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Modeling the dynamics and spatial heterogeneity of city
growth
Sandro M. Reia 1, P. Suresh C. Rao1,2 and Satish V. Ukkusuri 1✉

We propose a systems model for urban population growth dynamics, disaggregated at the county scale, to explicitly acknowledge
inter and intra-city movements. Spatial and temporal heterogeneity of cities are well captured by the model parameters estimated
from empirical data for 2005–2019 domestic migration in the U.S. for 46 large cities. Model parameters are narrowly dispersed over
time, and migration flows are well-reproduced using time-averaged values. The spatial distribution of population density within
cities can be approximated by negative exponential functions, with exponents varying among cities, but invariant over the period
considered. The analysis of the rank-shift dynamics for the 3100+ counties shows that the most and least dense counties have the
lowest probability of shifting ranks, as expected for ‘closed’ systems. Using synthetic rank lists of different lengths, we find that
counties shift ranks gradually via diffusive dynamics, similar to other complex systems.
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INTRODUCTION
Early studies based on analyses of empirical data and models
suggested consistent power-law distribution of city popula-
tions1–5, but the robustness (and the existence itself) of the
empirical Zipf’s law has been challenged. For instance, the power-
law exponent may depend on the country of study6, the definition
of city7, the period under consideration8 and the estimation
methods6, as well as tempering or cutoff observed in the lower- or
upper-tail of the distribution7,9. More recent analyses provide
theoretical and empirical basis to explain such deviations among
sets of cities. Bettencourt and Zund10 focus on the dynamic
process of demographic growth plus the structure of migration
flows to analyze the stationary distribution of city sizes. They show
that symmetrical flows lead to Zipf’s law at the steady-state, while
asymmetric flows might lead to other distributions. Verbavatz and
Barthelemy11 analyzed empirical data for four countries (U.S.,
Canada, UK, France) to propose a dynamic stochastic model for
city population growth, and showed that rare and extreme
migratory events are crucial in shaping the growth of cities, which
in turn agrees with10.
In Verbavatz and Barthelemy11 model, inter-city migratory flows

are approximated by a distance-free model that depends only on
the population sizes of the origin and destination cities. This
model assumes that net flows are asymmetrical, which include
migratory shocks that ultimately shape the growth of cities.
However, Metropolitan Statistical Areas (MSAs) in the U.S. are
composed of multiple counties, ranging from 1 to 29. In our study
of domestic population flows in the U.S.12, we showed that intra-
city net flows trend from higher to lower density counties within
the same city. Further, the internal redistribution of people within
cities was found to be an important driver of the population
increase in most external counties, thus being an important factor
of urban expansion.
Migration patterns at the micro-level are usually studied under

the heading of residential mobility, which helps us to understand
why people move13. In a recent study, Frost shows that mobility is
declining over the years, and that housing is the main reason

behind local moves while employment is the main reason behind
long-distance moves14. In a review of intra-urban residential
mobility, Quigley and Weinberg15 present a description of the
most important determinants of intra-metropolitan mobility,
among which is family life cycle. Referring to the conceptualiza-
tion of Hawley16, the effects of family life cycle on mobility can be
summarized in the following steps: (i) a young couple starts the
married life in an apartment; (ii) the couple moves to a small
house as they have children; (iii) the family moves to a larger
house in the suburbs as the family reaches its maximum size; (iv)
the couple moves close to central city, to a small house, when the
children leave to live on their own. Indeed, this conceptualization
is somewhat supported by the studies of Plane et al.17, Lee et al.18

and Dieleman19.
In this paper, we re-examine the growth dynamics of cities by

spatially dis-aggregating domestic migration flows in the U.S. at
the county level. Domestic migration is the dominant source of
growth in high-income, low-fertility countries such as the U.S.: the
magnitude of domestic netflows is higher than the magnitude of
natural growth for about 76% of U.S. counties, and domestic
netflows are on average nine times more intense than natural
growth (see Supplementary Fig. 1). We expand on the growth
equation of cities11 to include migration flows between counties
within the same city (intra-city flows). The choice of counties as a
proxy for urban unit relies on the data availability for county-to-
county migration flows provided by the U.S. Census20. Population
and land-use data (and other urban metrics) are indeed available
at finer spatial scales21,22, but are not suitable for our analyses of
intra- and inter-city populations flows with identity of the origin
and destination counties for the flows.
Our approach explicitly considers cities as heterogeneous

dynamical systems in terms of spatial and temporal patterns,
with anisotropic flows contributing to population growth in
counties within cities. We consider the heterogeneity of cities as
captured by the spatial patterns of population density distribu-
tion21–23, to examine cities undergoing different rates of popula-
tion growth and expansion. We also examine rank-shift dynamics

1Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Avenue, West Lafayette 47907 IN, USA. 2Agronomy Department, Purdue University, 915 W State Street,
West Lafayette 47907 IN, USA. ✉email: sukkusur@purdue.edu

www.nature.com/npjUrbanSustain

Published in partnership with RMIT University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42949-022-00075-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42949-022-00075-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42949-022-00075-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42949-022-00075-9&domain=pdf
http://orcid.org/0000-0001-5817-5020
http://orcid.org/0000-0001-5817-5020
http://orcid.org/0000-0001-5817-5020
http://orcid.org/0000-0001-5817-5020
http://orcid.org/0000-0001-5817-5020
http://orcid.org/0000-0001-8754-9925
http://orcid.org/0000-0001-8754-9925
http://orcid.org/0000-0001-8754-9925
http://orcid.org/0000-0001-8754-9925
http://orcid.org/0000-0001-8754-9925
https://doi.org/10.1038/s42949-022-00075-9
mailto:sukkusur@purdue.edu
www.nature.com/npjurbansustain


of population densities of counties resulting from differential
population growth, contrasted with that of cities exhibiting
sudden shifts in their ranks11.
Our analyses of the empirical data for U.S. migration flows

involved two stages. In the first stage, we analyzed annual
estimates of flow data collected from 2015 to 2019 to study their
spatial heterogeneity within 46 U.S. cities, each with at least six
counties, and comprising a total of 469 counties (see Supplemen-
tary Fig. 2). The 2015–2019 period corresponds to the most recent
5-year migration flow files released by the American Community
Survey (ACS)24. A metro area with n counties has n(n− 1)/2
different netflow vectors, one for each pair of counties. Our
analysis is restricted to n ≥ 3 because the gravitational model used
to describe intra-city netflows has three free parameters. Here, we
focus on the set of metro areas with n ≥ 6 (twice the lower bound)
that offers more robust estimates to intra-city parameters (avoid
overfitting), which accounts for about 15% of counties and 39% of
population of the U.S., and reduce the dispersion of the
distribution of intra-city parameters.
In the second stage, we extended these analyses for the

2005–2019 period, based on the estimated mean annual flows, to
examine temporal trends in population flows. Our choice for the
2005–2019 is based on the availability of ACS 5-year migration
flow files: the first flow file corresponds to the 2005–2009 period,
and the last corresponds to the 2015–2019 period. In our analyses,
we only consider flows between the 469 counties within the set of
46 metro areas. For this reason, in the following discussion we use
the terms city and metropolitan statistical areas interchangeably.
In the following, we first present a stochastic system model for

spatio-temporal dynamics of inter-county migration flows, fol-
lowed by a quantitative analyses of the empirical flow data based
on estimation of the key parameters in the model and the
statistical structure of these parameters. We then examine two
other aspects of the county-level population growth dynamics,
based on the county population density: a comparison of
temporal shifts in intra-city spatial structure across the selected
cities; and rank-shift dynamics. We close with a discussion of the
implications of our model-data analyses for understanding urban
population growth dynamics in the U.S., as well as the limitations
arising from available population flow data and constraints for
projections of likely changes or extensions to population flow
dynamic in other countries.

RESULTS
City population dynamics
Let us consider a system composed of a set of cities within a
country. The growth equation of a city k within this system can be
written as

dSk

dt
¼ ηSk þ

X
l2Nk

J k!l � J l!k; (1)

in which η is the out-of-sytem growth, accounting for births minus
deaths and international migration, and J k!l represents migra-
tory flows from city k to city l. The sum in the second term on the
right side of Eq. (1) accounts for population growth due to
netflows exchange with the set of Nk cities within the system.
Verbavatz and Barthelemy in ref. 11

find that “interurban
migratory shocks dominate city growth”. They show that inter-city
flows are well approximated by a distance-free model as
J k!l ¼ IðSkÞνðSlÞνxk!l , in which I is a constant, ν is an exponent
capturing the influence of the population of origin and destination
cities in driving the flows, and xk→l captures high-order effects
such as the role of distance and random fluctuations. The total
netflows of a given city k is then written asP

l2NkJ k!l � J l!k ¼ IðSkÞνPl2Nk ðSlÞνðxk!l � xl!kÞ, and the
impact of netflows on the city is captured by the rescaled variable

X kl ¼ ðSlÞνðxk!l � xl!kÞ ¼ ðJ k!l � J l!kÞ=IðSkÞν . Note that X kl

depends on the sum of random variables xk→l and xl→k, thus the
direction and intensity of netflows are driven by random
fluctuations. They find that X kl follows a heavy-tailed distribution,
and that the sum of rare and extreme fluctuations (viz. rescaled
netflows at the tail of the distribution of X kl) shape the growth of
cities.
The aforementioned approach does not acknowledge the intra-

city spatial heterogeneity, which has been addressed by urban
metrics such as population density25,26 and land use27. Here, we
acknowledge the intra-city spatial heterogeneity and model
population growth at a more disaggregated level, viz., county
level. We focus our attention on the growth of counties because
this is the smallest geographic region having data regarding
inflows and outflows. Nevertheless, the framework we present in
the following section can be extended to smaller regions once
migratory flow files are available.

County population dynamics
The growth of a county within a given city is given by (neglecting
international migration flows):

County growth = natural growth + intra-city moves + inter-city moves:

Consider the population growth of county i within city k. By
defining Yk

j!i as the flow from county j to county i in which both
counties belong to k, and Jp→i as the flow from county p in city m
to county i in city k, for all cities m such that m ≠ k, we can write:

dSki
dt ¼ ηSki þ

P
j2k

Yk
j!i � Yk

i!j

� �
þ

þ P
m:m≠k

P
p2m

Jp!i � Ji!p
� �

;
(2)

in which Ski is the population of county i in city k, t is the time
instant and η is the natural growth rate. The flows contributing to
the population growth of county i are represented in Fig. 1. In this
schematic figure, the intensity of the background color represents
the population density of the counties. The black arrows represent
intra-city netflows (Yk

j!i � Yk
i!j) between counties within the same

Atlanta

Charlotte

Fig. 1 Intra- and inter-city netflows contribution to the growth of
counties. This schematic figure illustrates the components of
domestic migration affecting the growth of counties of Atlanta
and Charlotte metro areas. Intra-city netflows are represented by
black arrows. Inter-city netflows from Atlanta to Charlotte are
represented by blue arrows, and the green arrows represent inter-
city netflows in the opposite direction. The opacity and width of the
arrows are proportional to the intensity of the netflows. The
background color resembles the population density of the counties,
in which denser counties have darker colors. Intra-city netflows have
a trend from higher to lower density counties, and the most intense
inter-city netflows were directed to Charlotte. This figure was based
on migration flow data of the 2015–2019 period.
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city, and blue/green arrows represent inter-city netflows
(Jp→i− Ji→p) between counties from different cities.
In order to model intra-city netflows, we hypothesize that

distance plays an important role in determining the magnitude of
netflows and that population density is crucial in determining the
direction of the netflows. The first hypothesis is based on the fact
that the highest share of domestic flows is local and decays with
distance (Fig. 2). The second hypothesis is based on the results
reported in ref. 12, which shows that the highest share of intra-city
netflows are directed to lower density counties for more than 90%
of the cities considered, thus indicating that the redistribution of
people within a given city is asymmetrical. As a consequence, the
term corresponding to intra-city netflows in Eq. (2) is written as:

X
j2k

Yk
j!i � Yk

i!j

� �
¼ ð2F k � 1ÞHk

X
ρi<ρj ;j2k

ðSki Þ
uk ðSkj Þ

uk

dσ
k

ij

�
X

ρi>ρj ;j2k

ðSki Þ
uk ðSkj Þ

uk

dσ
k

ij

0
@

1
A:

(3)

Intra-city netflows trend from higher to lower density counties
is captured by the fraction of netflows to lower density counties
F . Acknowledging that each city k has its own internal migration
pattern due to a multitude of factors28, we assume that F k

depends on the city k (see Supplementary Table 1). We also
assume that exponents uk and σk, which captures the strength of
county population and distance between counties in intra-city

flows, depend on the city k under consideration. The variable Hk is
a constant.
The term ð2F k � 1Þ modulates and directs netflows within the

same city, thus accounting for the resulting population growth
due to intra-city netflows. Note that there is no trend if F k ¼ 0:5.
In this case, intra-city flows are random and the netgrowth is zero
on average. The first sum on the right side of Eq. (3) represents the
inflow of people coming from counties j, within the same city k,
with higher population density ρ (i.e. ρi < ρj). The second sum on
the right side of Eq. (3) represents the outflow of people to lower
population density counties j.
Inter-city netflows, capturing flows between counties from

different cities, do not have a trend with respect to origin and
destination county population densities12. In this sense, we
follow11 and approximate inter-city flows Jp→i from county p in
city m to county i in city k with the distance-free model Jp!i ¼
ðSki Þ

νðSmp Þνðxp!iÞ (see the section “City population dynamics”). The
exponent ν captures the strength of county population size in the
flows between two counties, and xp→i is a random variable
accounting for higher order effects. In light of this, inter-city
netflows is written asX
m:m≠k

X
p2m

Jp!i � Ji!p
� � ¼ IðSki Þ

ν X
m:m≠k

X
p2m

ðSmp Þνðxp!i � xi!pÞ; (4)

in which I is a constant.
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Fig. 2 The highest share of domestic migration is local (d ≤ 100km) in the U.S., and the distributions of intra-city parameters follow a
normal distribution. About 86% of the domestic grossflows between two counties (a) are found within a distance d≤100km, and about 92.3%
of domestic netflows is within a 100 km radius (b). After d= 100 km, the probability of grossflows and netflows decay with a power-law with
cut-off about 104. We consider distributions of fraction of flows from higher to lower density counties F k (c), county population’s exponent uk

(d) and distance’s exponent σk (e) of all cities k in our system. The empirical distribution of each parameter in black is characterized by mean
and standard deviation as shown. The curves in red correspond to the Gaussian pdf with respective mean and standard deviation. The
goodness of fit is addressed by the KS-test, with KS and p values (under the null hypothesis that both distributions are equal) being reported
in the panels.
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Interestingly, Eq. (4) shows us that the direction and the
intensity of inter-city netflows between counties i and p depend
on the difference between random variables xp→i and xi→p. By
denoting Xm

p!i ¼ ðSmp Þνðxp!i � xi!pÞ, we see from Eq. (4) that
Xm
p!i ¼ ðJp!i � Ji!pÞ=IðSki Þ

ν
, thus Xm

p!i captures the relative impact
of migratory flows in a given county when netflows are adjusted
by population. Note that Jp→i represents inter-city inflows to
county i, while Ji→p represents inter-city outflows from county i. In
this sense, rescaled netflows Xm

p!i can be positive or negative,
with distributions shown in Supplementary Fig. 3. In contrast to
the distribution of rescaled netflows between different cities,
which are well approximated by a heavy-tail distribution (viz.
power-law)11, the distribution of rescaled netflows between
counties from different cities is exponentially bounded (viz.
lognormal distribution), thus suggesting that counties do not
experience rare and extreme migratory events as cities. As
pointed out in ref. 12, counties have fixed boundaries while city
boundaries are dynamic, expanding and absorbing adjacent
counties if needed. Besides, extreme migratory shocks to a given
city are dissipated among the different counties, in a ‘spill over’
effect12.
For convenience, we can write the total inter-city netflows to

county i (Eq. (4)) asX
m:m≠k

X
p2m

Jp!i � Ji!p
� � ¼ IðSki Þ

ν X
m:m≠k

X
p2m

Xm
p!i ¼ IðSki Þ

ν
Niξ i; (5)

in which ξ i ¼ ð1=NiÞ
P

m:m≠k

P
p2mX

m
p!i and Ni is the number of

counties from other cities exchanging people with county i. We
find that the distribution of ξi, which can be seen as the mean
netflow per interacting county, is well approximated by a skew-
normal distribution (see Supplementary Fig. 4a). The asymmetry in
the distribution ξi is caused by positive netflows to counties with
lower population. If we consider the distribution of ξi from
counties with population higher than 50000, the resulting
distribution is well approximated by a normal distribution (see
Supplementary Fig. 4b). In summary, the results from our analysis
of empirical migration flow data suggest that (1) counties with
lower population are more likely to have positive netflows and (2)
ξi can be approximated by a random variable normally distributed.
The number of counties Ni follows a non-linear relationship with

the county size Ski , as shown in Supplementary Fig. 5, so that

Ni ¼ CðSki Þ
β
. Thus we rewrite Eq. (5) asX

m:m≠k

X
p2m

Jp!i � Ji!p
� � ¼ DðSki Þ

γ
ξ i; (6)

in which exponent γ= ν+ β and D is a constant given by D= IC.
The log-linear fitting of inter-city flows gives us ν= 0.29 and
I= 0.02.
Eqs. (3) and (6) allow us to rewrite Eq. (2) for county growth as:

dSki
dt ¼ ηSki þ

þð2F k � 1ÞHk P
ρi<ρj ;j2k

ðSki Þ
uk ðSkj Þ

uk

dσ
k

ij

� P
ρi>ρj ;j2k

ðSki Þ
uk ðSkj Þ

uk

dσ
k

ij

 !
þ

þDðSki Þ
γ
ξ i:

(7)

Interestingly, the model for population growth of cities k is
recovered by aggregating the flows contributing growth of its N k

counties, so that

dSk

dt
¼ ηSk þ Dϕk ; (8)

in which ϕk ¼Pi2N k ðSki Þ
γ
ξ i . This expression shows that while

intra-city flows are important to describe the heterogeneous
growth of urban units (i.e. counties) within cities, the growth of a
city as a whole is represented by natural growth and inter-city
migratory events11.

Parameters estimation and heterogeneity
The proposed county-level population dynamics model contains
five key parameters: F , u, σ, ν, and β. The parameters F , u, σ are
used to describe intra-city flows, thus the heterogeneity of cities is
represented by the fact that each city k has its own set of values:
F k , uk, σk. The parameter F k of a city k is directly computed from
the empirical data by doing F k = (sum of netflows, within city k,
from higher to lower density counties) / (sum of netflows within
city k), thus F 2 ½0; 1� captures the fraction of intra-city netflows to
lower density counties. Note that netflows are always directed
from higher to lower density counties when F ¼ 1, but are
randomly directed towards any county if F ¼ 0:5.
The exponent u captures the strength of asymmetry in county

population (S) driving intra-city netflows within a given city, with
u≤1, suggesting a sub-linear increase with increasing S. The
inverse dependence of intra-city netflows on distance between
county centroids is depicted by exponent 0 ≤ σ ≤ 2, with σ= 0
implying flows are agnostic to separation distances (as was found
by Verbaratz & Barthelemy11 for inter-city flows), whereas larger
values suggest intra-city netflows diminish nonlinearly with
distance. For each city k, the magnitude of netflows between
any pair of counties i, j within the city is approximated by the
gravitational model (see Eq. (3)), and the parameters uk and σk are
estimated from empirical data using log-linear regressions with
parameters shown in Supplementary Table 1.
Although each city is unique, with a particular set of parameters

(Supplementary Table 1), the statistical distributions of model
parameters across different cities during the same period are well
approximated by Gaussian distributions, with CV < 0.52 for u and
σ, and CV ~ 0.24 for F (Fig. 2). These results suggest that while
each household decisions are driven by a multitude of factors to
optimize costs-benefits, the macro-scale behavior of all counties
and cities can be approximated as a random process
(Gaussian pdf).
Inter-city flow parameters ν and β are estimated using flow data

between counties from different cities. To obtain ν, the magnitude
of inter-city flows is approximated by the distance-free model (see
Eq. (4)), and the value of ν is estimated using log-linear regressions
with parameters shown in Supplementary Table 3. Parameter β is
obtained from the non-linear relationship between the number of
counties from other cities Ni exchanging people with county i and
its population. The results of log-linear fittings for different time
periods are also presented in Supplementary Table 3. For both sets
of parameters (viz. intra- and inter-city flow parameters), the range
in temporal (2005–2019) variability is small enough (Supplemen-
tary Figs. 6, 7 and 8) that mean parameters values might prove to
be sufficient to predict population flows (Supplementary Tables 2,
3 and 4).
We find that the population dynamics of the counties can

indeed be well approximated by proposed model (Eq. (7)) with
parameter values given by their time-averaged values (see
Supplementary Tables 2 and 4). For 2010 (Fig. 3, panels a and b),
the relative error reveals that ~63% of the counties population is
estimated with a percentage error lower than 0.05, while ~89% and
~97% of the counties, population is estimated with a percentage
error lower than 0.15. For 2015 (Fig. 3, panels c and d), the relative
error reveals that population for ~40% of the counties estimated
with a percentage error lower than 0.05, while county population
for ~68% and ~85% is estimated with a percentage error lower
than 0.10 and 0.15, respectively. The mean of the absolute
percentage errors (MAPE) are MAPE= 0.05 for 2010 and MAPE=
0.08 for 2015, indicating that the errors of the estimates increases
slightly with time. Therefore, the model with fixed parameters, set
at their time-averaged values, captures the overall population
dynamics of the system of counties for the time period we
considered here. A word of caution is in order; using these
parameters to make projections at longer time intervals (i.e. >10
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years when starting in 2005) is infeasible for lack of requisite
empirical data. Our model may generate unreliable results if the
underlying drivers of inter-county flows undergo rapid (sudden)
shifts, as they do for the case of inter-city flows.

Population density patterns
There are several models for describing the spatial heterogeneity
in various urban metrics23,29,30. Among them, the most used are
the negative exponential25 for population density, and the inverse
power-law26 for describing land-use27. The negative exponential
model assumes that cities are monocentric, isotropic, with growth
occurring via spatio-temporal diffusive processes27,31. However,
the geographic expansion of cities are not radially symmetric32,
but constrained by geographic, political, and land-use/land-cover
constraints21,22. Figure 4 shows the spatial profiles for relative
population density ρr= ρ/ρC, in which ρ is the population density
of a given county and ρC is the core county density, for the top
nine cities in the U.S. We observe that each city is characterized by
a different exponential decay, but with two trends.
First, the estimated values of the slope, ω, for a given city do not

change over the time period. Differences between ω estimates for
2015 and 2005 are not statistically significant: for all cities, we can
not reject the null hypothesis that both estimates belong to same
distribution since p-value≫ 0.10 (t-test). In this context, these

cities seem to have reached a quasi-steady state33 in which
population density profiles are approximately constant. All U.S.
counties underwent a mean relative growth of about 7% from
2005 to 2015 (Supplementary Fig. 9). Our findings indicate that
this growth had only minor affect on the stability of the
population density profiles of the 46 U.S. cities included in our
analyses here.
Second, the ω values are different among the cities, but with

variable explanatory performance of the model (R2) among cities.
The spatial resolution of the mean density values depends on the
number of counties constituting a city, the variable county areas,
the built-up areas of a county, and the geographical distribution of
households. For cities experiencing different levels of anisotropic
land-use expansion and densification22,23,34,35, it is not surprising
that some are better explained by the exponential model than
others23.

County rank dynamics
Cities rise and fall in terms of their attractiveness and economic
activity over time. Batty36 points out that the rise and fall of cities,
captured by rank-plots, are associated with rare, extreme
population flow events. In this context, migratory shocks
described by Lévy fluctuations emerge as a better explanation
for the “turbulent properties of the dynamics of cities through
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time”11 than proportional growth models since a rank analysis
reveals that the model in11 predicts rank volatility closer to the
empirical rank volatility.
The mechanisms behind rank-shifts in diverse systems were

explored by Iñiguez et al.37. They analyzed the rate at which new
elements enter or leave a ranked list of fixed size, and classified
diverse complex systems as being ruled by rank-shifts as Lévy

walk, diffusive or replacement regimes. Unlike cities, counties do
not go through dramatic population changes via migratory
shocks. We have shown12 that inter-city flows are dissipated
among counties within the same city, so that the distribution for ξi
follows a Gaussian distribution. Consequently, we expect a
diffusive regime for county rank-shifts in which rank changes
are gradual and spatial patterns within cities are unlikely to
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change abruptly. Here, we examine the temporal evolution of
counties in terms of rank dynamics, using mean population
density as the metric for ranking. Other metrics such as county
population could have been used, but density accounts for
differences in populations and areas. Nevertheless, the analysis
with population as metric for ranks leads to similar conclusions.
We create a rank list of length N0= N, in which N is the number

of counties in the U.S., and investigate probability of rank shift
between consecutive times (C) in each rank position (R) in
Supplementary Fig. 10. We observe that C is lower at the top and
at the bottom of the rank list, suggesting that the counties at
these positions are more stable and less susceptible to rank shifts.
As expected, this behavior is consistent with the behavior of a
closed system since we are considering a rank comprising all the
counties in our set.
The rank dynamics can be further explored by creating

synthetic ranking lists of lengths N0 < N to mimic the behavior
of open systems. In this sense, here we create synthetic lists of
sizes N0= 100, 200, 300,…, 3100 to analyze systems with different
levels of openness. The rank dynamics of open systems is then
captured by the following variables: the number of different
counties Nt that appeared at least once among the top N0

counties until time t, the flux Ft given by the probability that a
county enters or leaves the list of the top N0 counties at time t,
and the rank turn over o= Nt/N0

37.
The relationship between the rank dynamics and the openness

of the synthetic systems is show in Fig. 5. We observe a monotonic
growth of ot with t, which is less intense as N0 increases (panel a).
In the case N0= N, we observe ot= 1 irrespective of the time
instant since no counties enters or leaves the rank list that already
comprises all the U.S. counties. By defining _o ¼ ðot¼10 � ot¼0Þ=10
and F= 〈Ft〉, the linear dependence of _o on F suggests that the
dynamical properties of rank shifts continuously change as the

system transitions from being more (low N0) to less (high N0) open
(panel b).
In ref. 37, the authors propose a model for F and _o to explore the

mechanisms driving the rank dynamics, given by:

F ¼ 1� eν½pþ ð1� pÞe�τ �and _o ¼ ν
ν þ τ

ν þ pτ
; (9)

in which p= N0/N is the fraction of the system size comprised by
the length of the rank list. Panel c of Fig. 5 shows estimated
parameters of this model (ν and τ) for each synthetic list re-scaled
as τr ¼ τ

pð1�pÞ _o and νr ¼ ν�p _o
_o , suggesting that the relationship

between τr and νr is well approximated by the universal curve
τrνr= 1. The average probability that a county changes its rank via
diffusive process (WDiff= e−νe−τ) is much higher than changes via
Lévy walk (WLevy= e−ν(1− e−τ)) and via replacement
(WRepl= 1− e−ν)37, suggesting that the rank dynamics is driven
by smooth changes in the population density of counties. The
rank volatility obtained with the model we propose here is closer
to the empirical rank volatility than a null model in which counties
have no exchange of people via inter- and intra-city flows
(Supplementary Figs. 11 and 12). Thus, it is a step forward to a
better understanding of the drivers of city growth.

DISCUSSION
We develop a general system modeling approach to analyze city
growth at the county level. The proposed model includes the
intra-city redistribution of people that explicitly accounts for intra-
city heterogeneities in population flows12. This offers a mechanism
to explain suburbanization and urban sprawl38. The predictive
performance of our model is conditioned to small fluctuations of
the parameters around mean values. Our data analysis is focused
on ACS county-to-county flow files. Each flow file contains annual
flows obtained in 5-year time windows to offer more robust
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estimates of low-intensity flows, and usage of shorter time-spans
could lead to larger deviations from migration trends.
Our choice of using data from metropolitan statistical areas to

study city growth was based on the finest spatial resolution of
flow data available (county level). Consequently, we have analyzed
flows between counties within the same metro area (intra-city
flows) and between counties belonging to different metro areas
(inter-city flows). However, here we cannot quantify the spatial
population heterogeneity within a given county, which is not
homogeneously distributed. In fact, Supplementary Table 5 shows
that the highest share of land area of the MSAs considered
(besides New York and Boston) is rural. From the population
perspective, Supplementary Table 6 shows that the highest share
of MSAs population is urban, but rural population accounts for up
to 39.4%. The urban population is split into urbanized areas (urban
areas of 50,000 or more) and urban clusters (urban areas of at least
2500 and <50,000), thus the population of metro counties is
spread among urban areas occupying small shares of land. In spite
of the constraints of our analysis at the aggregate level of a
county, the same framework we propose here could be used to
study flows at smaller geographic units if data were available at
finer spatial resolution.
We have covered the 2005–2019 period. For this period, we

have shown that mean values capture well the parameter’s trends.
However, if the system of cities undergoes a dramatic shock or
event causing disruptive fluctuations in the estimated parameters,
then the predictive performance of the model would be
compromised. The consideration of longer time-spans could
compromise the performance of the model as well because of
changes not only in migration trends (see Supplementary Fig. 13)
but also in county/city boundaries. Nevertheless, the descriptive
performance by means of understanding the drivers of city and
county growth, viz. intra- and inter-city flows, would not be
compromised since the parameters of the model can be estimated
for any time instant irrespective of temporal trends.
The highest share of migration flows in the U.S. occurs within a

county and a state, with about 90% of domestic flows occurring
within a 100 km radius (Fig. 2). Given that employment is the main
reason behind long-distance / inter-city moves14, the distance-
agnostic flow model performs well at explaining inter-city moves.
On the other hand, the main reasons behind local/intra-city moves
are housing and family14, so distance plays an important role. In
this scenario, the gravitational model, which has been used in
similar contexts of urban migration39,40, emerges as a natural
candidate for describing intra-city flows. Consequently, the
performance of the model as presented here is also conditioned
on the stability of the drivers of flows. If the reasons behind long-
distance and local moves change, then distance may play a
different role in domestic flows, thus compromising the utility of
the flow models used here.
Our findings indicate that the population density profiles for

counties within cities are well described by negative exponential
decays which are stable over the time period considered, signaling
either that cities reached a quasi-steady state in which natural
growth, inter- and intra-city flows balance each other so counties
within the same city grow at a rate proportional to population, or
that the period studied here is too small compared to the time
scale in which changes in population density occur. A similar
conclusion is reached by our analysis of rank-shift dynamics37.
Using population density as a metric for rank classification, we find
that rank shifts are more likely to be characterized as a diffusive
regime, thus supporting the findings that the changes in
population density profiles are gradual and that inter-city flows
are dissipated at county level, so that county populations do not
experience extreme migratory shocks.
Socioeconomic level increases segregation between rich and

poor41 and affects mobility patterns of high and low income
classes28. Our model was built on empirical migration flow data of

the U.S., in which the highest share of population live in highly
urbanized areas and inter- and intra-cities are the majority of
migratory flows12. In this context, the approach presented here
can be extended to other urbanized countries whose domestic
flows are dominated by inter- and intra-city flows as well. For
steadily and rapidly urbanizing countries, as defined in ref. 42, the
distribution of ξi should be asymmetrical because of migratory
trends from low to high urbanized areas. However, the model
presented here should be used with caution since: (1) population
flows can be dominated by rural-urban and rural-rural migratory
flows, which are not included in our model; (2) distance may be a
more important factor in driving inter- and intra-city moves. The
modeling of urban areas from low income countries that have
more than 60% of population living in small cities or neighboring
areas43 should include rural-urban and rural-rural migratory flows.
Although population density patterns might be spatially

anisotropic, the overall behavior is well approximated by a
negative exponential trend, suggesting that the growth of intra-
city counties is ruled by diffusive processes25,27. Several complex
factors affect the redistribution of people within a city such as
economic activity, housing needs, urban policies, culture, etc.38.
This heterogeneity is captured by the finding that each city is well
approximated by a different exponential decay.
City-level population dynamics are explained by sudden shifts

(Lévy shocks11) driven by one or more external drivers, such as
financial, social-political, disasters, job markets, that either increase
the attractiveness of cities at both local and regional scales. Recent
analyses12 show that when migration flows are disaggregated the
county level (cities with more than five counties), the heavy tails in
Levy shocks are ‘tempered’ by dispersing flows within the counties
in these cities, and they can be approximated as Gaussian pdfs.
Here we find that rank-shift dynamics for these counties will
exhibit the characteristics (and regimes) described in a recent
Iniguez et al.37, depending on whether system of counties we
consider are treated either as closed systems or as systems with
different degrees of openness. On one extreme is the closed
system when we include all the U.S. counties (~3100), because no
counties are added because of population growth. On the other
hand, as the populations of cities continue to increase and the city
area expands, spilling over to micropolitan counties in the
surrounding areas (i.e., urban sprawl) via intra-city flows, the
number of city counties continues to increase; thus we have an
open system whose rank-shifts will most likely be described by
diffusive process as we seen with the synthetic ranks we created
here. However, these dynamics occur at longer timelines (multi-
decadal, consistent with census data and reclassification).

METHODS
Data collection
We analyze empirical data to unveil the dynamics of city growth.
Migration flow data were used to characterize the distribution of
intra- and inter-city domestic migration flows, and county
population totals were used to extract components of resident
changes, viz. births and deaths, to compute the natural growth.
Our analysis is restricted to the period 2005–2019. The two

datasets used in this study, both from U.S. Census, are listed
below:

● County-to-county migration flows data set. This dataset is a
result of annual surveys conducted by the American Commu-
nity Survey (ACS) and the Puerto Rico Community Survey
(PRCS) in which “respondents age 1 year and older whether
they lived in the same residence 1 year ago”20. Results are
reported over 5-years period in which flow estimates resemble
annual number of movers.

● County population totals dataset. This dataset offers “popula-
tion, population change, and estimated components of
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population change”44. From this dataset, we extract births and
deaths to compute the natural growth.

DATA AVAILABILITY
We used data from the following sources in our analysis. The county to county
migration flows data are available at ref. 20. The county population totals data set are
available at ref. 44.

CODE AVAILABILITY
Computer codes will be made available upon request.
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