Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Metabolic regulation of skeletal cell fate and function in physiology and disease

Abstract

The skeleton is diverse in its functions, which include mechanical support, movement, blood cell production, mineral storage and endocrine regulation. This multifaceted role is achieved through an interplay of osteoblasts, chondrocytes, bone marrow adipocytes and stromal cells, all generated from skeletal stem cells. Emerging evidence shows the importance of cellular metabolism in the molecular control of the skeletal system. The different skeletal cell types not only have distinct metabolic demands relating to their particular functions but also are affected by microenvironmental constraints. Specific metabolites control skeletal stem cell maintenance, direct lineage allocation and mediate cellular communication. Here, we discuss recent findings on the roles of cellular metabolism in determining skeletal stem cell fate, coordinating osteoblast and chondrocyte function, and organizing stromal support of haematopoiesis. We also consider metabolic dysregulation in skeletal ageing and degenerative diseases, and provide an outlook on how the field may evolve in the coming years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the main skeletal cell types.
Fig. 2: Current understanding of skeletal cell metabolism.
Fig. 3: Metabolic communication between stromal and blood cells in the bone marrow niche.
Fig. 4: Metabolic effects of ageing on skeletal cells.
Fig. 5: Moving toward a more comprehensive understanding of skeletal cell metabolism.

Similar content being viewed by others

References

  1. Capulli, M., Paone, R. & Rucci, N. Osteoblast and osteocyte: games without frontiers. Arch. Biochem. Biophys. 561, 3–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Rodan, G. A. Introduction to bone biology. Bone 13, S3–S6 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Bonewald, L. F. The amazing osteocyte. J. Bone Miner. Res. 26, 229–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Krishnan, Y. & Grodzinsky, A. J. Cartilage diseases. Matrix Biol. 71–72, 51–69 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hallett, S. A., Ono, W. & Ono, N. Growth plate chondrocytes: skeletal development, growth and beyond. Int. J. Mol. Sci. 20, 6009 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  6. Roberts, S. J., van Gastel, N., Carmeliet, G. & Luyten, F. P. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 70, 10–18 (2015).

    Article  PubMed  Google Scholar 

  7. Bukowska, J. et al. Bone marrow adipocyte developmental origin and biology. Curr. Osteoporos. Rep. 16, 312–319 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Crane, G. M., Jeffery, E. & Morrison, S. J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573–590 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Hoggatt, J., Kfoury, Y. & Scadden, D. T. Hematopoietic stem cell niche in health and disease. Annu. Rev. Pathol. 11, 555–581 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e1916 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Severe, N. et al. Stress-induced changes in bone marrow stromal cell populations revealed through single-cell protein expression mapping. Cell Stem Cell 25, 570–583.e577 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ambrosi, T. H., Longaker, M. T. & Chan, C. K. F. A revised perspective of skeletal stem cell biology. Front. Cell Dev. Biol. 7, 189 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Matsushita, Y., Ono, W. & Ono, N. Skeletal stem cells for bone development and repair: diversity matters. Curr. Osteoporos. Rep. 18, 189–198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Serowoky, M. A., Arata, C. E., Crump, J. G. & Mariani, F. V. Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development 147, dev179325 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chandel, N. S., Jasper, H., Ho, T. T. & Passegué, E. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat. Cell Biol. 18, 823–832 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Salazar-Noratto, G. E. et al. Understanding and leveraging cell metabolism to enhance mesenchymal stem cell transplantation survival in tissue engineering and regenerative medicine applications. Stem Cells 38, 22–33 (2020).

    Article  PubMed  Google Scholar 

  19. Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Shum, L. C., White, N. S., Mills, B. N., Bentley, K. L. & Eliseev, R. A. Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev. 25, 114–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Stegen, S. et al. Adequate hypoxia inducible factor 1α signaling is indispensable for bone regeneration. Bone 87, 176–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Tournaire, G. et al. Nestin-GFP transgene labels skeletal progenitors in the periosteum. Bone 133, 115259 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Martínez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fillmore, N. et al. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival. PLoS ONE 10, e0120257 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature 579, 111–117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Board, M. et al. Acetoacetate is a more efficient energy-yielding substrate for human mesenchymal stem cells than glucose and generates fewer reactive oxygen species. Int. J. Biochem. Cell Biol. 88, 75–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Newman, J. C. & Verdin, E. β-Hydroxybutyrate: a signaling metabolite. Annu. Rev. Nutr. 37, 51–76 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kurmi, K. & Haigis, M. C. Nitrogen metabolism in cancer and immunity. Trends Cell Biol. 30, 408–424 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Hu, G. et al. The amino acid sensor Eif2ak4/GCN2 is required for proliferation of osteoblast progenitors in mice. J. Bone Miner. Res. 35, 2004–2014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, Y. et al. miR-206 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells by targetting glutaminase. Biosci. Rep. 39, BSR20181108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stegen, S. et al. Glutamine metabolism controls chondrocyte identity and function. Dev. Cell 53, 530–544.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Stegen, S. et al. HIF-1α promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab. 23, 265–279 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, Y. et al. Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 29, 966–978.e964 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DeFalco, J. et al. Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291, 2608–2613 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Masson, J. et al. Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth. J. Neurosci. 26, 4660–4671 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davidson, S. M. et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Gastel, N. et al. Induction of a timed metabolic collapse to overcome cancer chemoresistance. Cell Metab. 32, 391–403.e6 (2020).

    Article  PubMed  Google Scholar 

  39. Kristensen, H. B., Andersen, T. L., Marcussen, N., Rolighed, L. & Delaisse, J. M. Increased presence of capillaries next to remodeling sites in adult human cancellous bone. J. Bone Miner. Res. 28, 574–585 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Prisby, R. et al. Intermittent PTH(1-84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone-forming sites. J. Bone Miner. Res. 26, 2583–2596 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Dirckx, N. et al. Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism. J. Clin. Invest. 128, 1087–1105 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zoch, M. L., Abou, D. S., Clemens, T. L., Thorek, D. L. & Riddle, R. C. In vivo radiometric analysis of glucose uptake and distribution in mouse bone. Bone Res. 4, 16004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, Z. et al. Glucose transporter-4 facilitates insulin-stimulated glucose uptake in osteoblasts. Endocrinology 157, 4094–4103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei, J. et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161, 1576–1591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zoidis, E., Ghirlanda-Keller, C. & Schmid, C. Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I. Mol. Cell. Biochem. 348, 33–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Dirckx, N., Moorer, M. C., Clemens, T. L. & Riddle, R. C. The role of osteoblasts in energy homeostasis. Nat. Rev. Endocrinol. 15, 651–665 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, W. C., Ji, X., Nissim, I. & Long, F. Malic enzyme couples mitochondria with aerobic glycolysis in osteoblasts. Cell Rep. 32, 108108 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Borle, A. B., Nichols, N. & Nichols, G. Jr. Metabolic studies of bone in vitro. I. Normal bone. J. Biol. Chem. 235, 1206–1210 (1960).

    Article  CAS  PubMed  Google Scholar 

  49. Esen, E., Lee, S. Y., Wice, B. M. & Long, F. PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling. J. Bone Miner. Res. 30, 2137 (2015).

    Article  PubMed  Google Scholar 

  50. Regan, J. N. et al. Up-regulation of glycolytic metabolism is required for HIF1α-driven bone formation. Proc. Natl Acad. Sci. USA 111, 8673–8678 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Hilton, M. J. et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat. Med. 14, 306–314 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, S. Y. & Long, F. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation. J. Clin. Invest. 128, 5573–5586 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen, H. et al. Increased glycolysis mediates Wnt7b-induced bone formation. FASEB J. 33, 7810–7821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Esen, E. et al. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17, 745–755 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schmid, C., Steiner, T. & Froesch, E. R. Parathormone promotes glycogen formation from [14C]glucose in cultured osteoblast-like cells. FEBS Lett. 148, 31–34 (1982).

    Article  CAS  PubMed  Google Scholar 

  56. Schajowicz, F. & Cabrini, R. L. Histochemical studies on glycogen in normal ossification and calcification. J. Bone Joint Surg. Am. 40-A, 1081–1092 (1958).

    Article  CAS  PubMed  Google Scholar 

  57. Scott, B. L. & Glimcher, M. J. Distribution of glycogen in osteoblasts of the fetal rat. J. Ultrastruct. Res. 36, 565–586 (1971).

    Article  CAS  PubMed  Google Scholar 

  58. Dodds, R. A., Ali, N., Pead, M. J. & Lanyon, L. E. Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo. J. Bone Miner. Res. 8, 261–267 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Dodds, R. A., Catterall, A., Bitensky, L. & Chayen, J. Effects on fracture healing of an antagonist of the vitamin K cycle. Calcif. Tissue Int. 36, 233–238 (1984).

    Article  CAS  PubMed  Google Scholar 

  60. Dodds, R. A., Catterall, A., Bitensky, L. & Chayen, J. Abnormalities in fracture healing induced by vitamin B6-deficiency in rats. Bone 7, 489–495 (1986).

    Article  CAS  PubMed  Google Scholar 

  61. Chen, C. T., Shih, Y. R., Kuo, T. K., Lee, O. K. & Wei, Y. H. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26, 960–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Guntur, A. R., Le, P. T., Farber, C. R. & Rosen, C. J. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology 155, 1589–1595 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yu, B. et al. PGC-1α controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ. Cell Stem Cell 23, 193–209.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pan, J. X. et al. APP promotes osteoblast survival and bone formation by regulating mitochondrial function and preventing oxidative stress. Cell Death Dis. 9, 1077 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Morganti, C. et al. Citrate mediates crosstalk between mitochondria and the nucleus to promote human mesenchymal stem cell in vitro osteogenesis. Cells 9, 1034 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  66. Shares, B. H., Busch, M., White, N., Shum, L. & Eliseev, R. A. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation. J. Biol. Chem. 293, 16019–16027 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Franklin, R. B., Chellaiah, M., Zou, J., Reynolds, M. A. & Costello, L. C. Evidence that osteoblasts are specialized citrate-producing cells that provide the citrate for incorporation into the structure of bone. Open Bone J. 6, 1–7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Karner, C. M. et al. Wnt Protein signaling reduces nuclear acetyl-CoA levels to suppress gene expression during osteoblast differentiation. J. Biol. Chem. 291, 13028–13039 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Adamek, G., Felix, R., Guenther, H. L. & Fleisch, H. Fatty acid oxidation in bone tissue and bone cells in culture. Characterization and hormonal influences. Biochem. J. 248, 129–137 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dunham, J. et al. Aerobic glycolysis of bone and cartilage: the possible involvement of fatty acid oxidation. Cell Biochem. Funct. 1, 168–172 (1983).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, S. P. et al. Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight 2, e92704 (2017).

    Article  PubMed Central  Google Scholar 

  72. Niemeier, A. et al. Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast function. Bone 43, 230–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Müller, D. I. H. et al. PPARδ-mediated mitochondrial rewiring of osteoblasts determines bone mass. Sci. Rep. 10, 8428 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Frey, J. L. et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol. Cell. Biol. 35, 1979–1991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stegen, S. et al. Glutamine metabolism in osteoprogenitors is required for bone mass accrual and PTH‐induced bone anabolism in male mice.J. Bone Miner. Res. https://doi.org/10.1002/jbmr.4219 (2020).

  76. Karner, C. M., Esen, E., Okunade, A. L., Patterson, B. W. & Long, F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J. Clin. Invest. 125, 551–562 (2015).

    Article  PubMed  Google Scholar 

  77. Torzilli, P. A., Arduino, J. M., Gregory, J. D. & Bansal, M. Effect of proteoglycan removal on solute mobility in articular cartilage. J. Biomech. 30, 895–902 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Torzilli, P. A., Grande, D. A. & Arduino, J. M. Diffusive properties of immature articular cartilage. J. Biomed. Mater. Res. 40, 132–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Amarilio, R. et al. HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134, 3917–3928 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Maes, C. et al. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J. Clin. Invest. 113, 188–199 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Robins, J. C. et al. Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone 37, 313–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Schipani, E. et al. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 15, 2865–2876 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maes, C. et al. VEGF-independent cell-autonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. J. Bone Miner. Res. 27, 596–609 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Bywaters, E. G. L. Metabolism of cartilage. Nature 138, 30–31 (1936).

    Article  CAS  Google Scholar 

  85. Kunin, A. S. & Krane, S. M. The effect of dietary phosphorus on the intermediary metabolism of epiphyseal cartilage from rachitic rats. Biochim. Biophys. Acta 107, 203–214 (1965).

    Article  CAS  PubMed  Google Scholar 

  86. Hough, S., Russell, J. E., Teitelbaum, S. L. & Avioli, L. V. Regulation of epiphyseal cartilage metabolism and morphology in the chronic diabetic rat. Calcif. Tissue Int. 35, 115–121 (1983).

    Article  CAS  PubMed  Google Scholar 

  87. Silverton, S. F., Matsumoto, H., DeBolt, K., Reginato, A. & Shapiro, I. M. Pentose phosphate shunt metabolism by cells of the chick growth cartilage. Bone 10, 45–51 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Lee, S. Y., Abel, E. D. & Long, F. Glucose metabolism induced by Bmp signaling is essential for murine skeletal development. Nat. Commun. 9, 4831 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Stegen, S. et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature 565, 511–515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Daimon, T. The presence and distribution of glycogen particles in chondrogenic cells of the tibiotarsal anlage of developing chick embryos. Calcif. Tissue Res. 23, 45–51 (1977).

    Article  CAS  PubMed  Google Scholar 

  91. Horigome, Y. et al. Loss of autophagy in chondrocytes causes severe growth retardation. Autophagy 16, 501–511 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Daniëls, V. W. et al. Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. PLoS ONE 9, e106913 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kikuchi, M. et al. Crucial role of Elovl6 in chondrocyte growth and differentiation during growth plate development in mice. PLoS ONE 11, e0159375 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Handley, C. J., Speight, G., Leyden, K. M. & Lowther, D. A. Extracellular matrix metabolism by chondrocytes. 7. Evidence that L-glutamine is an essential amino acid for chondrocytes and other connective tissue cells. Biochim. Biophys. Acta 627, 324–331 (1980).

    Article  CAS  PubMed  Google Scholar 

  95. Scheller, E. L. et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat. Commun. 6, 7808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, Y., Meng, Y. & Yu, X. The unique metabolic characteristics of bone marrow adipose tissue. Front. Endocrinol. 10, 69 (2019).

    Article  Google Scholar 

  97. Maridas, D. E. et al. Progenitor recruitment and adipogenic lipolysis contribute to the anabolic actions of parathyroid hormone on the skeleton. FASEB J. 33, 2885–2898 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Tencerova, M. et al. Metabolic programming determines the lineage-differentiation fate of murine bone marrow stromal progenitor cells. Bone Res. 7, 35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tormos, K. V. et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14, 537–544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Collins, J. M. et al. De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J. Lipid Res. 52, 1683–1692 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Suchacki, K. J. et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat. Commun. 11, 3097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Attane, C. et al. Human bone marrow is comprised of adipocytes with specific lipid metabolism. Cell Rep. 30, 949–958.e946 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Scheller, E. L. et al. Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation. Bone 118, 32–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Hofer, M. et al. The pharmacological activation of adenosine A1 and A3 receptors does not modulate the long- or short-term repopulating ability of hematopoietic stem and multipotent progenitor cells in mice. Purinergic Signal. 9, 207–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Rossi, L., Salvestrini, V., Ferrari, D., Di Virgilio, F. & Lemoli, R. M. The sixth sense: hematopoietic stem cells detect danger through purinergic signaling. Blood 120, 2365–2375 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Taya, Y. et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354, 1152–1155 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 14, 276–286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Showalter, M. R. et al. Primed mesenchymal stem cells package exosomes with metabolites associated with immunomodulation. Biochem. Biophys. Res. Commun. 512, 729–735 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mistry, J. J. et al. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc. Natl Acad. Sci. USA 116, 24610–24619 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Moschoi, R. et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128, 253–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Shafat, M. S. et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood 129, 1320–1332 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Grote, C., Reinhardt, D., Zhang, M. & Wang, J. Regulatory mechanisms and clinical manifestations of musculoskeletal aging. J. Orthop. Res. 37, 1475–1488 (2019).

    Article  PubMed  Google Scholar 

  114. Bellantuono, I., Aldahmash, A. & Kassem, M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochim. Biophys. Acta 1792, 364–370 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Neri, S. & Borzì, R. M. Molecular mechanisms contributing to mesenchymal stromal cell aging. Biomolecules 10, 340 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  116. Song, J. et al. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow. Cell Death Dis. 10, 336 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sui, B., Hu, C. & Jin, Y. Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells. Biogerontology 17, 267–279 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Huang, T. et al. Aging reduces an ERRalpha-directed mitochondrial glutaminase expression suppressing glutamine anaplerosis and osteogenic differentiation of mesenchymal stem cells. Stem Cells 35, 411–424 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Kondrikov, D. et al. Kynurenine inhibits autophagy and promotes senescence in aged bone marrow mesenchymal stem cells through the aryl hydrocarbon receptor pathway. Exp. Gerontol. 130, 110805 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Pierce, J. L. et al. Kynurenine suppresses osteoblastic cell energetics in vitro and osteoblast numbers in vivo. Exp. Gerontol. 130, 110818 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Hadjiargyrou, M. & O’Keefe, R. J. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J. Bone Miner. Res. 29, 2307–2322 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13, 302–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Arra, M. et al. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat. Commun. 11, 3427 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Tang, Q. et al. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis. 8, e3081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hu, S. et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy. Cell Death Dis. 11, 481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Choi, W. S. et al. The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis. Nature 566, 254–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Sekar, S. et al. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Sci. Rep. 7, 46457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ratneswaran, A. et al. Peroxisome proliferator-activated receptor δ promotes the progression of posttraumatic osteoarthritis in a mouse model. Arthritis Rheumatol. 67, 454–464 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Akasaki, Y. et al. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthritis Cartilage 22, 162–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Zhong, L., Huang, X., Karperien, M. & Post, J. N. Correlation between gene expression and osteoarthritis progression in human. Int. J. Mol. Sci. 17, 1126 (2016).

    Article  PubMed Central  Google Scholar 

  131. Ashraf, S., Mapp, P. I. & Walsh, D. A. Contributions of angiogenesis to inflammation, joint damage, and pain in a rat model of osteoarthritis. Arthritis Rheum. 63, 2700–2710 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Elefteriou, F. & Yang, X. Genetic mouse models for bone studies—strengths and limitations. Bone 49, 1242–1254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stiers, P. J., van Gastel, N., Moermans, K., Stockmans, I. & Carmeliet, G. Regulatory elements driving the expression of skeletal lineage reporters differ during bone development and adulthood. Bone 105, 154–162 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Ast, T. & Mootha, V. K. Oxygen and mammalian cell culture: are we repeating the experiment of Dr. Ox? Nat. Metab. 1, 858–860 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Lagziel, S., Gottlieb, E. & Shlomi, T. Mind your media. Nat. Metab. https://doi.org/10.1038/s42255-020-00299-y (2020).

  136. Agathocleous, M. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549, 476–481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ma, E. H. et al. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity 51, 856–870.e855 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Hartmann, F.J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0651-8 (2020).

  139. Levine, L.S. et al. Single-cell metabolic dynamics of early activated CD8 T cells during the primary immune response to infection. Preprint at bioRxiv https://doi.org/10.1101/2020.01.21.911545 (2020).

  140. Narendra, D. P. & Steinhauser, M. L. Metabolic analysis at the nanoscale with multi-isotope imaging mass spectrometry (MIMS). Curr. Protoc. Cell Biol. 88, e111 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. DiGirolamo, D. J., Clemens, T. L. & Kousteni, S. The skeleton as an endocrine organ. Nat. Rev. Rheumatol. 8, 674–683 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.v.G. is supported by a Young Investigator Award from Alex’s Lemonade Stand Foundation for Childhood Cancer and Tap Cancer Out, and by funding from the de Duve Institute. G.C. receives funding from FWO G0B3418 and G0C5120, KUL-C24/17/077.

Author information

Authors and Affiliations

Authors

Contributions

N.v.G. and G.C. conceived the idea, wrote and revised the manuscript and approved the final version; N.v.G. prepared the figures.

Corresponding authors

Correspondence to Nick van Gastel or Geert Carmeliet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editors: Christoph Schmitt; Pooja Jha. Nature Metabolism thanks Ryan C. Riddle, Erica Scheller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Gastel, N., Carmeliet, G. Metabolic regulation of skeletal cell fate and function in physiology and disease. Nat Metab 3, 11–20 (2021). https://doi.org/10.1038/s42255-020-00321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-020-00321-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing