Article  Google Scholar 

  102. Cheezum, M. K., Walker, W. F. & Guilford, W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81, 2378–2388 (2001).

    Article  Google Scholar 

  103. Lindén, M., Ćurić, V., Amselem, E. & Elf, J. Pointwise error estimates in localization microscopy. Nat. Commun. 8, 15115 (2017).

    Article  ADS  Google Scholar 

  104. Rieger, B. & Stallinga, S. The lateral and axial localization uncertainty in super-resolution light microscopy. ChemPhysChem 15, 664–670 (2014).

    Article  Google Scholar 

  105. Smith, C. S., Joseph, N., Rieger, B. & Lidke, K. A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods 7, 373–375 (2010).

    Article  Google Scholar 

  106. Parthasarathy, R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat. Methods 9, 724–726 (2012).

    Article  Google Scholar 

  107. Martens, K. J. A., Bader, A. N., Baas, S., Rieger, B. & Hohlbein, J. Phasor based single-molecule localization microscopy in 3D (pSMLM-3D): an algorithm for MHz localization rates using standard CPUs. J. Chem. Phys. 148, 123311 (2018).

    Article  ADS  Google Scholar 

  108. Aristov, A., Lelandais, B., Rensen, E. & Zimmer, C. ZOLA-3D allows flexible 3D localization microscopy over an adjustable axial range. Nat. Commun. 9, 2409 (2018).

    Article  ADS  Google Scholar 

  109. Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281–289 (2014).

    Article  Google Scholar 

  110. Sbalzarini, I. F. & Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195 (2005).

    Article  Google Scholar 

  111. Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    Article  Google Scholar 

  112. Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  ADS  Google Scholar 

  113. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    Article  Google Scholar 

  114. Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960).

    Article  MathSciNet  Google Scholar 

  115. Reid, D. An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24, 843–854 (1979).

    Article  ADS  Google Scholar 

  116. Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).

    Article  ADS  Google Scholar 

  117. Magde, D., Elson, E. & Webb, W. W. Thermodynamic fluctuations in a reacting system — measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972).

    Article  ADS  Google Scholar 

  118. Wiseman, P. W., Squier, J. A., Wilson, K. R. Dynamic image correlation spectroscopy (ICS) and two-color image cross-correlation spectroscopy (ICCS): concepts and application. SPIE, Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII 3919, 14–20 (2000).

    ADS  Google Scholar 

  119. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  ADS  Google Scholar 

  120. Qian, H., Sheetz, M. P. & Elson, E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60, 910–921 (1991).

    Article  Google Scholar 

  121. Michalet, X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 041914 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  122. Metzler, R., Jeon, J.-H., Cherstvy, A. G. & Barkai, E. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164 (2014).

    Article  Google Scholar 

  123. Metelev, M. et al. Direct measurements of mRNA translation kinetics in living cells. Nat. Commun. 13, 1852 (2022).

    Article  ADS  Google Scholar 

  124. Hansen, A. S. et al. Robust model-based analysis of single-particle tracking experiments with Spot-On. eLife 7, e33125 (2018).

    Article  Google Scholar 

  125. Oviedo-Bocanegra, L. M., Hinrichs, R., Rotter, D. A. O., Dersch, S. & Graumann, P. L. Single molecule/particle tracking analysis program SMTracker 2.0 reveals different dynamics of proteins within the RNA degradosome complex in Bacillus subtilis. Nucleic Acids Res. 49, e112 (2021).

    Article  Google Scholar 

  126. Schütz, G. J., Schindler, H. & Schmidt, T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73, 1073–1080 (1997).

    Article  Google Scholar 

  127. van den Wildenberg, S. M. J. L., Bollen, Y. J. M. & Peterman, E. J. G. How to quantify protein diffusion in the bacterial membrane. Biopolymers 95, 312–321 (2011).

    Article  Google Scholar 

  128. Gebhardt, J. C. M. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10, 421–426 (2013).

    Article  Google Scholar 

  129. Martens, K. J. A., Turkowyd, B., Hohlbein, J. & Endesfelder, U. Temporal analysis of relative distances (TARDIS) is a robust, parameter-free alternative to single-particle tracking. Nat. Methods 21, 1074–1081 (2024).

    Article  Google Scholar 

  130. Vink, J. N. A., Brouns, S. J. J. & Hohlbein, J. Extracting transition rates in particle tracking using analytical diffusion distribution analysis. Biophys. J. 119, 1970–1983 (2020).

    Article  ADS  Google Scholar 

  131. Bosch, P. J., Kanger, J. S. & Subramaniam, V. Classification of dynamical diffusion states in single molecule tracking microscopy. Biophys. J. 107, 588–598 (2014).

    Article  ADS  Google Scholar 

  132. Elliott, L. C. C., Barhoum, M., Harris, J. M. & Bohn, P. W. Trajectory analysis of single molecules exhibiting non-Brownian motion. Phys. Chem. Chem. Phys. 13, 4326–4334 (2011).

    Article  Google Scholar 

  133. Neyman, J., Pearson, E. S. & Pearson, K. I. X. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. A 231, 289–337 (1997).

    ADS  Google Scholar 

  134. Briane, V. et al. A sequential algorithm to detect diffusion switching along intracellular particle trajectories. Bioinformatics 36, 317–329 (2020).

    Article  Google Scholar 

  135. Montiel, D., Cang, H. & Yang, H. Quantitative characterization of changes in dynamical behavior for single-particle tracking studies. J. Phys. Chem. B 110, 19763–19770 (2006).

    Article  Google Scholar 

  136. Yin, S., Song, N. & Yang, H. Detection of velocity and diffusion coefficient change points in single-particle trajectories. Biophys. J. 115, 217–229 (2018).

    Article  ADS  Google Scholar 

  137. Pishro-Nik, H. Introduction to Probability, Statistics, and Random Processes (Kappa Research, LLC, 2014).

  138. Fosler-Lussier, E. Markov Models and Hidden Markov Models: A Brief Tutorial (International Computer Science Institute, 1998).

  139. Das, R., Cairo, C. W. & Coombs, D. A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS Comput. Biol. 5, e1000556 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  140. Persson, F., Lindén, M., Unoson, C. & Elf, J. Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10, 265–269 (2013).

    Article  Google Scholar 

  141. Ober, R. J., Ram, S. & Ward, E. S. Localization accuracy in single-molecule microscopy. Biophys. J. 86, 1185–1200 (2004).

    Article  ADS  Google Scholar 

  142. Fisher, R. A. On the mathematical foundations of theoretical statistics. Phil. Trans. R. Soc. Lond. A 222, 309–368 (1922).

    Article  ADS  Google Scholar 

  143. Cox, D. R. The Theory of Stochastic Processes (Methuen, 1965).

  144. Ott, M., Shai, Y. & Haran, G. Single-particle tracking reveals switching of the HIV fusion peptide between two diffusive modes in membranes. J. Phys. Chem. B 117, 13308–13321 (2013).

    Article  Google Scholar 

  145. Karslake, J. D. et al. SMAUG: analyzing single-molecule tracks with nonparametric Bayesian statistics. Methods 193, 16–26 (2021).

    Article  Google Scholar 

  146. Wolf, A., Volz-Rakebrand, P., Balke, J. & Alexiev, U. Diffusion analysis of NAnoscopic ensembles: a tracking-free diffusivity analysis for NAnoscopic ensembles in biological samples and nanotechnology. Small 19, e2206722 (2023).

    Article  Google Scholar 

  147. Slator, P. J., Cairo, C. W. & Burroughs, N. J. Detection of diffusion heterogeneity in single particle tracking trajectories using a hidden Markov model with measurement noise propagation. PLoS ONE 10, e0140759 (2015).

    Article  Google Scholar 

  148. Bernstein, J. & Fricks, J. Analysis of single particle diffusion with transient binding using particle filtering. J. Theor. Biol. 401, 109–121 (2016).

    Article  ADS  Google Scholar 

  149. Relich, P. K., Olah, M. J., Cutler, P. J. & Lidke, K. A. Estimation of the diffusion constant from intermittent trajectories with variable position uncertainties. Phys. Rev. E 93, 042401 (2016).

    Article  ADS  Google Scholar 

  150. Lindén, M. & Elf, J. Variational algorithms for analyzing noisy multistate diffusion trajectories. Biophys. J. 115, 276–282 (2018).

    Article  ADS  Google Scholar 

  151. Forney, G. D. The Viterbi algorithm. Proc. IEEE 61, 268–278 (1973).

    Article  MathSciNet  Google Scholar 

  152. Grimmer, J. An introduction to Bayesian inference via variational approximations. Political Anal. 19, 32–47 (2011).

    Article  Google Scholar 

  153. Calderon, C. P. Data-driven techniques for detecting dynamical state changes in noisily measured 3D single-molecule trajectories. Molecules 19, 18381–18398 (2014).

    Article  Google Scholar 

  154. Chen, Z., Geffroy, L. & Biteen, J. S. NOBIAS: analyzing anomalous diffusion in single-molecule tracks with nonparametric Bayesian inference. Front. Bioinform. 1, 742073 (2021).

    Article  Google Scholar 

  155. Falcao, R. C. & Coombs, D. Diffusion analysis of single particle trajectories in a Bayesian nonparametrics framework. Phys. Biol. 17, 025001 (2020).

    Article  Google Scholar 

  156. Smith, C. S. et al. An automated Bayesian pipeline for rapid analysis of single-molecule binding data. Nat. Commun. 10, 272 (2019).

    Article  ADS  Google Scholar 

  157. James, G., Witten, D., Hastie, T., Tibshirani, R. & Taylor, J. E. An Introduction to Statistical Learning: With Applications in Python (Springer, 2023).

  158. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  159. Neath, A. A. & Cavanaugh, J. E. The Bayesian information criterion: background, derivation, and applications. WIREs Comput. Stat. 4, 199–203 (2012).

    Article  Google Scholar 

  160. Simon, F. et al. Detecting directed motion and confinement in single-particle trajectories using hidden variables. eLife 13, RP99347 (2024).

    Google Scholar 

  161. Heckert, A., Dahal, L., Tjian, R. & Darzacq, X. Recovering mixtures of fast-diffusing states from short single-particle trajectories. eLife 11, e70169 (2022).

    Article  Google Scholar 

  162. Prindle, J. R., Wang, Y., Rocha, J. M., Diepold, A. & Gahlmann, A. Distinct cytosolic complexes containing the type III secretion system ATPase resolved by three-dimensional single-molecule tracking in live Yersinia enterocolitica. Microbiol. Spectr. 10, e0174422 (2022).

    Article  Google Scholar 

  163. Woringer, M., Izeddin, I., Favard, C. & Berry, H. Anomalous subdiffusion in living cells: bridging the gap between experiments and realistic models through collaborative challenges. Front. Phys. 8, 134 (2020).

    Article  Google Scholar 

  164. Mandelbrot, B. B. & Van Ness, J. W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968).

    Article  ADS  MathSciNet  Google Scholar 

  165. Muñoz-Gil, G. et al. Objective comparison of methods to decode anomalous diffusion. Nat. Commun. 12, 6253 (2021).

    Article  ADS  Google Scholar 

  166. Klafter, J. & Zumofen, G. Lévy statistics in a Hamiltonian system. Phys. Rev. E 49, 4873–4877 (1994).

    Article  ADS  Google Scholar 

  167. Niehaus, A. M. S., Vlachos, D. G., Edwards, J. S., Plechac, P. & Tribe, R. Microscopic simulation of membrane molecule diffusion on corralled membrane surfaces. Biophys. J. 94, 1551–1564 (2008).

    Article  ADS  Google Scholar 

  168. Kusumi, A. & Sako, Y. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 8, 566–574 (1996).

    Article  Google Scholar 

  169. Meilhac, N., Le Guyader, L., Salomé, L. & Destainville, N. Detection of confinement and jumps in single-molecule membrane trajectories. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73, 011915 (2006).

    Article  Google Scholar 

  170. Simson, R., Sheets, E. D. & Jacobson, K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989–993 (1995).

    Article  ADS  Google Scholar 

  171. Weigel, A. V., Simon, B., Tamkun, M. M. & Krapf, D. Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Natl Acad. Sci. USA 108, 6438–6443 (2011).

    Article  ADS  Google Scholar 

  172. Golding, I. & Cox, E. C. Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006).

    Article  ADS  Google Scholar 

  173. Lampo, T. J., Stylianidou, S., Backlund, M. P., Wiggins, P. A. & Spakowitz, A. J. Cytoplasmic RNA–protein particles exhibit non-Gaussian subdiffusive behavior. Biophys. J. 112, 532–542 (2017).

    Article  ADS  Google Scholar 

  174. Guigas, G., Kalla, C. & Weiss, M. Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys. J. 93, 316–323 (2007).

    Article  ADS  Google Scholar 

  175. Lizana, L., Ambjörnsson, T., Taloni, A., Barkai, E. & Lomholt, M. A. Foundation of fractional Langevin equation: harmonization of a many-body problem. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 051118 (2010).

    Article  ADS  Google Scholar 

  176. Burnecki, K. et al. Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion. Biophys. J. 103, 1839–1847 (2012).

    Article  ADS  Google Scholar 

  177. Weber, S. C., Spakowitz, A. J. & Theriot, J. A. Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys. Rev. Lett. 104, 238102 (2010).

    Article  ADS  Google Scholar 

  178. Bressloff, P. C. & Newby, J. M. Stochastic models of intracellular transport. Rev. Mod. Phys. 85, 135–196 (2013).

    Article  ADS  Google Scholar 

  179. Massignan, P. et al. Nonergodic subdiffusion from Brownian motion in an inhomogeneous medium. Phys. Rev. Lett. 112, 150603 (2014).

    Article  ADS  Google Scholar 

  180. Sher, H. & Montroll, E. W. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12, 2455–2477 (1975).

    Article  ADS  Google Scholar 

  181. Krapf, D. Mechanisms underlying anomalous diffusion in the plasma membrane. Curr. Top. Membr. 75, 167–207 (2015).

    Article  Google Scholar 

  182. Kepten, E., Weron, A., Sikora, G., Burnecki, K. & Garini, Y. Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments. PLoS ONE 10, e0117722 (2015).

    Article  Google Scholar 

  183. Rehfeldt, F. & Weiss, M. The random walker’s toolbox for analyzing single-particle tracking data. Soft Matter 19, 5206–5222 (2023).

    Article  ADS  Google Scholar 

  184. Meroz, Y. & Sokolov, I. M. A toolbox for determining subdiffusive mechanisms. Phys. Rep. 573, 1–29 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  185. Magdziarz, M., Weron, A., Burnecki, K. & Klafter, J. Fractional Brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics. Phys. Rev. Lett. 103, 180602 (2009).

    Article  ADS  Google Scholar 

  186. Türkcan, S., Alexandrou, A. & Masson, J.-B. A Bayesian inference scheme to extract diffusivity and potential fields from confined single-molecule trajectories. Biophys. J. 102, 2288–2298 (2012).

    Article  ADS  Google Scholar 

  187. Briane, V., Kervrann, C. & Vimond, M. Statistical analysis of particle trajectories in living cells. Phys. Rev. E 97, 062121 (2018).

    Article  ADS  Google Scholar 

  188. Sikora, G., Burnecki, K. & Wyłomańska, A. Mean-squared-displacement statistical test for fractional Brownian motion. Phys. Rev. E 95, 032110 (2017).

    Article  ADS  Google Scholar 

  189. Granik, N. et al. Single-particle diffusion characterization by deep learning. Biophys. J. 117, 185–192 (2019).

    Article  ADS  Google Scholar 

  190. Gentili, A. & Volpe, G. Characterization of anomalous diffusion classical statistics powered by deep learning (CONDOR). J. Phys. A Math. Theor. 54, 314003 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  191. Li, D., Yao, Q. & Huang, Z. WaveNet-based deep neural networks for the characterization of anomalous diffusion (WADNet). J. Phys. A Math. Theor. 54, 404003 (2021).

    Article  MathSciNet  Google Scholar 

  192. Argun, A., Volpe, G. & Bo, S. Classification, inference and segmentation of anomalous diffusion with recurrent neural networks. J. Phys. A Math. Theor. 54, 294003 (2021).

    Article  MathSciNet  Google Scholar 

  193. Seckler, H. & Metzler, R. Bayesian deep learning for error estimation in the analysis of anomalous diffusion. Nat. Commun. 13, 6717 (2022).

    Article  ADS  Google Scholar 

  194. Keren, K., Yam, P. T., Kinkhabwala, A., Mogilner, A. & Theriot, J. A. Intracellular fluid flow in rapidly moving cells. Nat. Cell Biol. 11, 1219–1224 (2009).

    Article  Google Scholar 

  195. Pilling, A. D., Horiuchi, D., Lively, C. M. & Saxton, W. M. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell 17, 2057–2068 (2006).

    Article  Google Scholar 

  196. Arcizet, D., Meier, B., Sackmann, E., Rädler, J. O. & Heinrich, D. Temporal analysis of active and passive transport in living cells. Phys. Rev. Lett. 101, 248103 (2008).

    Article  ADS  Google Scholar 

  197. Zhou, Q. et al. Three-dimensional wide-field fluorescence microscopy for transcranial mapping of cortical microcirculation. Nat. Commun. 13, 7969 (2022).

    Article  ADS  Google Scholar 

  198. Bouzigues, C. & Dahan, M. Transient directed motions of GABA(A) receptors in growth cones detected by a speed correlation index. Biophys. J. 92, 654–660 (2007).

    Article  ADS  Google Scholar 

  199. Weber, S. C., Thompson, M. A., Moerner, W. E., Spakowitz, A. J. & Theriot, J. A. Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. Biophys. J. 102, 2443–2450 (2012).

    Article  ADS  Google Scholar 

  200. Reck-Peterson, S. L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006).

    Article  Google Scholar 

  201. Fenn, J. D., Johnson, C. M., Peng, J., Jung, P. & Brown, A. Kymograph analysis with high temporal resolution reveals new features of neurofilament transport kinetics. Cytoskeleton 75, 22–41 (2018).

    Article  Google Scholar 

  202. Daniele, J. R., Baqri, R. M. & Kunes, S. Analysis of axonal trafficking via a novel live-imaging technique reveals distinct hedgehog transport kinetics. Biol. Open 6, 714–721 (2017).

    Google Scholar 

  203. Ott, C. & Lippincott-Schwartz, J. Visualization of live primary cilia dynamics using fluorescence microscopy. Curr. Protoc. Cell Biol. 4, 4.26.1–4.26.22 (2012).

    Google Scholar 

  204. Weiss, L. E., Milenkovic, L., Yoon, J., Stearns, T. & Moerner, W. E. Motional dynamics of single Patched1 molecules in cilia are controlled by Hedgehog and cholesterol. Proc. Natl Acad. Sci. USA 116, 5550–5557 (2019).

    Article  ADS  Google Scholar 

  205. Vega, A. R., Freeman, S. A., Grinstein, S. & Jaqaman, K. Multistep track segmentation and motion classification for transient mobility analysis. Biophys. J. 114, 1018–1025 (2018).

    Article  ADS  Google Scholar 

  206. Bai, S., Kolter, J. Z. & Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. Preprint at http://arxiv.org/abs/1803.01271 (2018).

  207. Qu, X. et al. Semantic segmentation of anomalous diffusion using deep convolutional networks. Phys. Rev. Res. 6, 013054 (2024).

    Article  Google Scholar 

  208. Bo, S., Schmidt, F., Eichhorn, R. & Volpe, G. Measurement of anomalous diffusion using recurrent neural networks. Phys. Rev. E 100, 010102 (2019).

    Article  ADS  Google Scholar 

  209. Garibo-i-Orts, Ò., Baeza-Bosca, A., Garcia-March, M. A. & Conejero, J. A. Efficient recurrent neural network methods for anomalously diffusing single particle short and noisy trajectories. J. Phys. A Math. Theor. 54, 504002 (2021).

    Article  MathSciNet  Google Scholar 

  210. Arts, M., Smal, I., Paul, M. W., Wyman, C. & Meijering, E. Particle mobility analysis using deep learning and the moment scaling spectrum. Sci. Rep. 9, 17160 (2019).

    Article  ADS  Google Scholar 

  211. Firbas, N., Garibo-i-Orts, Ò., Garcia-March, M. Á. & Conejero, J. A. Characterization of anomalous diffusion through convolutional transformers. J. Phys. A Math. Theor. 56, 014001 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  212. Requena, B. et al. Inferring pointwise diffusion properties of single trajectories with deep learning. Biophys. J. 122, 4360–4369 (2023).

    Article  ADS  Google Scholar 

  213. El Beheiry, M., Dahan, M. & Masson, J.-B. InferenceMAP: mapping of single-molecule dynamics with Bayesian inference. Nat. Methods 12, 594–595 (2015).

    Article  Google Scholar 

  214. Giannone, G. et al. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J. 99, 1303–1310 (2010).

    Article  ADS  Google Scholar 

  215. Sanamrad, A. et al. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. Proc. Natl Acad. Sci. USA 111, 11413–11418 (2014).

    Article  ADS  Google Scholar 

  216. Zhong, Y. & Wang, G. Three-dimensional single particle tracking and its applications in confined environments. Annu. Rev. Anal. Chem. 13, 381–403 (2020).

    Article  Google Scholar 

  217. Weber, S. C., Spakowitz, A. J. & Theriot, J. A. Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc. Natl Acad. Sci. USA 109, 7338–7343 (2012).

    Article  ADS  Google Scholar 

  218. Javer, A. et al. Persistent super-diffusive motion of Escherichia coli chromosomal loci. Nat. Commun. 5, 3854 (2014).

    Article  ADS  Google Scholar 

  219. Hajjoul, H. et al. High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res. 23, 1829–1838 (2013).

    Article  Google Scholar 

  220. Śmigiel, W. M. et al. Protein diffusion in Escherichia coli cytoplasm scales with the mass of the complexes and is location dependent. Sci. Adv. 8, eabo5387 (2022).

    Article  Google Scholar 

  221. Parry, B. R. et al. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156, 183–194 (2014).

    Article  Google Scholar 

  222. Bakshi, S., Siryaporn, A., Goulian, M. & Weisshaar, J. C. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85, 21–38 (2012).

    Article  Google Scholar 

  223. Huang, W. Y. C., Cheng, X. & Ferrell, J. E. Cytoplasmic organization promotes protein diffusion in Xenopus extracts. Nat. Commun. 13, 5599 (2022).

    Article  ADS  Google Scholar 

  224. Clausen, M. P., Arnspang, E. C., Ballou, B., Bear, J. E. & Lagerholm, B. C. Simultaneous multi-species tracking in live cells with quantum dot conjugates. PLoS ONE 9, e97671 (2014).

    Article  ADS  Google Scholar 

  225. Joyner, R. P. et al. A glucose-starvation response regulates the diffusion of macromolecules. eLife 5, e09376 (2016).

    Google Scholar 

  226. Konopka, M. C., Shkel, I. A., Cayley, S., Record, M. T. & Weisshaar, J. C. Crowding and confinement effects on protein diffusion in vivo. J. Bacteriol. 188, 6115–6123 (2006).

    Article  Google Scholar 

  227. Alric, B., Formosa-Dague, C., Dague, E., Holt, L. J. & Delarue, M. Macromolecular crowding limits growth under pressure. Nat. Phys. 18, 411–416 (2022).

    Article  Google Scholar 

  228. Guo, M. et al. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158, 822–832 (2014).

    Article  Google Scholar 

  229. Garner, R. M., Molines, A. T., Theriot, J. A. & Chang, F. Vast heterogeneity in cytoplasmic diffusion rates revealed by nanorheology and Doppelgänger simulations. Biophys. J. 122, 767–783 (2023).

    Article  ADS  Google Scholar 

  230. Ladouceur, A.-M. et al. Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid–liquid phase separation. Proc. Natl Acad. Sci. USA 117, 18540–18549 (2020).

    Article  ADS  Google Scholar 

  231. Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. & Jacobson, K. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284 (2002).

    Article  Google Scholar 

  232. Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    Article  Google Scholar 

  233. Jin, S., Haggie, P. M. & Verkman, A. S. Single-particle tracking of membrane protein diffusion in a potential: simulation, detection, and application to confined diffusion of CFTR Cl channels. Biophys. J. 93, 1079–1088 (2007).

    Article  ADS  Google Scholar 

  234. Sungkaworn, T. et al. Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 550, 543–547 (2017).

    Article  ADS  Google Scholar 

  235. Rassam, P. et al. Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. Nature 523, 333–336 (2015).

    Article  ADS  Google Scholar 

  236. Prindle, J. R., de Cuba, O. I. C. & Gahlmann, A. Single-molecule tracking to determine the abundances and stoichiometries of freely-diffusing protein complexes in living cells: past applications and future prospects. J. Chem. Phys. 159, 071002 (2023).

    Article  ADS  Google Scholar 

  237. English, B. P. et al. Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc. Natl Acad. Sci. USA 108, E365–E373 (2011).

    Article  Google Scholar 

  238. Volkov, I. L. et al. tRNA tracking for direct measurements of protein synthesis kinetics in live cells. Nat. Chem. Biol. 14, 618–626 (2018).

    Article  Google Scholar 

  239. Mazza, D., Abernathy, A., Golob, N., Morisaki, T. & McNally, J. G. A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40, e119 (2012).

    Article  Google Scholar 

  240. Liao, Y., Schroeder, J. W., Gao, B., Simmons, L. A. & Biteen, J. S. Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair. Proc. Natl Acad. Sci. USA 112, E6898–E6906 (2015).

    Article  ADS  Google Scholar 

  241. Weng, X. & Xiao, J. Spatial organization of transcription in bacterial cells. Trends Genet. 30, 287–297 (2014).

    Article  Google Scholar 

  242. Miné-Hattab, J., Recamier, V., Izeddin, I., Rothstein, R. & Darzacq, X. Multi-scale tracking reveals scale-dependent chromatin dynamics after DNA damage. Mol. Biol. Cell 28, 3323–3332 (2017).

    Article  Google Scholar 

  243. Whitley, K. D. et al. FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in Bacillus subtilis cell division. Nat. Commun. 12, 2448 (2021).

    Article  ADS  Google Scholar 

  244. Tang, X. et al. Kinetic principles underlying pioneer function of GAGA transcription factor in live cells. Nat. Struct. Mol. Biol. 29, 665–676 (2022).

    Article  Google Scholar 

  245. Oomen, M. E., Hansen, A. S., Liu, Y., Darzacq, X. & Dekker, J. CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning. Genome Res. 29, 236–249 (2019).

    Article  Google Scholar 

  246. Vink, J. N. A. et al. Direct visualization of native CRISPR target search in live bacteria reveals cascade DNA surveillance mechanism. Mol. Cell 77, 39–50.e10 (2020).

    Article  Google Scholar 

  247. Martens, K. J. A. et al. Visualisation of dCas9 target search in vivo using an open-microscopy framework. Nat. Commun. 10, 3552 (2019).

    Article  ADS  Google Scholar 

  248. Biswas, S. et al. HP1 oligomerization compensates for low-affinity H3K9me recognition and provides a tunable mechanism for heterochromatin-specific localization. Sci. Adv. 8, eabk0793 (2022).

    Article  Google Scholar 

  249. Peng, C. S. et al. Nanometer-resolution tracking of single cargos reveals dynein motor mechanisms. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01694-2 (2024).

  250. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  ADS  Google Scholar 

  251. Montero Llopis, P. et al. Best practices and tools for reporting reproducible fluorescence microscopy methods. Nat. Methods 18, 1463–1476 (2021).

    Article  Google Scholar 

  252. Foster, E. D. & Deardorff, A. Open science framework (OSF). J. Med. Lib. Assoc. 105, 203–206 (2017).

    Google Scholar 

  253. Paszke, A. et al. Automatic differentiation in PyTorch. in 31st Conference on Neural Information Processing Systems (NIPS, 2017).

  254. Dillon, J. V. et al. TensorFlow distributions. Preprint at https://doi.org/10.48550/arXiv.1711.10604 (2017).

  255. Chollet, F. et al. Keras. GitHub https://github.com/fchollet/keras (2015).

  256. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  Google Scholar 

  257. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article  MathSciNet  Google Scholar 

  258. Chiu, C.-L., Clack, N. & The napari Community. napari: a Python multi-dimensional image viewer platform for the research community. Microsc. Microanal. 28, 1576–1577 (2022).

    Article  Google Scholar 

  259. Berglund, A. J. Statistics of camera-based single-particle tracking. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 011917 (2010).

    Article  ADS  Google Scholar 

  260. Lindén, M., Ćurić, V., Boucharin, A., Fange, D. & Elf, J. Simulated single molecule microscopy with SMeagol. Bioinformatics 32, 2394–2395 (2016).

    Article  Google Scholar 

  261. Ye, N., Roosta-Khorasani, F. & Cui, T. Optimization methods for inverse problems. in 2017 MATRIX Annals (eds de Gier, J., Praeger, C. E. & Tao, T.) 121–140 (Springer International Publishing, 2019).

  262. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  ADS  Google Scholar 

  263. Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python JIT compiler. In Proc. Second Workshop on the LLVM Compiler Infrastructure in HPC 1–6 (ACM, 2015).

  264. Hogg, R. V., McKean, J. W. & Craig, A. T. Introduction to Mathematical Statistics (Pearson Prentice Hall, 2005).

  265. Pollard, T. D. A guide to simple and informative binding assays. Mol. Biol. Cell 21, 4061–4067 (2010).

    Article  Google Scholar 

  266. Lu, H. P. Probing single-molecule protein conformational dynamics. Acc. Chem. Res. 38, 557–565 (2005).

    Article  Google Scholar 

  267. Russell, M. & Moore, R. Explicit modelling of state occupancy in hidden Markov models for automatic speech recognition. In ICASSP ’85. IEEE Int. Conf. Acoustics, Speech, and Signal Processing 5–8 (IEEE, 1985).

  268. Levinson, S. E. Continuously variable duration hidden Markov models for automatic speech recognition. Comput. Speech Lang. 1, 29–45 (1986).

    Article  Google Scholar 

  269. Xie, Y., Tang, S., Tang, C. & Huang, X. An efficient algorithm for parameterizing HsMM with Gaussian and gamma distributions. Inf. Process. Lett. 112, 732–737 (2012).

    Article  MathSciNet  Google Scholar 

  270. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  271. Cuomo, S. et al. Scientific machine learning through physics-informed neural networks: where we are and what’s next. J. Sci. Comput. 92, 88 (2022).

    Article  MathSciNet  Google Scholar 

  272. Hasani, R. et al. Closed-form continuous-time neural networks. Nat. Mach. Intell. 4, 992–1003 (2022).

    Article  Google Scholar 

  273. Chahine, M. et al. Robust flight navigation out of distribution with liquid neural networks. Sci. Robot. 8, eadc8892 (2023).

    Article  Google Scholar 

  274. Masegosa, A. R., Cabañas, R., Langseth, H., Nielsen, T. D. & Salmerón, A. Probabilistic models with deep neural networks. Entropy 23, 117 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  275. Huang, T. et al. Simultaneous multicolor single-molecule tracking with single-laser excitation via spectral imaging. Biophys. J. 114, 301–310 (2018).

    Article  ADS  Google Scholar 

  276. Butler, C. et al. Multi-dimensional spectral single molecule localization microscopy. Front. Bioinform. 2, 813494 (2022).

    Article  Google Scholar 

  277. Chen, P. et al. Fluorescence lifetime tracking and imaging of single moving particles assisted by a low-photon-count analysis algorithm. Biomed. Opt. Expr. 14, 1718–1731 (2023).

    Article  Google Scholar 

  278. Thiele, J. C. et al. Confocal fluorescence-lifetime single-molecule localization microscopy. ACS Nano 14, 14190–14200 (2020).

    Article  Google Scholar 

  279. Chen, D., Li, H., Yu, B. & Qu, J. Four-dimensional multi-particle tracking in living cells based on lifetime imaging. Nanophotonics 11, 1537–1547 (2022).

    Article  Google Scholar 

  280. Mehta, S. B. et al. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc. Natl Acad. Sci. USA 113, E6352–E6361 (2016).

    Article  Google Scholar 

  281. Keller, A. M. et al. Multicolor three-dimensional tracking for single-molecule fluorescence resonance energy transfer measurements. Anal. Chem. 90, 6109–6115 (2018).

    Article  Google Scholar 

  282. Cole, F. et al. Super-resolved FRET and co-tracking in pMINFLUX. Nat. Photon. 18, 478–484 (2024).

    Article  ADS  Google Scholar 

  283. Savin, T. & Doyle, P. S. Static and dynamic errors in particle tracking microrheology. Biophys. J. 88, 623–638 (2005).

    Article  ADS  Google Scholar 

  284. Türkcan, S. & Masson, J.-B. Bayesian decision tree for the classification of the mode of motion in single-molecule trajectories. PLoS ONE 8, e82799 (2013).

    Article  ADS  Google Scholar 

  285. Di Rienzo, C., Gratton, E., Beltram, F. & Cardarelli, F. Spatiotemporal fluctuation analysis: a powerful tool for the future nanoscopy of molecular processes. Biophys. J. 111, 679–685 (2016).

    Article  Google Scholar 

  286. Seckler, H., Szwabiński, J. & Metzler, R. Machine-learning solutions for the analysis of single-particle diffusion trajectories. J. Phys. Chem. Lett. 14, 7910–7923 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Volkswagen Foundation (to S.v.T.) and the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery grant (RGPIN-2021-03208 to S.v.T., RGPIN-2022-05142 to L.E.W.)). S.v.T. and L.E.W. are recipients of salary awards from the Fonds de Recherche du Québec – Santé (FRQS). L.E.W. acknowledges funding from the Canada First Research Excellence Fund (TransMedTech Institute).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of the manuscript. Introduction (F.S., L.E.W. and S.v.T.); Experimentation (F.S., L.E.W. and S.v.T.); Results (F.S., L.E.W. and S.v.T.); Applications (F.S., L.E.W. and S.v.T.); Reproducibility and data deposition (F.S., L.E.W. and S.v.T.); Limitations and optimizations (F.S., L.E.W. and S.v.T.); Outlook (F.S., L.E.W. and S.v.T.); Overview of the Primer (F.S., L.E.W. and S.v.T.).

Corresponding authors

Correspondence to François Simon, Lucien E. Weiss or Sven van Teeffelen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Giuseppe Vicidomini, Lehui Xiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bayesian inference

A mathematical framework based on Bayes’ theorem to update our knowledge of a phenomenon, called the posterior, given a priori information and new data.

Change-point methods

A class of analysis methods that detect points of transitions between states based on the variations of a metric along a track.

Cost functions

Functions that measure the discrepancy between a given data set and a model that depends on unknown parameters. The parameters are then estimated by minimizing the cost function. The cost function is typically determined by probabilistic methods (for example, maximum likelihood estimation).

Diffusion coefficient

A metric that characterizes the motion of Brownian diffusers in units of length squared per unit time. Frequently estimated from the slope of the mean squared displacement curve.

Diffusion length

The typical displacement of a particle in one time step, Δt; explicitly, d is the standard deviation of the probability distribution of displacements for a Brownian diffuser.

Dirichlet process

A stochastic process used as a prior distribution in Bayesian models with an undetermined number of parameters.

Hidden Markov model

A model in which the observable variables are determined by hidden states that follow a Markov model.

Jump-distance distribution

The distribution of observed displacements between consecutive time points of observation. This measurement depends on both the real displacement and the localization errors of the consecutive observed positions.

Lifetime

The average duration within a state. In a Markov model, the lifetime of a state is the inverse of the sum of the transition rates from that state to the other states.

Markov model

A model in which the states change through time according to fixed transition probabilities that can be summarized in a transition matrix.

Mean squared displacement

(MSD). A metric calculated as the average of all squared displacements for a defined time interval. Brownian motion shows a linear scaling with time, whereas anomalous diffusion is defined as all other behaviours.

Monte Carlo methods

A class of algorithms that use random sampling. This can be used to estimate a deterministic value such as a model parameter. A Markov chain Monte Carlo method samples sequences of states that follow the Markov chain rules.

Sequence of states

Time series of states of motion at each time point.

Variational Bayesian methods

A class of methods that approximate intractable posterior distributions from Bayesian inference.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, F., Weiss, L.E. & van Teeffelen, S. A guide to single-particle tracking. Nat Rev Methods Primers 4, 66 (2024). https://doi.org/10.1038/s43586-024-00341-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00341-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing