Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of maternal and paternal exercise on offspring metabolism

Abstract

Maternal and paternal obesity and type 2 diabetes are recognized risk factors for the development of metabolic dysfunction in offspring, even when the offspring follow a healthful lifestyle. Multiple studies have demonstrated that regular physical activity in mothers and fathers has striking beneficial effects on offspring health, including preventing the development of metabolic disease in rodent offspring as they age. Here, we review the benefits of maternal and paternal exercise in combating the development of metabolic dysfunction in adult offspring, focusing on offspring glucose homeostasis and adaptations to metabolic tissues. We discuss recent findings regarding the roles of the placenta and sperm in mediating the effects of parental exercise on offspring metabolic health, as well as the mechanisms hypothesized to underlie these beneficial changes. Given the worldwide epidemics of obesity and type 2 diabetes, if these findings translate to humans, regular exercise during the reproductive years might limit the vicious cycles in which increased metabolic risk propagates across generations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intergenerational effects of environmental exposure.
Fig. 2: Parental exercise training affects parents and offspring.
Fig. 3: Targets and timing of parental exercise differently affect offspring through intergenerational or transgenerational modes of inheritance.
Fig. 4: Effects of maternal and paternal exercise training on F1 offspring metabolism.
Fig. 5: Effects of exercise training in rodents on F0 gametes and placenta, and on F1 newborns and adults.

Similar content being viewed by others

References

  1. Cho, N. H. et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Sales, V. M., Ferguson-Smith, A. C. & Patti, M. E. Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab. 25, 559–571 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharp, G. C. & Lawlor, D. A. Paternal impact on the life course development of obesity and type 2 diabetes in the offspring. Diabetologia 62, 1802–1810 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen, L. et al. Effect of lifestyle intervention in patients with type 2 diabetes: a meta-analysis. Metabolism 64, 338–347 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Schellenberg, E. S., Dryden, D. M., Vandermeer, B., Ha, C. & Korownyk, C. Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 159, 543–551 (2013).

    Article  PubMed  Google Scholar 

  6. Dutta, S. & Sengupta, P. Men and mice: relating their ages. Life Sci. 152, 244–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Fernandez-Twinn, D. S., Hjort, L., Novakovic, B., Ozanne, S. E. & Saffery, R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 62, 1789–1801 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gaillard, R. Maternal obesity during pregnancy and cardiovascular development and disease in the offspring. Eur. J. Epidemiol. 30, 1141–1152 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Desyibelew, H. D. & Dadi, A. F. Burden and determinants of malnutrition among pregnant women in Africa: a systematic review and meta-analysis. PLoS ONE 14, e0221712 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lumey, L. H., Khalangot, M. D. & Vaiserman, A. M. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932-33: a retrospective cohort study. Lancet Diabetes Endocrinol. 3, 787–794 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Ravelli, A. C. et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Roseboom, T., de Rooij, S. & Painter, R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev. 82, 485–491 (2006).

    Article  PubMed  Google Scholar 

  13. Boney, C. M., Verma, A., Tucker, R. & Vohr, B. R. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115, e290–e296 (2005).

    Article  PubMed  Google Scholar 

  14. Reynolds, R. M. et al. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years. Br. Med. J. 347, f4539 (2013).

    Article  Google Scholar 

  15. Lahti-Pulkkinen, M. et al. Consequences of being overweight or obese during pregnancy on diabetes in the offspring: a record linkage study in Aberdeen, Scotland. Diabetologia 62, 1412–1419 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stothard, K. J., Tennant, P. W., Bell, R. & Rankin, J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. J. Am. Med. Assoc. 301, 636–650 (2009).

    Article  CAS  Google Scholar 

  17. Kaar, J. L. et al. Maternal obesity, gestational weight gain, and offspring adiposity: the exploring perinatal outcomes among children study. J. Pediatr. 165, 509–515 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Davenport, M. H. et al. Prenatal exercise for the prevention of gestational diabetes mellitus and hypertensive disorders of pregnancy: a systematic review and meta-analysis. Br. J. Sports Med. 52, 1367–1375 (2018).

    Article  PubMed  Google Scholar 

  19. Wang, J., Wen, D., Liu, X. & Liu, Y. Impact of exercise on maternal gestational weight gain: an updated meta-analysis of randomized controlled trials. Med. (Baltim.) 98, e16199 (2019).

    Article  Google Scholar 

  20. Beetham, K. S. et al. The effects of vigorous intensity exercise in the third trimester of pregnancy: a systematic review and meta-analysis. BMC Pregnancy Childbirth 19, 281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ming, W. K. et al. The effect of exercise during pregnancy on gestational diabetes mellitus in normal-weight women: a systematic review and meta-analysis. BMC Pregnancy Childbirth 18, 440 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moyer, C., Reoyo, O. R. & May, L. The influence of prenatal exercise on offspring health: a review. Clin. Med. Insights Women’s Health 9, 37–42 (2016).

    PubMed  Google Scholar 

  23. Wiebe, H. W., Boulé, N. G., Chari, R. & Davenport, M. H. The effect of supervised prenatal exercise on fetal growth: a meta-analysis. Obstet. Gynecol. 125, 1185–1194 (2015).

    Article  PubMed  Google Scholar 

  24. Clapp, J. F. III, Lopez, B. & Harcar-Sevcik, R. Neonatal behavioral profile of the offspring of women who continued to exercise regularly throughout pregnancy. Am. J. Obstet. Gynecol. 180, 91–94 (1999).

    Article  PubMed  Google Scholar 

  25. May, L. E., Scholtz, S. A., Suminski, R. & Gustafson, K. M. Aerobic exercise during pregnancy influences infant heart rate variability at one month of age. Early Hum. Dev. 90, 33–38 (2014).

    Article  PubMed  Google Scholar 

  26. McMillan, A. G., May, L. E., Gaines, G. G., Isler, C. & Kuehn, D. Effects of aerobic exercise during pregnancy on 1-month infant neuromotor skills. Med. Sci. Sports Exerc. 51, 1671–1676 (2019).

    Article  PubMed  Google Scholar 

  27. Patel, N. et al. Infant adiposity following a randomised controlled trial of a behavioural intervention in obese pregnancy. Int. J. Obes. (Lond.) 41, 1018–1026 (2017).

    Article  CAS  Google Scholar 

  28. van Poppel, M. N. M. et al. A reduction in sedentary behaviour in obese women during pregnancy reduces neonatal adiposity: the DALI randomised controlled trial. Diabetologia 62, 915–925 (2019). This study demonstrates that aerobic physical activity together with a healthful diet during pregnancy decreases fat in newborn humans.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mourtakos, S. P. et al. Maternal lifestyle characteristics during pregnancy, and the risk of obesity in the offspring: a study of 5,125 children. BMC Pregnancy Childbirth 15, 66 (2015). Through analysis of 5,125 children, this study shows that moderate exercise during pregnancy decreases the risk of offspring being overweight during childhood.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chiavaroli, V. et al. Exercise in pregnancy: 1-year and 7-year follow-ups of mothers and offspring after a randomized controlled trial. Sci. Rep. 8, 12915 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chen, H., Simar, D., Lambert, K., Mercier, J. & Morris, M. J. Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 149, 5348–5356 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Masuyama, H. & Hiramatsu, Y. Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 153, 2823–2830 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Stanford, K. I. et al. Exercise before and during pregnancy prevents the deleterious effects of maternal high-fat feeding on metabolic health of male offspring. Diabetes 64, 427–433 (2015). This study investigated the best time for exercise training during pregnancy and shows that maternal exercise in mice before and during pregnancy improves metabolic health in male offspring.

    Article  CAS  PubMed  Google Scholar 

  34. Stanford, K. I. et al. Maternal exercise improves glucose tolerance in female offspring. Diabetes 66, 2124–2136 (2017). This study reveals that maternal exercise in mice improves systemic metabolism and liver function in female offspring.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Isganaitis, E. et al. Accelerated postnatal growth increases lipogenic gene expression and adipocyte size in low-birth weight mice. Diabetes 58, 1192–1200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jimenez-Chillaron, J. C. et al. Beta-cell secretory dysfunction in the pathogenesis of low birth weight-associated diabetes: a murine model. Diabetes 54, 702–711 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Raipuria, M., Bahari, H. & Morris, M. J. Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats. PLoS ONE 10, e0120980 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Laker, R. C. et al. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes 63, 1605–1611 (2014). This study shows that maternal exercise in mice prevents epigenetic alterations caused by maternal overnutrition in muscles in female offspring.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Graus-Nunes, F. et al. Pregestational maternal obesity impairs endocrine pancreas in male F1 and F2 progeny. Nutrition 31, 380–387 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Hartil, K. et al. Maternal substrate utilization programs the development of the metabolic syndrome in male mice exposed to high fat in utero. Pediatr. Res. 66, 368–373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vega, C. C. et al. Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int. J. Obes. (Lond.) 39, 712–719 (2015).

    Article  CAS  Google Scholar 

  42. Quiclet, C. et al. Maternal exercise modifies body composition and energy substrates handling in male offspring fed a high-fat/high-sucrose diet. J. Physiol. (Lond.) 595, 7049–7062 (2017).

    Article  CAS  Google Scholar 

  43. Perng, W., Oken, E. & Dabelea, D. Developmental overnutrition and obesity and type 2 diabetes in offspring. Diabetologia 62, 1779–1788 (2019).

    Article  PubMed  Google Scholar 

  44. Ou, X. H., Zhu, C. C. & Sun, S. C. Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. J. Cell. Physiol. 234, 7847–7855 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Q. et al. A maternal high-fat diet induces DNA methylation changes that contribute to glucose intolerance in offspring. Front. Endocrinol. (Lausanne) 10, 871 (2019).

    Article  Google Scholar 

  46. Sasaki, H. et al. Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2:LUC mice. Sci. Rep. 6, 27607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Svensson, M. et al. Forced treadmill exercise can induce stress and increase neuronal damage in a mouse model of global cerebral ischemia. Neurobiol. Stress 5, 8–18 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim, Y. J., Kim, H. J., Lee, W. J. & Seong, J. K. A comparison of the metabolic effects of treadmill and wheel running exercise in mouse model. Lab. Anim. Res. 36, 3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zheng, J. et al. Maternal and paternal exercise regulate offspring metabolic health and beta cell phenotype. BMJ Open Diabetes Res. Care 8, e000890 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Carter, L. G. et al. Perinatal exercise improves glucose homeostasis in adult offspring. Am. J. Physiol. Endocrinol. Metab. 303, E1061–E1068 (2012). This article demonstrates that maternal exercise in mice increases insulin-stimulated glucose uptake in the soleus and adipose tissues in female offspring, thus improving their metabolic health.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carter, L. G., Qi, N. R., De Cabo, R. & Pearson, K. J. Maternal exercise improves insulin sensitivity in mature rat offspring. Med. Sci. Sports Exerc. 45, 832–840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sheldon, R. D. et al. Gestational exercise protects adult male offspring from high-fat diet-induced hepatic steatosis. J. Hepatol. 64, 171–178 (2016).

    Article  PubMed  Google Scholar 

  53. Quiclet, C. et al. Short-term and long-term effects of submaximal maternal exercise on offspring glucose homeostasis and pancreatic function. Am. J. Physiol. Endocrinol. Metab. 311, E508–E518 (2016).

    Article  PubMed  Google Scholar 

  54. Bayol, S. A., Simbi, B. H. & Stickland, N. C. A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. J. Physiol. (Lond.) 567, 951–961 (2005).

    Article  CAS  Google Scholar 

  55. Isganaitis, E. et al. Developmental programming by maternal insulin resistance: hyperinsulinemia, glucose intolerance, and dysregulated lipid metabolism in male offspring of insulin-resistant mice. Diabetes 63, 688–700 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fernandez-Twinn, D. S. et al. Exercise rescues obese mothers’ insulin sensitivity, placental hypoxia and male offspring insulin sensitivity. Sci. Rep. 7, 44650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Falcão-Tebas, F., Marin, E.C., Kuang, J., Bishop, D.J. & McConell, G.K. Maternal exercise attenuates the lower skeletal muscle glucose uptake and insulin secretion caused by paternal obesity in female adult rat offspring. J. Physiol. (Lond.) https://doi.org/10.1113/JP279582 (2020).

  58. Son, J. S. et al. Maternal exercise via exerkine apelin enhances brown adipogenesis and prevents metabolic dysfunction in offspring mice. Sci. Adv. 6, eaaz0359 (2020). In this study, analysis of methylation changes in the Prdm16 promoter in adipose tissue indicates that maternal exercise in mice improves BAT and beige adipose tissue function, thus protecting offspring from obesity.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Eclarinal, J. D. et al. Maternal exercise during pregnancy promotes physical activity in adult offspring. FASEB J. 30, 2541–2548 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moser, V. C. et al. Impacts of maternal diet and exercise on offspring behavior and body weights. Neurotoxicol. Teratol. 63, 46–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Baron, A. D., Brechtel, G., Wallace, P. & Edelman, S. V. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am. J. Physiol. 255, E769–E774 (1988).

    CAS  PubMed  Google Scholar 

  62. Gniuli, D. et al. Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny. J. Lipid Res. 49, 1936–1945 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Seale, P. & Lazar, M. A. Brown fat in humans: turning up the heat on obesity. Diabetes 58, 1482–1484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Beeson, J. H. et al. Maternal exercise intervention in obese pregnancy improves the cardiovascular health of the adult male offspring. Mol. Metab. 16, 35–44 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saiyin, T. et al. Maternal voluntary exercise mitigates oxidative stress and incidence of congenital heart defects in pre-gestational diabetes. J. Cell. Mol. Med. 23, 5553–5565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Herring, A. et al. Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring. FASEB J. 26, 117–128 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Sferruzzi-Perri, A. N. & Camm, E. J. The programming power of the placenta. Front. Physiol. 7, 33 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Petroff, M. G., Phillips, T. A., Ka, H., Pace, J. L. & Hunt, J. S. Isolation and culture of term human trophoblast cells. Methods Mol. Med. 121, 203–217 (2006).

    PubMed  Google Scholar 

  69. Clapp, J. F. III, Kim, H., Burciu, B. & Lopez, B. Beginning regular exercise in early pregnancy: effect on fetoplacental growth. Am. J. Obstet. Gynecol. 183, 1484–1488 (2000). In this study, analysis of pregnant women who performed weight-bearing aerobic exercise indicates that maternal exercise is associated with normal foetoplacental growth, thus decreasing the risk of low-birth-weight outcomes.

    Article  PubMed  Google Scholar 

  70. Ramírez-Vélez, R., Bustamante, J., Czerniczyniec, A., Aguilar de Plata, A. C. & Lores-Arnaiz, S. Effect of exercise training on eNOS expression, NO production and oxygen metabolism in human placenta. PLoS ONE 8, e80225 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Brett, K. E., Ferraro, Z. M., Holcik, M. & Adamo, K. B. Prenatal physical activity and diet composition affect the expression of nutrient transporters and mTOR signaling molecules in the human placenta. Placenta 36, 204–212 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Hutchinson, K. A. et al. Physical activity during pregnancy is associated with increased placental FATP4 protein expression. Reprod. Sci. 27, 1909–1919 (2020).

    Article  PubMed  Google Scholar 

  73. Howell, K. R. & Powell, T. L. Effects of maternal obesity on placental function and fetal development. Reproduction 153, R97–R108 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Myatt, L. & Maloyan, A. Obesity and placental function. Semin. Reprod. Med. 34, 42–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Son, J. S. et al. Exercise prevents the adverse effects of maternal obesity on placental vascularization and fetal growth. J. Physiol. (Lond.) 597, 3333–3347 (2019).

    Article  CAS  Google Scholar 

  76. Mangwiro, Y. T. M. et al. Maternal exercise in rats upregulates the placental insulin-like growth factor system with diet- and sex-specific responses: minimal effects in mothers born growth restricted. J. Physiol. (Lond.) 596, 5947–5964 (2018).

    Article  CAS  Google Scholar 

  77. Fragoso, J. et al. Maternal physical activity-induced adaptive transcriptional response in brain and placenta of mothers and rat offspring. J. Dev. Orig. Health Dis. 11, 108–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Mangwiro, Y. T. et al. Maternal exercise and growth restriction in rats alters placental angiogenic factors and blood space area in a sex-specific manner. Placenta 74, 47–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Berti, C. et al. Pregnancy and infants’ outcome: nutritional and metabolic implications. Crit. Rev. Food Sci. Nutr. 56, 82–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Lin, G. et al. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids 46, 1605–1623 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Mangwiro, Y. T. M. et al. Exercise initiated during pregnancy in rats born growth restricted alters placental mTOR and nutrient transporter expression. J. Physiol. (Lond.) 597, 1905–1918 (2019).

    Article  CAS  Google Scholar 

  82. Song, L. et al. Prenatal exercise reverses high-fat-diet-induced placental alterations and alters male fetal hypothalamus during late gestation in rats. Biol. Reprod. 102, 705–716 (2020).

    Article  PubMed  Google Scholar 

  83. Harris, J. E. et al. Exercise-induced 3′-sialyllactose in breast milk is a critical mediator to improve metabolic health and cardiac function in mouse offspring. Nat. Metab. 2, 678–687 (2020). This study proposes oligosaccharide 3′-sialyllactose in exercise-trained mothers’ milk as an important mediator improving glucose metabolic health and cardiac function in offspring.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Neri, C. & Edlow, A. G. Effects of maternal obesity on fetal programming: molecular approaches. Cold Spring Harb. Perspect. Med. 6, a026591 (2015).

    Article  PubMed  CAS  Google Scholar 

  85. Marco, A., Kisliouk, T., Tabachnik, T., Weller, A. & Meiri, N. DNA CpG methylation (5-methylcytosine) and its derivative (5-hydroxymethylcytosine) alter histone posttranslational modifications at the Pomc promoter, affecting the impact of perinatal diet on leanness and obesity of the offspring. Diabetes 65, 2258–2267 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. de Castro Barbosa, T. et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol. Metab. 5, 184–197 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ng, S. F. et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lucas, E. S. & Watkins, A. J. The long-term effects of the periconceptional period on embryo epigenetic profile and phenotype; the paternal role and his contribution, and how males can affect offspring’s phenotype/epigenetic profile. Adv. Exp. Med. Biol. 1014, 137–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Li, L., Law, C., Lo Conte, R. & Power, C. Intergenerational influences on childhood body mass index: the effect of parental body mass index trajectories. Am. J. Clin. Nutr. 89, 551–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Bakos, H. W., Henshaw, R. C., Mitchell, M. & Lane, M. Paternal body mass index is associated with decreased blastocyst development and reduced live birth rates following assisted reproductive technology. Fertil. Steril. 95, 1700–1704 (2011).

    Article  PubMed  Google Scholar 

  92. Chavarro, J. E. et al. Trans-fatty acid levels in sperm are associated with sperm concentration among men from an infertility clinic. Fertil. Steril. 95, 1794–1797 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Kort, H. I. et al. Impact of body mass index values on sperm quantity and quality. J. Androl. 27, 450–452 (2006).

    Article  PubMed  Google Scholar 

  94. Bodden, C., Hannan, A. J. & Reichelt, A. C. Diet-induced modification of the sperm epigenome programs metabolism and behavior. Trends Endocrinol. Metab. 31, 131–149 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Bakos, H. W., Thompson, J. G., Feil, D. & Lane, M. Sperm DNA damage is associated with assisted reproductive technology pregnancy. Int. J. Androl. 31, 518–526 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Bertolini, M. et al. Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights. Theriogenology 58, 973–994 (2002).

    Article  PubMed  Google Scholar 

  97. Seli, E., Gardner, D. K., Schoolcraft, W. B., Moffatt, O. & Sakkas, D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil. Steril. 82, 378–383 (2004).

    Article  PubMed  Google Scholar 

  98. Su, L. & Patti, M. E. Paternal nongenetic intergenerational transmission of metabolic disease risk. Curr. Diab. Rep. 19, 38 (2019).

    Article  PubMed  Google Scholar 

  99. Huypens, P. et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet. 48, 497–499 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016). This article demonstrates that tsRNAs present in paternal sperm are capable of directing the metabolic programming of F1 offspring, as a result of the dietary status of the F0 fathers.

    Article  CAS  PubMed  Google Scholar 

  101. Sharma, U. & Rando, O. J. Metabolic inputs into the epigenome. Cell Metab. 25, 544–558 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Binder, N. K., Hannan, N. J. & Gardner, D. K. Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. PLoS ONE 7, e52304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lambrot, R. et al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat. Commun. 4, 2889 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Watkins, A. J. & Sinclair, K. D. Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. Am. J. Physiol. Heart Circ. Physiol. 306, H1444–H1452 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. McPherson, N. O., Lane, M., Sandeman, L., Owens, J. A. & Fullston, T. An exercise-only intervention in obese fathers restores glucose and insulin regulation in conjunction with the rescue of pancreatic islet cell morphology and microRNA expression in male offspring. Nutrients 9, 122 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  106. McPherson, N. O., Owens, J. A., Fullston, T. & Lane, M. Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am. J. Physiol. Endocrinol. Metab. 308, E805–E821 (2015). This study shows that exercise training in obese male mice normalizes the X-linked miRNA profile in sperm and increases insulin sensitivity in female offspring.

    Article  CAS  Google Scholar 

  107. Stanford, K. I. et al. Paternal exercise improves glucose metabolism in adult offspring. Diabetes 67, 2530–2540 (2018). This article reveals that paternal exercise training normalizes the detrimental effects of a paternal high-fat diet on sperm motility, the sperm miRNA profile and glucose tolerance in offspring.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Murashov, A. K. et al. Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. FASEB J. 30, 775–784 (2016). This article demonstrates that high-volume, long-term paternal exercise results in offspring that are more susceptible to the negative effects of a high-fat diet on metabolism.

    Article  CAS  PubMed  Google Scholar 

  109. Gaskins, A. J., Colaci, D. S., Mendiola, J., Swan, S. H. & Chavarro, J. E. Dietary patterns and semen quality in young men. Hum. Reprod. 27, 2899–2907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hammoud, A. O. et al. Male obesity and alteration in sperm parameters. Fertil. Steril. 90, 2222–2225 (2008).

    Article  PubMed  Google Scholar 

  111. Veron, G. L. et al. Impact of age, clinical conditions, and lifestyle on routine semen parameters and sperm kinematics. Fertil. Steril. 110, 68–75.e4 (2018).

    Article  PubMed  Google Scholar 

  112. Campbell, J. M., Lane, M., Owens, J. A. & Bakos, H. W. Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod. Biomed. Online 31, 593–604 (2015).

    Article  PubMed  Google Scholar 

  113. Hammoud, A. O., Carrell, D. T., Gibson, M., Peterson, C. M. & Meikle, A. W. Updates on the relation of weight excess and reproductive function in men: sleep apnea as a new area of interest. Asian J. Androl. 14, 77–81 (2012).

    Article  PubMed  Google Scholar 

  114. Sallmén, M., Sandler, D. P., Hoppin, J. A., Blair, A. & Baird, D. D. Reduced fertility among overweight and obese men. Epidemiology 17, 520–523 (2006).

    Article  PubMed  Google Scholar 

  115. Fariello, R. M. et al. Association between obesity and alteration of sperm DNA integrity and mitochondrial activity. BJU Int. 110, 863–867 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Fullston, T. et al. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod. 27, 1391–1400 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Mitchell, M., Bakos, H. W. & Lane, M. Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil. Steril. 95, 1349–1353 (2011).

    Article  PubMed  Google Scholar 

  118. Gómez-Elías, M. D. et al. Association between high-fat diet feeding and male fertility in high reproductive performance mice. Sci. Rep. 9, 18546 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Watkins, A. J. et al. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc. Natl Acad. Sci. USA 115, 10064–10069 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cropley, J. E. et al. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol. Metab. 5, 699–708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Palmer, N. O., Bakos, H. W., Owens, J. A., Setchell, B. P. & Lane, M. Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am. J. Physiol. Endocrinol. Metab. 302, E768–E780 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Klastrup, L. K., Bak, S. T. & Nielsen, A. L. The influence of paternal diet on sncRNA-mediated epigenetic inheritance. Mol. Genet. Genomics 294, 1–11 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Zhang, Y., Shi, J., Rassoulzadegan, M., Tuorto, F. & Chen, Q. Sperm RNA code programmes the metabolic health of offspring. Nat. Rev. Endocrinol. 15, 489–498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rodgers, A. B., Morgan, C. P., Leu, N. A. & Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl Acad. Sci. USA 112, 13699–13704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pogue, A. I., Clement, C., Hill, J. M. & Lukiw, W. J. Evolution of microRNA (miRNA) structure and function in plants and animals: relevance to aging and disease. J. Aging Sci. 2, 119 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Grandjean, V. & Rassoulzadegan, M. [Epigenetic inheritance of the sperm: an unexpected role of RNA]. Gynécol. Obstét. Fertil. 37, 558–561 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Li, S., Xu, Z. & Sheng, J. tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes (Basel) 9, 246 (2018).

    Article  CAS  Google Scholar 

  130. Nätt, D. et al. Human sperm displays rapid responses to diet. PLoS Biol. 17, e3000559 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Short, A. K. et al. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety. Transl. Psychiatry 7, e1114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Soubry, A. et al. Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study. Clin. Epigenetics 8, 51 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Potabattula, R. et al. Male obesity effects on sperm and next-generation cord blood DNA methylation. PLoS ONE 14, e0218615 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl Acad. Sci. USA 111, 1873–1878 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S. & Bale, T. L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 33, 9003–9012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sato, F., Tsuchiya, S., Meltzer, S. J. & Shimizu, K. MicroRNAs and epigenetics. FEBS J. 278, 1598–1609 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Denham, J., O’Brien, B. J., Harvey, J. T. & Charchar, F. J. Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. Epigenomics 7, 717–731 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by NIH grant awards R01 DK101043 (to L.J.G.) and P30 DK036836 (Diabetes Research Center funding to Joslin Diabetes Center), and by the American Diabetes Association (training grant 1-17-PMF-009 to A.B.A.-W.). J.K. was supported by individual research fellowships from the Sunstar Foundation, JSPS Overseas Research Fellowships, Kanae Foundation for the Promotion of Medical Science and Meiji Yasuda Life Foundation of Health and Welfare. We thank M. F. Hirshman for many helpful scientific discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.K., A.B.A.-W. and N.S.M. wrote the review. J.K. and A.B.A.-W. made the figures and tables. L.J.G. directed the review components, designed the layout and wrote the review. All authors have participated in the manuscript review and approved the final manuscript.

Corresponding author

Correspondence to Laurie J. Goodyear.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editors: Elena Bellafante; Pooja Jha.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusuyama, J., Alves-Wagner, A.B., Makarewicz, N.S. et al. Effects of maternal and paternal exercise on offspring metabolism. Nat Metab 2, 858–872 (2020). https://doi.org/10.1038/s42255-020-00274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-020-00274-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing