Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia

Abstract

Identification of genomic and epigenomic determinants of drug resistance provides important insights for improving cancer treatment. Using agnostic genome-wide interrogation of messenger RNA and microRNA (miRNA) expression, DNA methylation, single-nucleotide polymorphisms, copy number alterations and single-nucleotide variants/indels in primary human acute lymphoblastic leukemia cells, we identified 463 genomic features associated with glucocorticoid resistance. Gene-level aggregation identified 118 overlapping genes, 15 of which were confirmed by genome-wide CRISPR screen. Collectively, this identified 30 of 38 (79%) known glucocorticoid-resistance genes/miRNAs and all 38 known resistance pathways, while revealing 14 genes not previously associated with glucocorticoid resistance. Single-cell RNA-sequencing and network-based transcriptomic modeling corroborated the top previously undiscovered gene, CELSR2. Manipulation of CELSR2 recapitulated glucocorticoid resistance in human leukemia cell lines and revealed a synergistic drug combination (prednisolone and venetoclax) that mitigated resistance in mouse xenograft models. These findings illustrate the power of an integrative genomic strategy for elucidating genes and pathways conferring drug resistance in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: De novo sensitivity of primary leukemia cells to prednisolone and clinical treatment response.
Fig. 2: Polygenomic analyses identify genomic features related to prednisolone resistance.
Fig. 3: Genome-wide orthogonal validation identifies CELSR2 as a key mediator of glucocorticoid resistance.
Fig. 4: CELSR2 knockdown decreases GR expression and attenuates glucocorticoid modulation of gene expression.
Fig. 5: Increased synergy and mitigation of glucocorticoid resistance by inhibition of BCL2 in ALL with low CELSR2 expression.
Fig. 6: NetBID identifies CELSR2 as a hub driver of prednisolone resistance.
Fig. 7: Single-cell transcriptomic analysis verifies lower CELSR2 and higher BCL2 in glucocorticoid-resistant primary ALL cells.
Fig. 8: Perturbation of downstream non-canonical Wnt signaling leads to decreased GR expression and glucocorticoid resistance.

Similar content being viewed by others

Data availability

DNA methylation, gene expression and ChIP-seq data are available at the Gene Expression Omnibus (GEO) under accession no. GSE66708. MiRNA data can be found at GEO under accession no. GSE76849. Cell line RNA-seq data can be found at GEO under accession no. GSE115384. Validation cohort no. 1 RNA-seq data from 73 of the 320 patients in the independent second cohort can be found at GEO under accession no. GSE115525. Additional RNA-seq data from validation cohort no. 1 (n = 247) can be found at GEO under accession no. GSE124824. PAX5 CHIP-seq can be found at GEO under accession no. GSE115764. Cell line ATAC-seq data can be found at GEO under accession no. GSE129066. Genotype data can be found in dbGaP at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000638.v1.p1. Source data have been provided in the form of unprocessed images for all western blots (Figs. 3, 4 and 7 and Extended Data Figs. 4, 7 and 9) and for graphs (Figs. 1, 3, 4, 5 and 8 and Extended Data Figs. 4, 5, 7 and 9) in the manuscript. All other data supporting the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Code used to generate for the polygenomic analysis and the TAP analysis can be found on GitHub at https://github.com/evanslabSJCRH/Polygenomic-Analysis. The NetBID code can be found at https://github.com/jyyulab/NetBID. Any custom code generated for our analyses not specifically listed here or in the text may be requested from W.E.E. (William.Evans@stjude.org). All R packages or other software used is given in Methods for each relevant analysis.

References

  1. Pieters, R. et al. Relation of cellular drug resistance to long-term clinical outcome in childhood acute lymphoblastic leukaemia. Lancet 338, 399–403 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Pui, C. H. & Evans, W. E. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin. Hematol. 50, 185–196 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pui, C. H. & Evans, W. E. Acute lymphoblastic leukemia. N. Engl. J. Med. 339, 605–615 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Pui, C. H. & Evans, W. E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 354, 166–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Clavell, L. A. et al. Four-agent induction and intensive asparaginase therapy for treatment of childhood acute lymphoblastic leukemia. N. Engl. J. Med. 315, 657–663 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Dordelmann, M. et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 94, 1209–1217 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Boer, M. L. D. et al. Patient stratification based on prednisolone–vincristine–asparaginase resistance profiles in children with acute lymphoblastic leukemia. J. Clin. Oncol. 21, 3262–3268 (2003).

    Article  CAS  Google Scholar 

  9. Kaspers, G. J. et al. In vitro cellular drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood 90, 2723–2729 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt, S. et al. Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ. 11(Suppl 1), S45–S55 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Inaba, H. & Pui, C. H. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 11, 1096–1106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bachmann, P. S. et al. Divergent mechanisms of glucocorticoid resistance in experimental models of pediatric acute lymphoblastic leukemia. Cancer Res. 67, 4482–4490 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Song, Q.-Q., Xie, W.-Y., Tang, Y.-J., Zhang, J. & Liu, J. Genetic variation in the glucocorticoid pathway involved in interindividual differences in the glucocorticoid treatment. Pharmacogenomics 18, 293–316 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Downing, J. R. et al. The pediatric cancer genome project. Nat. Genet. 44, 619–622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paugh, S. W. et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat. Genet. 47, 607–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Campana, D. Minimal residual disease in acute lymphoblastic leukemia. Semin. Hematol. 46, 100–106 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cave, H. et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer—Childhood Leukemia Cooperative Group. N. Engl. J. Med. 339, 591–598 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Pui, C. H. et al. Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with response-adapted therapy. Leukemia 31, 333–339 (2017).

    Article  PubMed  Google Scholar 

  19. Pottier, N. et al. The SWI/SNF chromatin-remodeling complex and glucocorticoid resistance in acute lymphoblastic leukemia. J. Natl Cancer Instit. 100, 1792–1803 (2008).

    Article  CAS  Google Scholar 

  20. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rogatsky, I., Hittelman, A. B., Pearce, D. & Garabedian, M. J. Distinct glucocorticoid receptor transcriptional regulatory surfaces mediate the cytotoxic and cytostatic effects of glucocorticoids. Mol. Cell Biol. 19, 5036–5049 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heidari, N., Miller, A. V., Hicks, M. A., Marking, C. B. & Harada, H. Glucocorticoid-mediated BIM induction and apoptosis are regulated by Runx2 and c-Jun in leukemia cells. Cell Death Dis. 3, e349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lochmann, T. L., Bouck, Y. M. & Faber, A. C. BCL-2 inhibition is a promising therapeutic strategy for small cell lung cancer. Oncoscience 5, 218–219 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pham, L. V. et al. Strategic therapeutic targeting to overcome venetoclax resistance in aggressive B-cell lymphomas. Clin. Cancer Res. 24, 3967 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Du, X. et al. Hippo/Mst signaling couples metabolic state and function of CD8α+ dendritic cells for cytotoxic T-cell priming. Nature 558, 141–145 (2018).

  26. Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jing, D. et al. Lymphocyte-specific chromatin accessibility pre-determines glucocorticoid resistance in acute lymphoblastic leukemia. Cancer Cell 34, 906–921 (2018). e908.

    Article  CAS  PubMed  Google Scholar 

  28. Jing, D. et al. Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood 125, 273–283 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  30. Sugimura, R. et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 150, 351–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Presul, E., Schmidt, S., Kofler, R. & Helmberg, A. Identification, tissue expression, and glucocorticoid responsiveness of alternative first exons of the human glucocorticoid receptor. J. Mol. Endocrinol. 38, 79–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Pui, C. H., Ochs, J., Kalwinsky, D. K. & Costlow, M. E. Impact of treatment efficacy on the prognostic value of glucocorticoid receptor levels in childhood acute lymphoblastic leukemia. Leuk. Res. 8, 345–350 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. Irving, J. A., Minto, L., Bailey, S. & Hall, A. G. Loss of heterozygosity and somatic mutations of the glucocorticoid receptor gene are rarely found at relapse in pediatric acute lymphoblastic leukemia but may occur in a subpopulation early in the disease course. Cancer Res. 65, 9712–9718 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Tremblay, C. S. et al. Loss-of-function mutations of Dynamin 2 promote T-ALL by enhancing IL-7 signalling. Leukemia 30, 1993–2001 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Li, Y. et al. IL-7 receptor mutations and steroid resistance in pediatric T cell acute lymphoblastic leukemia: a genome sequencing study. PLoS Med. 13, e1002200 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Delgado-Martin, C. et al. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia 31, 2568–2576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oppermann, S. et al. Janus and PI3-kinases mediate glucocorticoid resistance in activated chronic leukemia cells. Oncotarget 7, 72608–72621 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kruth, K. A. et al. Suppression of B-cell development genes is key to glucocorticoid efficacy in treatment of acute lymphoblastic leukemia. Blood 129, 3000–3008 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei, G. et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10, 331–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Bonapace, L. et al. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J. Clin. Invest. 120, 1310–1323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Piovan, E. et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell 24, 766–776 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Nicholson, L. et al. Quantitative proteomic analysis reveals maturation as a mechanism underlying glucocorticoid resistance in B lineage ALL and re-sensitization by JNK inhibition. Br. J. Haematol. 171, 595–605 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chan, L. N. et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 542, 479–483 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jones, C. L. et al. Loss of TBL1XR1 disrupts glucocorticoid receptor recruitment to chromatin and results in glucocorticoid resistance in a B-lymphoblastic leukemia model. J. Biol. Chem. 289, 20502–20515 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jones, C. L. et al. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood 126, 2202–2212 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hosono, N. et al. Glutathione S-transferase M1 inhibits dexamethasone-induced apoptosis in association with the suppression of Bim through dual mechanisms in a lymphoblastic leukemia cell line. Cancer Sci. 101, 767–773 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Kotani, A. et al. miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood 114, 4169–4178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han, B. W. et al. A set of miRNAs that involve in the pathways of drug resistance and leukemic stem-cell differentiation is associated with the risk of relapse and glucocorticoid response in childhood ALL. Hum. Mol. Genet. 20, 4903–4915 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao, J. J. et al. Targeting the miR-221-222/PUMA/BAK/BAX pathway abrogates dexamethasone resistance in multiple myeloma. Cancer Res. 75, 4384–4397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spijkers-Hagelstein, J. A., Mimoso Pinhancos, S., Schneider, P., Pieters, R. & Stam, R. W. Src kinase-induced phosphorylation of annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia 27, 1063–1071 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Spijkers-Hagelstein, J. A. et al. Elevated S100A8/S100A9 expression causes glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia 26, 1255–1265 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Aries, I. M. et al. EMP1, a novel poor prognostic factor in pediatric leukemia regulates prednisolone resistance, cell proliferation, migration and adhesion. Leukemia 28, 1828–1837 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, J. J. et al. Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood 120, 4197–4204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meyers, J. A., Taverna, J., Chaves, J., Makkinje, A. & Lerner, A. Phosphodiesterase 4 inhibitors augment levels of glucocorticoid receptor in B cell chronic lymphocytic leukemia but not in normal circulating hematopoietic cells. Clin. Cancer Res. 13, 4920–4927 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou, M. et al. Targeting of the deubiquitinase USP9X attenuates B-cell acute lymphoblastic leukemia cell survival and overcomes glucocorticoid resistance. Biochem. Biophys. Res. Commun. 459, 333–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Rocha, J. C. et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood 105, 4752–4758 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Malyukova, A. et al. FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation. Leukemia 27, 1053–1062 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Park, H. W. et al. Alternative Wnt signaling activates YAP/TAZ. Cell 162, 780–794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cortijo, C., Gouzi, M., Tissir, F. & Grapin-Botton, A. Planar cell polarity controls pancreatic beta cell differentiation and glucose homeostasis. Cell Rep. 2, 1593–1606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cabral, A. L., Hays, A. N., Housley, P. R., Brentani, M. M. & Martins, V. R. Repression of glucocorticoid receptor gene transcription by c-Jun. Mol. Cell Endocrinol. 175, 67–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Holleman, A. et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. NJEM 351, 533–542 (2004).

    Article  CAS  Google Scholar 

  63. Coustan-Smith, E. et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 117, 6267–6276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cheok, M. H. et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat. Genet. 34, 85–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Yeoh, E. J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Kuan, P. F., Wang, S., Zhou, X. & Chu, H. A statistical framework for Illumina DNA methylation arrays. Bioinformatics 26, 2849–2855 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. French, D. et al. Acquired variation outweighs inherited variation in whole genome analysis of methotrexate polyglutamate accumulation in leukemia. Blood 113, 4512–4520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Paugh, S. W. et al. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression. PLoS Comput. Biol. 12, e1004744 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, Y. et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 49, 1211 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Li, W. et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol. 16, 281 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cheng, C. & Parzen, E. Unified estimators of smooth quantile and quantile density functions. J. Stat. Plan. Infer. 59, 291–307 (1997).

    Article  Google Scholar 

  75. De Vore, R. A. The Approximation of Continuous Functions by Positive Linear Operators (Springer-Verlag, 1972).

  76. Cheng, C. in Optimality, Vol. 49, Lecture Notes—Monograph Series (ed. Rojo, J.) 51–76 (Institute of Mathematical Statistics, 2006).

  77. Maaten, L. V. D. Accelerating t-SNE using tree-based algorithms. J. Machine Learn. Res. 115, 3221–3245 (2014).

    Google Scholar 

  78. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).

    Article  Google Scholar 

  80. Savic, D. et al. Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation. Genome Med. 8, 74 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Khaw, S. L. et al. Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia. Blood 128, 1382–1395 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and families who participated in these institutional review board-approved studies. We also thank the technical staff in our labs (H. Williams, N. Atkinson, D. Maxwell, J. Hunt, B. Smart, Y. Wang, A. John and T. Lin), D. Bucci at Ohio State University, the Hartwell Center for Bioinformatics & Biotechnology at St. Jude Children’s Research Hospital and other National Cancer Institute-funded Cancer Center Shared resources that supported much of the research reported herein. We thank in particular the staff of the Animal Resources Center at St. Jude Children’s Research Hospital; T. Rogers, the veterinarian involved in our study; and M. Payton for her help in our animal studies. We also thank J. Meijerink at Princess Maxima Center for advising us on previously published mechanisms of glucocorticoid resistance. Research reported in this publication was supported in part by funds from the NIH (grant nos. R01 CA36401 (to W.E.E.), P50 GM115279 (to M.V.R., J.J.Y., C.G.M. and W.E.E.), U01 GM92666 (to M.V.R. and W.E.E.)), a St. Jude Comprehensive Cancer Center grant (no. CA21765) from the National Cancer Institute, and the American Lebanese Syrian Associated Charities. St. Jude Children’s Research Hospital received a donation from Abbvie Pharmaceuticals to support the Family Commons, a treatment and research-free space for patients and families. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

R.J.A., S.W.P. and W.E.E. conceived the study. R.J.A., E.J.B., K.R.C. and W.E.E. provided the methodology. R.J.A. and E.J.B. did the investigations. R.J.A., R.C., L.S., J.L., D.P., S.W.P., C.C., J.Y., J.C.P., D.S. and Y.G. performed the formal analysis. R.J.A., S.W.P., J.R.M., W.Y. and C.S. carried out the data curation. R.J.A. and W.E.E. wrote the original draft of the manuscript. R.J.A., S.W.P., R.C., L.S., J.L., D.C.F., C.E.L., E.J.B., W.Y., J.R.M., J.A.B, J.C.P, J.D.D., K.R.C., D.P., C.J.C., S.N., A.K., S.E.K., E.L.-L., B.D., C.S., Y.G., K.H., K.G.R., S.P., S.M.K., W.S., E.M.P., M.R.L., H.I., C.G.M., S.J., C.-H.P., C.C., D.S., J.Y., C.G., J.J.Y., M.V.R. and W.E.E. wrote, reviewed and edited the manuscript. W.E.E., J.J.Y. and M.V.R. were responsible for acquiring funds. E.J.B., K.R.C., S.J., C.H.P., J.J.Y., M.V.R. and W.E.E. supervised the work.

Corresponding author

Correspondence to William E. Evans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Polygenomic analysis workflow.

a, Flowchart depicting cohorts, genomic assays and detailed analysis pipeline for polygenomic analyses of multiple feature types (mRNA, miRNA, DNA methylation, SNVs, CNVs and WES mutations) as determinants of prednisolone sensitivity in patients diagnosed with acute lymphoblastic leukemia (“lm” = linear model). b, Table describing age, race, gender and molecular subtype of discovery cohort (n = 225 patients) from polygenomic analysis. The P-values represent differences between the discovery cohort enrolled on the two clinical trials (Fisher’s Exact Test p-value; Total 15 and Total 16).

Extended Data Fig. 2 Validation of gene expression signature, relation to treatment response and WES variant connectivity.

a, Connectivity between polygenomic signatures for mutation (n = 227 mutations) and mRNA expression (n = 254 mRNA probes; Fisher’s Exact Test clustering p-values and linear model p-value for connectivity). b, Characteristics of WES mutations with linear model p-value < 0.05 vs. LC50. (SIFTcat Del = Deleterious and Tol = Tolerated). c, RNA sequencing of ALL cells from St. Jude Total XVI patients (n = 73 patients; validation cohort #1; Fisher’s Exact Test clustering p-value) clustered with gene expression signature from discovery cohort analysis. d, Publicly available DCOG/COALL patient cohort (n = 145 patients; validation cohort #2; Fisher’s Exact Test clustering p-value) clustering with gene expression signature from patient discovery cohort. e, Clustering of gene expression vs. LC50. Red denotes genes correlated with LC50 or minimal residual disease (MRD) in positive direction. Blue denotes genes correlated in negative direction with LC50 or MRD. Clustering performed to show concordance of genes discriminating LC50 or MRD. f, Boxplot denoting Prednisolone LC50 in patients from discovery cohort with the major ALL molecular subtypes. Red circles denote prednisolone resistant patients, green denotes sensitive patients, and black denotes intermediate sensitivity. Upper line is the upper quartile (75%) middle line is the median and lower line is lower quartile (25%) boundary for Prednisolone LC50.

Extended Data Fig. 3 Gene level integration of genomic variants related to prednisolone resistance.

Each panel depicts -log10 p-values for the association of the indicated genomic feature with prednisolone LC50, and the aggregated gene-level linear model p-value based on all genomic features is shown for each gene at the top right. Red triangles represent mRNA probes within the gene body, orange diamonds depict copy number variants, blue squares are DNA methylation probes, grey circles SNVs, and purple circles miRNAs within 50 kb upstream or downstream of gene region (n = 203 patients). a, SMARCA4, a component of the SWI/SNF complex, has been previously linked to glucocorticoid resistance in pediatric ALL19. b, NLRP3 encodes NALP3, an inflammasome component that activates caspase 1, and has been previously associated with ALL resistance to glucocorticoids15. c, PTTG1IP encodes the pituitary tumor-transforming gene 1 protein-interacting protein that interacts with the proto-oncogene PTTG1 (also known as securin). d, CELSR2 is a G-protein coupled receptor involved in non-canonical Wnt signaling. PTTG1IP and CELSR2 are novel genes from the current study associated with glucocorticoid resistance.

Extended Data Fig. 4 CELSR2 knockdown blunts glucocorticoid responsiveness of 697 cells and increases sensitivity to venetoclax.

a, Volcano plot for untreated CELSR2 knockdown ALL cell lines vs. non-target control in 697 cell line (n = 3 independent experiments; linear model p-value). Left side of plot depicts genes with reduced expression in CELSR2 knockdown cells and genes to the right had increased in expression in CELSR2 knockdown cells. b, Volcano plot of gene expression after 24 h of prednisolone treatment of CELSR2 knockdown vs. non-target control ALL cells (697; n = 3 independent experiments; linear model p-value). c, Dose-response plot (mean ± S.D.; n = 3 independent experiments) of two shRNA constructs vs non-targeting control and un-transduced NALM-6 leukemia cell line. d, CELSR2 (n = 3 independent experiments) e, NR3C1 (n = 4 independent experiments) f, BCL2 (n = 5 independent experiments) g, BIM (n = 4 independent experiments) and h, Bim/Bcl2 protein expression (mean ± S.D; n = 4 independent experiments; two-tailed t-test p-values; * = p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 0.0001) in NALM-6 cells comparing controls (NTC; solid bars) to CELSR2-knockdown (shCELSR2) either prior to prednisolone treatment (0HR) or after 24 hr prednisolone treatment (24HR). i, The 75 most highly upregulated (top) or downregulated (bottom) genes after 24 h treatment with 10 µM prednisolone. Blue and green bars depict mRNA expression (mean ± S.D.; n = 3 independent experiments) in 697 cells transfected with non-target control vector and gold bars depict cells expressing shRNA for CELSR2 knockdown.

Source data

Extended Data Fig. 5 Venetoclax and prednisolone synergize in primary ALL with low CELSR2 expression and CELSR2 knockdown in cell lines disregulation of Bim/Bcl2 axis.

a, Response surface model plot of cytotoxicity from prednisolone plus venetoclax at concentrations indicated for the 697 leukemia cell line transduced with non-targeting control vector. b, Response surface model plot for the 697 leukemia cell line transduced with CELSR2 shRNA knockdown vector (for a and b individual points represent n = 3 independent experiments performed in technical duplicate; response surface model two-tailed t-test p-value). The alpha (α) value indicates antagonism < 0 or synergy > 0 with greater synergy from higher value. P-value describes overall model fit. Individual plots of prednisolone effect (mean ± S.D.; n = 3 independent experiments) c, NALM-6 and d, 697 leukemia cell lines at one concentration of venetoclax (mean ± S.D.; n = 3 independent experiments). Black lines are non-targeting control cells and red lines are CELSR2 knockdown cells, dashed lines indicate predicted additivity curve fit based on single drug treatments; data left of the dashed lines represent additivity/synergy. Solid lines represent fit of measured values. e, Venetoclax sensitivity of independent cohort of patients (n = 96 ALL patients) grouped based on prednisolone sensitivity (LC50) f, Bcl2 expression associated with sensitivity to venetoclax (n = 81 ALL patients) g, Primary ALL cells from patients (n = 6 patient samples) and human leukemia cell lines assessed for additivity/synergy with prednisolone and venetoclax (for all box plots horizontal bars depict medians and boxes represent 25th and 75th percentiles, whiskers represent ± 1.5x IQR; linear model p-values). h, mRNA expression (n = 1 experiment run in technical triplicate) of CELSR2 in patient samples assessed for synergy.

Source data

Extended Data Fig. 6 NetBID identifies regulatory nodes of prednisolone resistance.

a, Enrichment of previously reported resistance genes (n = 40 genes and miRNAs; Wilcoxon two-tailed p-value) in NetBID results. b, Heatmap of top 48 NetBID-predicted drivers (‘symbol’_’regulon size’) are ranked by integrated NetBID p-value. Left: color-coded by z-score and labeled by p-value of NetBID results in TOTXVI, TOTXV, and combination (Comb); Right: differential expression of each driver itself, color-coded by z-score and labeled by signed fold-change in TOTXVI, TOTXVI and combination (Comb; (Stouffer’s combined Bayesian generalized linear model “NetBID” p-value; n = 203 patients). c, CELSR2 regulon from B-ALLi (n = 399 genes). Legends of node and edge follow Fig. 6c. d, Enrichment of NetBID-inferred CELSR2 regulon (n = 399 genes) in differentially expressed genes of CELSR2 knockdown vs. NTC in Nalm-6 human ALL cell lines (n = 222 genes; Wilcoxon two-tailed p-value) upon prednisolone treatment for 24 hr (top) Blue lines inside the box indicate the down-regulation of CELSR2 itself, labeled p-value and signed fold-change. e, Enrichment of previously reported resistance genes (n = 40 genes and miRNAs; Wilcoxon two-tailed p-value) in differentially expressed genes of CELSR2 knockdown vs. NTC in NALM-6 ALL cell lines without prednisolone treatment.

Extended Data Fig. 7 CELSR2 mRNA expression is related to PAX5 expression in primary ALL cells.

a, Subnetwork (top 50 interactions ranked by mutual information) of PAX5 and CELSR2 from B-ALLi (n = 185 patients). Legends of node and edge follow Fig. 6c, except that nodes in green are those in top 48 drivers (Fig. 6b). b, CELSR2 expression positively correlates with PAX5 expression in primary acute lymphoblastic leukemia cells (n = 203 patients; black line represents regression fit associated with linear model p-value and Rsq). c, Open chromatin regions defined by ATAC-seq (n = 2 independent experiments) in three sensitive and three resistant human leukemia cell lines and H3K27 acetylation from ENCODE in upstream 5′ region of CELSR2. ENCODE binding site in GM12878 lymphoid cells for PAX5 and CHIP-seq peaks from NALM-6 cells for PAX5 binding are indicated at bottom of the plot. d, PAX5 (**** = 3.5 × 10−5) e, CELSR2 (*** = 3.0 × 10−4) f, NR3C1(**** = 3.2 × 10−5) protein expression (mean ± S.D.) in NALM-6 leukemia cell lines stably expressing shRNA knockdown constructs targeting PAX5 (for d-f n = 5 independent experiments; two-tailed t-test p-values).

Source data

Extended Data Fig. 8 Single cell transcriptomics defines distinct expression signatures in primary B-ALL cells.

a, Clustering of bone marrow cells from a prednisolone sensitive patient (n = 2,427 control cells; n = 924 treated cells) based on top 1000 most highly expressed genes b, Identification of distinct cell populations in a prednisolone sensitive patient CD19 + B-cells (red), CD3E + T-cells (blue), ALAS2 + Erythrocytes (purple) and CD14 + Macrophages (green) c, Control vs. treatment for all cell clusters in prednisolone sensitive patient (red = control, blue = treated) d, Clustering of bone marrow cells from a prednisolone resistant patient (n = 686 control cells; n = 759 treated cells) based on top 1000 most highly expressed genes e, Identification of distinct cell populations in a prednisolone resistant patient CD19 + (red) and CD3E + T-cells (blue) f, Control (C) vs. treatment (T) for all cell clusters in prednisolone resistant patient (red = control, blue = treated).

Extended Data Fig. 9 Chromatin status in glucocorticoid sensitive and resistant human ALL cell lines, and perturbation of non-canonical WNT signaling by reduction of CELSR2 expression.

a, ATAC-seq for six human leukemia cell lines, three prednisolone sensitive and three resistant cell lines depicting open chromatin in the region upstream of NR3C1 (n = 2 independent experiments). b, H3K27Ac data from ENCODE (black box) showing lymphocyte regulatory region in GM12878 cell line (pink) c, RefSeq NR3C1 transcripts d, ENCODE transcription factor binding sites for PAX5, NR3C1, TEAD4 and non-canonical Wnt effectors (NFATC1 and AP-1 [JUN and FOS]) e, Representative western blot and f, Barplot (mean ± S.D.; n = 3 independent experiments; two tailed t-test p values) depicting total cellular protein expression of signaling components from planar cell polarity and Ca2+/NFAT non-canonical Wnt signaling protein CELSR2 knockdown vs. control cells with or without 10 µM prednisolone treatment for 24 hr. g, Representative western blot and h, Barplot (mean ± S.D.; n = 3 independent experiments; two-tailed t-test p-values) depicting cytoplasmic protein expression of signaling components from planar cell polarity and Ca2+/NFAT non-canonical Wnt signaling protein CELSR2 knockdown vs. control cells with or without 10 µM prednisolone treatment for 24 hr.

Source data

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Autry, R.J., Paugh, S.W., Carter, R. et al. Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. Nat Cancer 1, 329–344 (2020). https://doi.org/10.1038/s43018-020-0037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-020-0037-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer