Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Skeletal muscle, not adipose tissue, mediates cold-induced metabolic benefits

Growing evidence demonstrates the metabolic benefits of repeated cold exposure in humans. Here, we argue that skeletal muscle thermogenesis, rather than the stimulation of thermogenic adipose tissue, is required to elicit these benefits in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic responses to cold exposure in humans.

References

  1. Becher, T. et al. Nat. Med. 27, 58–65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ouellet, V. et al. J. Clin. Endocrinol. Metab. 96, 192–199 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Marlatt, K. L., Chen, K. Y. & Ravussin, E. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R479–R483 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. U Din, M. et al. Eur. J. Nucl. Med. Mol. Imaging 43, 1878–1886 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zurlo, F., Larson, K., Bogardus, C. & Ravussin, E. J. Clin. Invest. 86, 1423–1427 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barclay, C. J. J. Muscle Res. Cell Motil. 38, 143–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Bal, N. C. et al. J. Biol. Chem. 292, 16616–16625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ikeda, K. et al. Nat. Med. 23, 1454–1465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanssen, M. J. W. et al. Nat. Med. 21, 863–865 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Blondin, D. P. et al. J. Physiol. 595, 2099–2113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blondin, D. P. et al. Cell Metab. 25, 438–447 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Finlin, B. S. et al. JCI Insight 3, e121510 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nicholls, D. G. & Brand, M. D. Nat. Metab. 5, 21–28 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Labbé, S. M. et al. Am. J. Physiol. Endocrinol. Metab. 311, E260–E268 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Blondin, D. P. et al. J. Physiol. 593, 701–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Hanssen, M. J. W. et al. Diabetes 65, 1179–1189 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Hesselink, M. K. C., Schrauwen-Hinderling, V. & Schrauwen, P. Nat. Rev. Endocrinol. 12, 633–645 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Blondin, D. P. et al. Diabetes 64, 2388–2397 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Blondin, D. P. et al. Nat. Commun. 8, 14146 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khedoe, P. P. S. J. et al. J. Lipid Res. 56, 51–59 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Jong, J. M. A. et al. Nat. Metab. 1, 830–843 (2019).

    Article  PubMed  Google Scholar 

  22. Ahmed, B. A. et al. Diabetes 71, 1193–1204 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Richard, G. et al. Cell Rep. Med. 3, 100742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahmed, B. A. et al. Cell Rep. Med. 2, 100397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carpentier, A. C., Blondin, D. P., Haman, F. & Richard, D. Endocr. Rev. 44, 143–192 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors receive support from the Canadian Institute of Health Research (L.K.T. and D.C.W.) and Michael DeGroote Fellowship (L.K.T.). D.P.B. receives grant support from the Natural Sciences and Engineering Research Council of Canada (NSERC Canada; RGPIN-2019-05813), holds the GSK Chair in Diabetes of the Université de Sherbrooke and a Fonds de Recherche du Québec-Santé (FRQS) J1 salary award.

Author information

Authors and Affiliations

Authors

Contributions

L.K.T., D.W., D.C.W. and D.P.B. wrote the manuscript. L.K.T. and D.P.B. generated the original version of the figure.

Corresponding author

Correspondence to Denis P. Blondin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Colleen M Novak, Eric Ravussin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Townsend, L.K., Wang, D., Wright, D.C. et al. Skeletal muscle, not adipose tissue, mediates cold-induced metabolic benefits. Nat Metab 5, 1074–1077 (2023). https://doi.org/10.1038/s42255-023-00837-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00837-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing