Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A joint framework for studying compound ecoclimatic events

Abstract

Extreme weather and climate events have direct impacts on ecosystems and can further trigger ecosystem disturbances, often having impacts that last longer than the event’s duration. The projected increased frequency or intensity of extreme events could thus amplify ecological impacts and reduce the biosphere’s CO2 mitigation potential, but multiple feedbacks between ecosystems and climate extremes are often not considered in risk assessments. In this Perspective, we propose a systemic framework to analyse the causal relationships between climate extremes, disturbance regimes and ecosystems, building on two broadly used perspectives: climate risk assessment and disturbance ecology. Each has strengths and limitations, as each perspective places a different — and partly disjointed — focus on the physical and ecological processes that drive high-impact ecological events. We unify these approaches into a framework (compound ecoclimatic events) that decomposes events into climatic drivers, stressors, environmental factors, impacts and their sources of variability, and further incorporates feedbacks between ecosystem processes and stressors. This framework can be used to develop ecoclimatic storylines to better understand the role of each factor in influencing high-impact events; to incorporate uncertainties associated with internal climate and ecological variability, with scenario definitions, and with epistemic uncertainties; and to quantify the human fingerprint on high-impact ecoclimatic events.

Key points

  • Impacts of extreme weather and climate events on ecosystems are influenced by multiple processes and interactions with ecosystem disturbances.

  • A systemic perspective on the causal relationships between climate extremes, disturbance regimes and ecosystems is needed for improved process understanding and attribution of impacts.

  • Attribution of high-impact ecological events to human activities needs to go beyond climate change attribution and include the wide range of anthropogenic influence on environmental factors that influence ecosystem vulnerability and disturbances.

  • Natural climate variability is an irreducible source of uncertainty in attribution and projection of extreme events that needs to be propagated to the assessment of impacts.

  • Storylines are a useful approach to account for the multiple uncertainties influencing high-impact ecoclimatic events and to complement current approaches in impact attribution.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Connecting the climate risk and disturbance ecology perspectives.
Fig. 2: Conceptual framework of ecoclimatic events.
Fig. 3: Influence of natural versus human-driven climate variability in ecological variability and high-impact events.
Fig. 4: Factorial approach for the attribution of compound ecoclimatic events to human versus natural effects.
Fig. 5: Climate–ecosystem–carbon cycle storylines for attributing ecosystem variability and extremes.

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change. IPCC glossary. IPCC. https://apps.ipcc.ch/glossary/ (2022).

  2. Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

    Article  Google Scholar 

  3. Bastos, A. et al. Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190507 (2020).

    Article  Google Scholar 

  4. Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).

    Article  Google Scholar 

  5. Ciavarella, A. et al. Prolonged Siberian heat of 2020 almost impossible without human influence. Clim. Change 166, 9 (2021).

    Article  Google Scholar 

  6. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).

    Article  Google Scholar 

  7. Hammond, W. M. et al. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nat. Commun. 13, 1761 (2022).

    Article  Google Scholar 

  8. Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant. Biol. 73, 673–702 (2022). 

    Article  Google Scholar 

  9. Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).

    Article  Google Scholar 

  10. Seneviratne, S. I. et al. in Weather and Climate Extreme Events in a Changing Climate in Climate Change 2021: The Physical Science Basis. (eds Masson-Delmotte, V. et al.) Ch. 11 (Cambridge Univ. Press, 2021).

  11. Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).

    Article  Google Scholar 

  12. McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Article  Google Scholar 

  13. Seidl, R. & Turner, M. G. Post-disturbance reorganization of forest ecosystems in a changing world. Proc. Natl Acad. Sci. USA 119, e2202190119 (2022).

    Article  Google Scholar 

  14. Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    Article  Google Scholar 

  15. Zscheischler, J., Mahecha, M. D., Harmeling, S. & Reichstein, M. Detection and attribution of large spatiotemporal extreme events in Earth observation data. Ecol. Inform. 15, 66–73 (2013).

    Article  Google Scholar 

  16. Bastos, A. et al. Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170304 (2018).

    Article  Google Scholar 

  17. Lewis, S. C. et al. Deconstructing factors contributing to the 2018 fire weather in Queensland, Australia. Bull. Am. Meteorol. Soc. 101, S115–S122 (2020).

    Article  Google Scholar 

  18. Brown, T., Leach, S., Wachter, B. & Gardunio, B. The extreme 2018 Northern California fire season. Bull. Am. Meteorological Soc. 101, S1–S4 (2020).

    Article  Google Scholar 

  19. Meddens, A. J., Hicke, J. A. & Ferguson, C. A. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol. Appl. 22, 1876–1891 (2012).

    Article  Google Scholar 

  20. Hlásny, T. et al. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, and management implications. For. Ecol. Manag. 490, 119075 (2021).

    Article  Google Scholar 

  21. Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl Acad. Sci. USA 108, 1474–1478 (2011).

    Article  Google Scholar 

  22. Oliva, J., Stenlid, J. & Martínez-Vilalta, J. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol. 203, 1028–1035 (2014).

    Article  Google Scholar 

  23. McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022). 

    Article  Google Scholar 

  24. Kornhuber, K. et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Chang. 10, 48–53 (2020).

    Article  Google Scholar 

  25. Ruehr, N. K., Grote, R., Mayr, S. & Arneth, A. Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiol. 39, 1285–1299 (2019).

    Article  Google Scholar 

  26. Wigneron, J. P. et al. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603 (2020).

    Article  Google Scholar 

  27. Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017). 

    Article  Google Scholar 

  28. Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015). 

    Article  Google Scholar 

  29. Anderegg, W. R. et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 208, 674–683 (2015). This work reviews the interactions between drought and insects in influencing tree mortality.

    Article  Google Scholar 

  30. Bastos, A. et al. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dyn. 12, 1015–1035 (2021).

    Article  Google Scholar 

  31. Senf, C. & Seidl, R. Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences 18, 5223–5230 (2021).

    Article  Google Scholar 

  32. Drouard, M., Kornhuber, K. & Woollings, T. Disentangling dynamic contributions to summer 2018 anomalous weather over Europe. Geophys. Res. Lett. 46, 12537–12546 (2019).

    Article  Google Scholar 

  33. Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).

    Article  Google Scholar 

  34. Anderegg, W. R. L., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Chang. 10, 1091–1095 (2020).

    Article  Google Scholar 

  35. Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article  Google Scholar 

  36. Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q.) 109–230 (Cambridge Univ. Press, 2012).

  37. National Academies of Sciences, Engineering and Medicine. Attribution of Extreme Weather Events in the Context of Climate Change (National Academies Press, 2016). https://doi.org/10.17226/21852.

  38. Reynaert, S. et al. Does previous exposure to extreme precipitation regimes result in acclimated grassland communities? Sci. Total Environ. 838, 156368 (2022).

    Article  Google Scholar 

  39. Bloom, A. A. et al. Lagged effects regulate the inter-annual variability of the tropical carbon balance. Biogeosciences 17, 6393–6422 (2020).

    Article  Google Scholar 

  40. Peters, D. P. C. et al. Cross-system comparisons elucidate disturbance complexities and generalities. Ecosphere 2, art81 (2011). 

    Article  Google Scholar 

  41. Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).

    Article  Google Scholar 

  42. Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate‐change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).

    Article  Google Scholar 

  43. Reisinger, A. et al. in Intergovernmental Panel on Climate Change 15 (CGIAR, 2020).

  44. White, P. S. & Jentsch, A. The search for generality in studies of disturbance and ecosystem dynamics. Prog. Botany 62, 399–450 (2001).

    Article  Google Scholar 

  45. Sillmann, J. et al. ISC-UNDRR-RISK KAN Briefing Note on Systemic Risk (NASA, 2022).

  46. Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article  Google Scholar 

  47. Zscheischler, J. et al. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).

    Article  Google Scholar 

  48. Flach, M. et al. Contrasting biosphere responses to hydrometeorological extremes: revisiting the 2010 western Russian heatwave. Biogeosciences 16, 6067–6085 (2018).

    Article  Google Scholar 

  49. Zhang, F. et al. When does extreme drought elicit extreme ecological responses? J. Ecol. 107, 2553–2563 (2019).

    Article  Google Scholar 

  50. Graham, E. B. et al. Toward a generalizable framework of disturbance ecology through crowdsourced science. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2021.588940 (2021).

  51. Grime, J. P. et al. Long-term resistance to simulated climate change in an infertile grassland. Proc. Natl Acad. Sci. USA 105, 10028–10032 (2008).

    Article  Google Scholar 

  52. Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    Article  Google Scholar 

  53. Mahecha, M. D. et al. Biodiversity loss and climate extremes—study the feedbacks. Nature 612, 30–32 (2022).

    Article  Google Scholar 

  54. Jolly, W. M., Dobbertin, M., Zimmermann, N. E. & Reichstein, M. Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys. Res. Lett. 32, L18409 (2005).

    Article  Google Scholar 

  55. Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).

    Article  Google Scholar 

  56. Bevacqua, E. et al. Guidelines for studying diverse types of compound weather and climate events. Earths Future 9, e2021EF002340 (2021). This article provides methodological guidelines to study different types of compound weather and climate events including case studies.

    Article  Google Scholar 

  57. Shukla, P. et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and gReenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2019).

  58. Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Article  Google Scholar 

  59. Rosan, T. M. et al. Fragmentation-driven divergent trends in burned area in Amazonia and Cerrado. Front. For. Glob. Change 5, 801408 (2022).

    Article  Google Scholar 

  60. Gavinet, J., Ourcival, J.-M., Gauzere, J., García de Jalón, L. & Limousin, J.-M. Drought mitigation by thinning: benefits from the stem to the stand along 15 years of experimental rainfall exclusion in a holm oak coppice. For. Ecol. Manag. 473, 118266 (2020).

    Article  Google Scholar 

  61. Belmonte, A., Ts. Sankey, T., Biederman, J., Bradford, J. B. & Kolb, T. Soil moisture response to seasonal drought conditions and post-thinning forest structure. Ecohydrology 15, e2406 (2022).

    Article  Google Scholar 

  62. Chapin, F. S., Matson, P. A., Mooney, H. A. & Vitousek, P. M. Principles of Terrestrial Ecosystem Ecology (Springer, 2002).

  63. Slette, I. J. et al. How ecologists define drought, and why we should do better. Glob. Change Biol. 25, 3193–3200 (2019).

    Article  Google Scholar 

  64. Kröel-Dulay, G. et al. Field experiments underestimate aboveground biomass response to drought. Nat. Ecol. Evol. 6, 540–545 (2022).

    Article  Google Scholar 

  65. Turner, M. G., Romme, W. H., Gardner, R. H., O’Neill, R. V. & Kratz, T. K. A revised concept of landscape equilibrium: disturbance and stability on scaled landscapes. Landsc. Ecol. 8, 213–227 (1993).

    Article  Google Scholar 

  66. Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    Article  Google Scholar 

  67. Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538 (2005).

    Article  Google Scholar 

  68. Naveh, Z. The evolutionary significance of fire in the Mediterranean region. Plant. Ecol. 29, 199–208 (1975).

    Article  Google Scholar 

  69. Buma, B. Disturbance ecology and the problem of n = 1: a proposed framework for unifying disturbance ecology studies to address theory across multiple ecological systems. Methods Ecol. Evol. 12, 2276–2286 (2021).

    Article  Google Scholar 

  70. Freedman, B. Environmental Ecology: The Impacts of Pollution and Other Stresses on Ecosystem Structure and Function (Elsevier, 2013).

  71. Pausas, J. G. & Ribeiro, E. The global fire–productivity relationship. Glob. Ecol. Biogeogr. 22, 728–736 (2013).

    Article  Google Scholar 

  72. Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).

    Article  Google Scholar 

  73. El-Madany, T. S. et al. Drought and heatwave impacts on semi-arid ecosystems’ carbon fluxes along a precipitation gradient. Philos. Trans. R. Soc. B: Biol. Sci. 375, 20190519 (2020).

    Article  Google Scholar 

  74. Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is tree drought mortality so hard to predict? Trends Ecol. Evol. 36, 520–532 (2021).

    Article  Google Scholar 

  75. Liu, L. et al. Bidirectional drought-related canopy dynamics across pantropical forests: a satellite-based statistical analysis. Remote. Sens. Ecol. Conserv. 8, 72–91 (2022).

    Article  Google Scholar 

  76. Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    Article  Google Scholar 

  77. Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

    Article  Google Scholar 

  78. Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Change 10, 356–362 (2020).

    Article  Google Scholar 

  79. Duveiller, G. et al. Revealing the widespread potential of forests to increase low level cloud cover. Nat. Commun. 12, 4337 (2021).

    Article  Google Scholar 

  80. Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020). 

    Article  Google Scholar 

  81. Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    Article  Google Scholar 

  82. Iglesias, V. et al. Fires that matter: reconceptualizing fire risk to include interactions between humans and the natural environment. Environ. Res. Lett. 17, 045014 (2022).

    Article  Google Scholar 

  83. Piao, S. et al. Interannual variation of terrestrial carbon cycle: issues and perspectives. Glob. Change Biol. 26, 300–318 (2020).

    Article  Google Scholar 

  84. Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).

    Article  Google Scholar 

  85. Keeling, C. D. et al. in A History of Atmospheric CO2 and its Effects on Plants, Animals, and Ecosystems (eds Baldwin, I. T. et al.) 83–113 (Springer, 2005).

  86. Le Page, Y. et al. Global fire activity patterns (1996–2006) and climatic influence: an analysis using the World Fire Atlas. Atmos. Chem. Phys. 8, 1911–1924 (2008).

    Article  Google Scholar 

  87. Sippel, S. et al. Drought, heat, and the carbon cycle: a review. Curr. Clim. Change Rep. 4, 266–286 (2018).

    Article  Google Scholar 

  88. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).

    Article  Google Scholar 

  89. Huybers, P. & Curry, W. Links between annual, Milankovitch and continuum temperature variability. Nature 441, 329–332 (2006).

    Article  Google Scholar 

  90. Eyring, V. et al. in Human Influence on the Climate System in Climate Change 2021: The Physical Science Basis. Ch. 3, 1–202 (IPCC, 2021).

  91. Forzieri, G. et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1081 (2021).

    Article  Google Scholar 

  92. Zhu, W. et al. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Glob. Ecol. Biogeogr. 21, 260–271 (2012).

    Article  Google Scholar 

  93. Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).

    Article  Google Scholar 

  94. Dial, R. J., Maher, C. T., Hewitt, R. E. & Sullivan, P. F. Sufficient conditions for rapid range expansion of a boreal conifer. Nature 608, 546–551 (2022).

    Article  Google Scholar 

  95. Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).

    Article  Google Scholar 

  96. Harrison, S. P. et al. Understanding and modelling wildfire regimes: an ecological perspective. Environ. Res. Lett. 16, 125008 (2021).

    Article  Google Scholar 

  97. Ghil, M. Natural climate variability. Ency. Global Environ. Change 1, 544–549 (2002).

    Google Scholar 

  98. Bastos, A. et al. Was the extreme northern hemisphere greening in 2015 predictable? Environ. Res. Lett. 12, 044016 (2017).

    Article  Google Scholar 

  99. Zhu, Z. et al. The effects of teleconnections on carbon fluxes of global terrestrial ecosystems. Geophys. Res. Lett. 44, 3209–3218 (2017).

    Article  Google Scholar 

  100. Vicente-Serrano, S. M. et al. A multiscalar global evaluation of the impact of ENSO on droughts. J. Geophys. Res. Atmos. 116, D20109 (2011).

    Article  Google Scholar 

  101. Bastos, A., Running, S. W., Gouveia, C. & Trigo, R. M. The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011. J. Geophys. Res. Biogeosci. 118, 1247–1255 (2013).

    Article  Google Scholar 

  102. Sherriff, R. L., Berg, E. E. & Miller, A. E. Climate variability and spruce beetle (Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska. Ecology 92, 1459–1470 (2011).

    Article  Google Scholar 

  103. Seager, R. et al. Causes and Predictability of the 2011–14 California Drought: Assessment Report (Academia, 2014).

  104. Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).

    Article  Google Scholar 

  105. Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R. & Rodriguez, D. A. The drought of 2010 in the context of historical droughts in the Amazon regionshare. Geophys. Res. Lett. https://doi.org/10.1029/2011GL047436 (2011).

    Article  Google Scholar 

  106. Carnicer, J. et al. Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by multidecadal ocean surface temperatures. Glob. Change Biol. 25, 2825–2840 (2019).

    Article  Google Scholar 

  107. Li, N. et al. Interannual global carbon cycle variations linked to atmospheric circulation variability. Earth Syst. Dyn. 13, 1505–1533 (2022).

    Article  Google Scholar 

  108. Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    Article  Google Scholar 

  109. Fereday, D., Chadwick, R., Knight, J. & Scaife, A. A. Atmospheric dynamics is the largest source of uncertainty in future winter European rainfall. J. Clim. 31, 963–977 (2018).

    Article  Google Scholar 

  110. Huguenin, M. F. et al. Lack of change in the projected frequency and persistence of atmospheric circulation types over Central Europe. Geophys. Res. Lett. 47, e2019GL086132 (2020).

    Article  Google Scholar 

  111. Coumou, D., Lehmann, J. & Beckmann, J. The weakening summer circulation in the northern hemisphere mid-latitudes. Science 348, 324 (2015).

    Article  Google Scholar 

  112. Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & García-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011).

    Article  Google Scholar 

  113. Di Capua, G. et al. Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. npj Clim. Atmos. Sci. 4, 55 (2021).

    Article  Google Scholar 

  114. Goulden, M. & Bales, R. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).

    Article  Google Scholar 

  115. Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).

    Article  Google Scholar 

  116. Kornhuber, K. et al. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 14, 054002 (2019).

    Article  Google Scholar 

  117. Sousa, P. M. et al. Distinct influences of large-scale circulation and regional feedbacks in two exceptional 2019 European heatwaves. Commun. Earth Environ. 1, 48 (2020).

    Article  Google Scholar 

  118. Deser, C. Certain uncertainty: the role of internal climate variability in projections of regional climate change and risk management. Earth’s Future 8, e2020EF001854 (2020).

    Article  Google Scholar 

  119. Bonan, G. B., Lombardozzi, D. L. & Wieder, W. R. The signature of internal variability in the terrestrial carbon cycle. Environ. Res. Lett. 16, 034022 (2021).

    Article  Google Scholar 

  120. Loughran, T. F. et al. Past and future climate variability uncertainties in the global carbon budget using the MPI grand ensemble. Glob. Biogeochem. Cycles 35, e2021GB007019 (2021).

    Article  Google Scholar 

  121. Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn. 11, 491–508 (2020).

    Article  Google Scholar 

  122. Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Climatic Change 151, 555–571 (2018).

    Article  Google Scholar 

  123. Sippel, S. et al. Uncovering the forced climate response from a single ensemble member using statistical learning. J. Clim. 32, 5677–5699 (2019).

    Article  Google Scholar 

  124. van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).

    Article  Google Scholar 

  125. Philip, S. Y. et al. Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021. Earth Syst. Dyn. Discuss. 2021, 1–34 (2021).

    Google Scholar 

  126. Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Chang. 11, 689–695 (2021).

    Article  Google Scholar 

  127. Bastos, A. et al. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling. Nat. Commun. 7, 10315 (2016).

    Article  Google Scholar 

  128. Ahlström, A., Miller, P. A. & Smith, B. Too early to infer a global NPP decline since 2000. Geophys. Res. Lett. 39, L15403 (2012).

    Article  Google Scholar 

  129. Anderegg, W. R. et al. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl Acad. Sci. USA 112, 15591–15596 (2015).

    Article  Google Scholar 

  130. von Buttlar, J. et al. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones. Biogeosciences 15, 1293–1318 (2018).

    Article  Google Scholar 

  131. Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 1–7 (2017).

    Article  Google Scholar 

  132. Pfleiderer, P., Menke, I. & Schleussner, C.-F. Increasing risks of apple tree frost damage under climate change. Clim. Change 157, 515–525 (2019).

    Article  Google Scholar 

  133. Vautard, R. et al. Human influence on growing-period frosts like the early April 2021 in central France. Nat. Hazards Earth Syst. Sci. Discuss. 2022, 1–25 (2022).

    Google Scholar 

  134. Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article  Google Scholar 

  135. Maher, N. et al. The Max Planck Institute Grand Ensemble: enabling the exploration of climate system variability. J. Adv. Model. Earth Syst. 11, 2050–2069 (2019).

    Article  Google Scholar 

  136. Temperli, C., Bugmann, H. & Elkin, C. Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol. Monogr. 83, 383–402 (2013).

    Article  Google Scholar 

  137. Temperli, C., Veblen, T. T., Hart, S. J., Kulakowski, D. & Tepley, A. J. Interactions among spruce beetle disturbance, climate change and forest dynamics captured by a forest landscape model. Ecosphere 6, art231 (2015).

    Article  Google Scholar 

  138. Fu, Z. et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun. 13, 989 (2022).

    Article  Google Scholar 

  139. Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. A: Math. Phys. Eng. Sci. 475, 20190013 (2019). 

    Article  Google Scholar 

  140. Trenberth, K. E., Fasullo, J. T. & Shepherd, T. G. Attribution of climate extreme events. Nat. Clim. Change 5, 725–730 (2015).

    Article  Google Scholar 

  141. van Garderen, L., Feser, F. & Shepherd, T. G. A methodology for attributing the role of climate change in extreme events: a global spectrally nudged storyline. Nat. Hazards Earth Syst. Sci. 21, 171–186 (2021).

    Article  Google Scholar 

  142. Goulart, H., Van Der Wiel, K., Folberth, C., Balkovic, J. & Van Den Hurk, B. Storylines of weather-induced crop failure events under climate change. Earth Syst. Dyn. 12, 1503–1527 (2021).

    Article  Google Scholar 

  143. Danabasoglu, G. et al. The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    Article  Google Scholar 

  144. Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    Article  Google Scholar 

  145. Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).

    Article  Google Scholar 

  146. Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2021).

    Article  Google Scholar 

  147. Brondizio, E., Settele, J., Díaz, S. & Ngo, H. Global assessment report on biodiversity and ecosystem services (eds Brondizio, E. S. et al.) (IPBES, 2019); https://www.ipbes.net/global-assessment.

  148. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  Google Scholar 

  149. Mahecha, M. D. et al. Detecting impacts of extreme events with ecological in situ monitoring networks. Biogeosciences 14, 4255–4277 (2017).

    Article  Google Scholar 

  150. Poyatos, R. et al. SAPFLUXNET: towards a global database of sap flow measurements. Tree Physiol. 36, 1449–1455 (2016).

    Article  Google Scholar 

  151. FAO. Global Forest Resources Assessment 2015 (FRA2015) (2015).

  152. Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00976-6 (2021).

    Article  Google Scholar 

  153. Cooper, L. A., Ballantyne, A. P., Holden, Z. A. & Landguth, E. L. Disturbance impacts on land surface temperature and gross primary productivity in the western United States. J. Geophys. Res. Biogeosci. 122, 930–946 (2017).

    Article  Google Scholar 

  154. Mildrexler, D. J., Zhao, M. & Running, S. W. Testing a MODIS global disturbance index across North America. Remote. Sens. Environ. 113, 2103–2117 (2009).

    Article  Google Scholar 

  155. Zhang, W. et al. From woody cover to woody canopies: how Sentinel-1 and Sentinel-2 data advance the mapping of woody plants in savannas. Remote. Sens. Environ. 234, 111465 (2019).

    Article  Google Scholar 

  156. Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).

    Article  Google Scholar 

  157. Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    Article  Google Scholar 

  158. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    Article  Google Scholar 

  159. Yang, Y. et al. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 6, 23284 (2016).

    Article  Google Scholar 

  160. Papastefanou, P. et al. A dynamic model for strategies and dynamics of plant water-potential regulation under drought conditions. Front. Plant. Sci. https://doi.org/10.3389/fpls.2020.00373 (2020).

  161. Sabot, M. E. B. et al. One stomatal model to rule them all? Toward improved representation of carbon and water exchange in global models. J. Adv. Model. Earth Syst. 14, e2021MS002761 (2022).

    Article  Google Scholar 

  162. Mu, M. et al. Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts. Earth Syst. Dyn. 12, 919–938 (2021).

    Article  Google Scholar 

  163. Gentine, P., Guérin, M., Uriarte, M., McDowell, N. G. & Pockman, W. T. An allometry‐based model of the survival strategies of hydraulic failure and carbon starvation. Ecohydrology 9, 529–546 (2016).

    Article  Google Scholar 

  164. Pugh, T. A. M. et al. Understanding the uncertainty in global forest carbon turnover. Biogeosciences 17, 3961–3989 (2020).

    Article  Google Scholar 

  165. De Kauwe, M. G. et al. Towards species-level forecasts of drought-induced tree mortality risk. New Phytol. 235, 94–110 (2022).

    Article  Google Scholar 

  166. Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17, 3017–3044 (2020).

    Article  Google Scholar 

  167. Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model. Dev. 9, 2973–2998 (2016).

    Article  Google Scholar 

  168. Chen, Y.-Y. et al. Simulating damage for wind storms in the land surface model ORCHIDEE-CAN (revision 4262). Geosci. Model. Dev. 11, 771–791 (2018).

    Article  Google Scholar 

  169. Kwon, M. J. et al. Siberian 2020 heatwave increased spring CO2 uptake but not annual CO2 uptake. Environ. Res. Lett. 16, 124030 (2021).

    Article  Google Scholar 

  170. Novenko, E. Y. et al. Evidence that modern fires may be unprecedented during the last 3400 years in permafrost zone of Central Siberia, Russia. Environ. Res. Lett. 17, 025004 (2022).

    Article  Google Scholar 

  171. Overland, J. E. & Wang, M. The 2020 Siberian heat wave. Int. J. Climatol. 41, E2341–E2346 (2021).

    Article  Google Scholar 

  172. Yin, Y. et al. Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño. Geophys. Res. Lett. 43, 10,472–10,479 (2016).

    Article  Google Scholar 

  173. Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358, eaam5690 (2017).

    Article  Google Scholar 

  174. Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).

    Article  Google Scholar 

  175. Werf, G. Rvander et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 16153–16230 (2010).

    Google Scholar 

  176. Varma, A. The economics of slash and burn: a case study of the 1997–1998 Indonesian forest fires. Ecol. Econ. 46, 159–171 (2003).

    Article  Google Scholar 

  177. Fanin, T. & van der Werf, G. R. Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences 14, 3995–4008 (2017).

    Article  Google Scholar 

  178. Masih, I., Maskey, S., Mussá, F. E. F. & Trambauer, P. A review of droughts on the African continent: a geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 18, 3635–3649 (2014).

    Article  Google Scholar 

  179. Manatsa, D., Chingombe, W., Matsikwa, H. & Matarira, C. H. The superior influence of Darwin Sea level pressure anomalies over ENSO as a simple drought predictor for Southern Africa. Theor. Appl. Climatol. 92, 1–14 (2008).

    Article  Google Scholar 

  180. Mupepi, O. & Matsa, M. M. Spatio-temporal dynamics of drought in Zimbabwe between 1990 and 2020: a review. Spat. Inf. Res. 30, 117–130 (2022).

    Article  Google Scholar 

  181. Wainwright, C. M., Finney, D. L., Kilavi, M., Black, E. & Marsham, J. H. Extreme rainfall in East Africa, October 2019–January 2020 and context under future climate change. Weather 76, 26–31 (2021).

    Article  Google Scholar 

  182. Nicholson, S. E., Fink, A. H., Funk, C., Klotter, D. A. & Satheesh, A. R. Meteorological causes of the catastrophic rains of October/November 2019 in equatorial Africa. Glob. Planet. Change 208, 103687 (2022).

    Article  Google Scholar 

  183. Chang’a, L. B. et al. Assessment of the evolution and socio-economic impacts of extreme rainfall events in October 2019 over the east Africa. Atmos. Clim. Sci. 10, 319–338 (2020).

    Google Scholar 

  184. Swemmer, A. Locally high, but regionally low: the impact of the 2014–2016 drought on the trees of semi-arid savannas, South Africa. Afr. J. Range Forage Sci. 37, 31–42 (2020).

    Article  Google Scholar 

  185. Sousa, P. M., Blamey, R. C., Reason, C. J. C., Ramos, A. M. & Trigo, R. M. The ‘Day Zero’ Cape Town drought and the poleward migration of moisture corridors. Environ. Res. Lett. 13, 124025 (2018).

    Article  Google Scholar 

  186. Rakovec, O. et al. The 2018–2020 multi-year drought sets a new benchmark in Europe. Earth’s Future 10, e2021EF002394 (2022).

    Article  Google Scholar 

  187. Beillouin, D., Schauberger, B., Bastos, A., Ciais, P. & Makowski, D. Impact of extreme weather conditions on European crop production in 2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190510 (2020).

    Article  Google Scholar 

  188. Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).

    Article  Google Scholar 

  189. Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).

    Article  Google Scholar 

  190. Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    Article  Google Scholar 

  191. Reichstein, M. et al. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys. Res. Lett. https://doi.org/10.1029/2006GL027880 (2007).

    Article  Google Scholar 

  192. Rouault, G. et al. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann. For. Sci. 63, 613–624 (2006).

    Article  Google Scholar 

  193. Rousi, E., Kornhuber, K., Beobide-Arsuaga, G., Luo, F. & Coumou, D. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 13, 3851 (2022).

    Article  Google Scholar 

  194. King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).

    Article  Google Scholar 

  195. Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 29, 600–603 (2014).

    Article  Google Scholar 

  196. Cleverly, J. et al. The importance of interacting climate modes on Australia’s contribution to global carbon cycle extremes. Sci. Rep. 6, 23113 (2016).

    Article  Google Scholar 

  197. Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niã: so strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).

    Google Scholar 

  198. van der Velde, I. R. et al. Vast CO2 release from Australian fires in 2019–2020 constrained by satellite. Nature 597, 366–369 (2021).

    Article  Google Scholar 

  199. De Kauwe, M. G. et al. Identifying areas at risk of drought-induced tree mortality across South-Eastern Australia. Glob. Change Biol. 26, 5716–5733 (2020).

    Article  Google Scholar 

  200. Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).

    Article  Google Scholar 

  201. Schwalm, C. R. et al. Reduction in carbon uptake during turn of the century drought in western North America. Nat. Geosci. 5, 551–556 (2012).

    Article  Google Scholar 

  202. Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    Article  Google Scholar 

  203. Lehner, F., Deser, C., Simpson, I. R. & Terray, L. Attributing the US Southwest’s recent shift into drier conditions. Geophys. Res. Lett. 45, 6251–6261 (2018).

    Article  Google Scholar 

  204. Garreaud, R. D. et al. The Central Chile Mega drought (2010–2018): a climate dynamics perspective. Int. J. Climatol. 40, 421–439 (2020).

    Article  Google Scholar 

  205. Garreaud, R. D. et al. The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 21, 6307–6327 (2017).

    Article  Google Scholar 

  206. Mo, R., Lin, H. & Vitart, F. An anomalous warm-season trans-Pacific atmospheric river linked to the 2021 western North America heatwave. Commun. Earth Env. 3, 1–12 (2022).

    Article  Google Scholar 

  207. Environment and Climate Change Canada. Canada’s top 10 weather stories of 2021. Government of Canada https://www.canada.ca/en/environment-climate-change/services/top-ten-weather-stories/2021.html (2021).

  208. Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170302 (2018).

    Article  Google Scholar 

  209. van Schaik, E. et al. Changes in surface hydrology, soil moisture and gross primary production in the Amazon during the 2015/2016 El Niño. Philos. Trans. R. Soc. B Biol. Sci. 373, 20180084 (2018).

    Article  Google Scholar 

  210. Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).

    Article  Google Scholar 

  211. Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the European Union’s Horizon 2020 research and innovation programme (project XAIDA, Grant No. 101003469 and European Research Council (ERC) Synergy Grant ‘Understanding and Modelling the Earth System with Machine Learning (USMILE)’ Grant agreement No. 855187). M.D.M. and M.R. acknowledge ESA for funding DeepExtremes. A.B. was funded by the European Union (ERC StG, ForExD, grant agreement No. 101039567). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. The authors thank U. Beyerle for setting up and management of forced and unforced but nudged Community Earth System Model Version 2.1.2 (CESM2) simulations. We thank A. Jézéquel for feedback on the framework proposed here.  

Author information

Authors and Affiliations

Authors

Contributions

A.B. conceptualized the article and wrote the first draft. A.B., M.R., D.F. and S.S. prepared the figures. S.S. and A.B. analysed the Community Earth System Model Version 2.1.2 (CESM2) outputs. D.F., M.D.M., S.Z., S.S., M.R. and J.Z. contributed to the development of the article through extensive discussions and feedback on initial stages of the manuscript. All authors contributed to revisions of the manuscript.

Corresponding author

Correspondence to Ana Bastos.

Ethics declarations

Competing interests

The authors declare they have no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Andrew Felton, Ashley Ballantyne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Climate risk

According to the Intergovernmental Panel on Climate Change (IPCC), the potential for [climate change-related] adverse consequences for human or ecological systems, recognising the diversity of values and objectives associated with such systems. Risk is a function of hazard, vulnerability and exposure. Climate risk refers strictly to negative consequences of climate change, whereas positive consequences are referred to as opportunities or potential benefits; other fields treat risk as a value-neutral concept, and that the value of a given consequence might depend on the point of view.

Compound weather and climate events

The combination of multiple drivers and/or hazards (such as droughts, heat waves, flooding and fires) that contribute to risk; compound events can be multivariate, preconditioned, temporally compounding or spatially compounding.

Disturbance impact

The specific effects on ecosystem properties triggered by a given disturbance, such as the loss of organic matter by fires, removal or damage of organisms by hurricanes or logging, or mortality induced by droughts, floods or frost events.

Disturbance severity

The magnitude of the impacts of a disturbance, which depends on ecosystem vulnerability.

Ecosystem disturbance

Discrete events in time that disrupt the ecosystem, community or population structure and change resources, substrate availability or the physical environment, as defined by White and Picket; alternatively, can be defined as an event that results in biomass removal.

Exposure

According to the Intergovernmental Panel on Climate Change (IPCC), the presence of people; livelihoods; species or ecosystems; environmental functions, services, resources; infrastructure; or economic, social, or cultural assets in places and settings that could be adversely affected.

Extreme climatic event

An event in which a statistically rare or unusual climatic period alters ecosystem structure and⁄or function well outside the bounds of what is considered typical or normal variability.

Hazards

According to the Intergovernmental Panel on Climate Change (IPCC), the potential occurrence of a natural or human-induced physical event or trend that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service provision, ecosystems and environmental resources. Hazards are based on the assessment of potential consequences of a given climate-related event or trend; climate extremes might not be hazardous if they are no negative consequences and non-extreme events might be hazardous if there are negative consequences.

Internal climate variability

According to the Intergovernmental Panel on Climate Change (IPCC), the deviation of climate variables from a given mean state (including the occurrence of extremes and so on) at all spatial and temporal scales beyond that of individual weather events, Variability can be intrinsic, due to fluctuations of processes internal to the climate system.

Post-disturbance recovery

The return of a disturbed system to a previous undisturbed or quasi-equilibrium state or to a new state; the time required to reach this state is the recovery time.

Vulnerability

The propensity or predisposition to be adversely affected, encompassing various concepts that include sensitivity or susceptibility to harm and lack of capacity to cope and adapt.

Weather and climate extremes

Unusual events at a given place and time of year, usually defined by the occurrence of a value of a weather or climate variable, or combination of variables, above (or below) a threshold value near the upper (or lower) ends of the observed distribution of the variable over a reference time frame.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, A., Sippel, S., Frank, D. et al. A joint framework for studying compound ecoclimatic events. Nat Rev Earth Environ 4, 333–350 (2023). https://doi.org/10.1038/s43017-023-00410-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00410-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology