Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of single photons to quantum communication and computing

Abstract

In the context of quantum technologies, the generation and manipulation of single photons has become a key element for applications such as quantum communication and quantum computing, as well as quantum metrology, biology and experiments probing the foundations of quantum physics discussed in an accompanying review. Here, we overview the definition and characterization of single-photon sources and discuss the requirements of single-photon sources for quantum communication and computing. We review the main milestones reached so far and discuss the remaining challenges. 

Key points

  • Single photons are key elements for quantum communication. They can be used to implement quantum key distribution and to link quantum networks.

  • Quantum communication requires single photons in the telecommunication wavelength range, which remains technically challenging.

  • Quantum computing with single photons is a viable platform for future quantum computers. The requirements on the quality and the quantity of single photons are very high; this being a major limitation for the implementation of linear-optical quantum computing.

  • Research is still needed to develop compact sources producing single photons that are on-demand, indistinguishable and with the highest emission rate possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum optics 101.
Fig. 2: Single-photon sources.
Fig. 3: Single-photon applications in quantum communication.
Fig. 4: Different quantum computing schemes with photons.

Similar content being viewed by others

References

  1. Couteau, C. et al. Applications of single photons in quantum metrology, biology and the foundations of quantum physics. Nat. Rev. Phys. https://doi.org/10.1038/s42254-023-00589-w (2023).

    Article  Google Scholar 

  2. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  ADS  Google Scholar 

  3. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  ADS  Google Scholar 

  4. Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. prog. Phys. 82, 016001 (2019).

    Article  ADS  Google Scholar 

  5. Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: a concise review featured. Appl. Phys. Rev. 6, 041303 (2019).

    Article  ADS  Google Scholar 

  6. Lee, J. et al. Integrated single photon emitters. AVS Quantum Sci. 2, 031701 (2020).

    Article  ADS  Google Scholar 

  7. Bruss, D. Characterizing entanglement. J. Math. Phys. 43, 4237 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014).

    Article  ADS  Google Scholar 

  9. Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17, 132–148 (1905).

    Article  MATH  Google Scholar 

  10. Glauber, R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  11. Thomas, S. & Senellart, P. The race for the ideal single-photon source is on. Nat. Nanotechnol. 16, 367–368 (2021).

    Article  ADS  Google Scholar 

  12. Rarity, J. G., Tapster, P. R. & Jakeman, E. Observation of sub-Poissonian light in parametric down-conversion. Opt. Comm. 62, 201–206 (1986).

    Article  ADS  Google Scholar 

  13. Brida, G. et al. Experimental realization of a low-noise heralded single-photon source. Opt. Exp. 19, 1484–1492 (2011).

    Article  Google Scholar 

  14. Krapick, S. et al. An efficient integrated two-color source for heralded single photons. Quantum Sci. Technol. 15, 33010 (2013).

    Google Scholar 

  15. Ngah, L. A., Alibart, O., Labonté, L., D’Auria, V. & Tanzilli, S. Ultra-fast heralded single photon source based on telecom technology. Laser Photon. Rev. 9, L1–L5 (2015).

    Article  ADS  Google Scholar 

  16. Couteau, C. Spontaneous parametric down-conversion. Cont. Phys. 59, 291–304 (2018).

    Article  ADS  Google Scholar 

  17. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  18. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977).

    Article  ADS  Google Scholar 

  19. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007).

    Article  ADS  Google Scholar 

  20. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    Article  ADS  Google Scholar 

  21. Chu, X.-L., Götzinger, S. & Sandoghdar, V. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light. Nat. Photon. 11, 58–62 (2017).

    Article  ADS  Google Scholar 

  22. Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article  ADS  Google Scholar 

  23. Meyer-Scott, E., Silberhorn, C. & Migdall, A. Single-photon sources: approaching the ideal through multiplexing. Rev. Sci. Instrum. 91, 041101 (2020).

    Article  ADS  Google Scholar 

  24. Holzman, I. & Ivry, Y. Superconducting nanowires for single-photon detection: progress, challenges, and opportunities. Adv. Quantum Technol. 2, 1800058 (2019).

    Article  Google Scholar 

  25. Levine, Z. H. et al. Algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor. J. Opt. Soc. Am. B 29, 2066–2073 (2012).

    Article  ADS  Google Scholar 

  26. Nielsen, M. A. Optical quantum computation using cluster States. Phys. Rev. Lett. 93, 40503 (2004).

    Article  ADS  Google Scholar 

  27. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  MATH  Google Scholar 

  28. Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  29. Waks, E. et al. Quantum cryptography with a photon turnstile. Nature 420, 762 (2002).

    Article  ADS  Google Scholar 

  30. Beveratos, A. et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).

    Article  ADS  Google Scholar 

  31. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  32. Lu, C. Y. & Pan, J. W. Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol. 16, 1294–1296 (2021).

    Article  ADS  Google Scholar 

  33. Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  34. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  MATH  Google Scholar 

  35. Jacobs, B. C., Pittman, T. B. & Franson, J. D. Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 46 (2002).

    Article  Google Scholar 

  36. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).

    Article  ADS  Google Scholar 

  37. International Telecommunication Union. Handbook on Optical Fibres, Cables and Systems https://www.itu.int/dms (2009).

  38. Bourgoin, J.-P. et al. Corrigendum: a comprehensive design and performance analysis of low Earth orbit satellite quantum communication (2013 New J. Phys. 15 023006). N. J. Phys. 16, 69502 (2014).

    Article  Google Scholar 

  39. Liao, S.-K. et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11, 509–513 (2017).

    Article  Google Scholar 

  40. Yuan, Z. L., Dixon, A. R., Dynes, J. F., Sharpe, A. W. & Shields, A. J. Gigahertz quantum key distribution with InGaAs avalanche photodiodes. Appl. Phys. Lett. 92, 201104 (2008).

    Article  ADS  MATH  Google Scholar 

  41. Gordon, K. et al. Quantum key distribution system clocked at 2 GHz. Opt. Express 13, 3015–3020 (2005).

    Article  ADS  Google Scholar 

  42. Takesue, H. et al. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photon. 1, 343–348 (2007).

    Article  ADS  Google Scholar 

  43. Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    Article  ADS  Google Scholar 

  44. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995).

    Article  ADS  Google Scholar 

  45. Li, X., Voss, P. L., Sharping, J. E. & Kumar, P. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 53601 (2005).

    Article  ADS  Google Scholar 

  46. Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Pan, J. W., Daniell, M., Gasparoni, S., Weihs, G. & Zeilinger, A. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435 (2001).

    Article  ADS  Google Scholar 

  48. Kaneda, F. & Kwiat, P. G. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5, eaaw8586 (2019).

    Article  ADS  Google Scholar 

  49. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513 (2000).

    Article  ADS  Google Scholar 

  50. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    Article  ADS  Google Scholar 

  51. Shields, A. J. Semiconductor quantum light sources. Nat. Photon 1, 215–223 (2007).

    Article  ADS  Google Scholar 

  52. Müller, T. et al. A quantum light-emitting diode for the standard telecom window around 1550 nm. Nat. Commun. 9, 862 (2018).

    Article  ADS  Google Scholar 

  53. Ward, M. B. et al. Coherent dynamics of a telecom-wavelength entangled photon source. Nat. Commun. 5, 3316 (2014).

    Article  ADS  Google Scholar 

  54. Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

    Article  ADS  Google Scholar 

  55. Keil, R. et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat. Commun. 8, 15501 (2017).

    Article  ADS  Google Scholar 

  56. Hargart, F. et al. Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter. Appl. Phys. Lett. 102, 11126 (2013).

    Article  Google Scholar 

  57. Anderson, M. et al. Gigahertz-clocked teleportation of time-bin qubits with a quantum dot in the telecommunication C band. Phys. Rev. Appl. 13, 054052 (2020).

    Article  ADS  Google Scholar 

  58. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  ADS  Google Scholar 

  59. He, Y.-M. et al. Deterministic implementation of a bright, on-demand single photon source with near-unity indistinguishability via quantum dot imaging. Optica 4, 802–808 (2017).

    Article  ADS  Google Scholar 

  60. Chen, Y., Zopf, M., Keil, R., Ding, F. & Schmidt, O. G. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat. Commun. 9, 2994 (2018).

    Article  ADS  Google Scholar 

  61. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Basso Basset, F. et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, eabe6379 (2021).

    Article  ADS  Google Scholar 

  63. Schimpf, C. et al. Quantum cryptography with highly entangled photons from semiconductor quantum dots. Sci. Adv. 7, eabe8905 (2021).

    Article  Google Scholar 

  64. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  ADS  Google Scholar 

  65. Volz, J. et al. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 30404 (2006).

    Article  ADS  Google Scholar 

  66. Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).

    Article  ADS  Google Scholar 

  67. Yuan, Z. et al. 10-Mb/s quantum key distribution. J. Light. Tech. 36, 3427–3433 (2018).

    Article  Google Scholar 

  68. Fröhlich, B. et al. Long-distance quantum key distribution secure against coherent attacks. Optica 4, 163–167 (2017).

    Article  ADS  Google Scholar 

  69. Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

    Article  ADS  Google Scholar 

  70. Townsend, P. D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing. Phys. Rev. Lett. 33, 188 (1997).

    Google Scholar 

  71. Mao, Y. et al. Integrating quantum key distribution with classical communications in backbone fiber network. Opt. Express 26, 6010–6020 (2018).

    Article  ADS  Google Scholar 

  72. Choi, I. et al. Field trial of a quantum secured 10 Gb/s DWDM transmission system over a single installed fiber. Opt. Express 22, 23121–23128 (2014).

    Article  ADS  Google Scholar 

  73. Intallura, P. M. et al. Quantum key distribution using a triggered quantum dot source emitting near 1.3 µm. Appl. Phys. Lett. 91, 161103 (2007).

    Article  ADS  Google Scholar 

  74. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H. & Zeilinger, A. Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000).

    Article  ADS  Google Scholar 

  75. Tittel, W., Brendel, J., Zbinden, H. & Gisin, N. Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 84, 4737 (2000).

    Article  ADS  Google Scholar 

  76. de Riedmatten, H. et al. Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 47904 (2004).

    Article  ADS  Google Scholar 

  77. Marcikic, I., Riedmatten, H., de, Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

    Article  ADS  Google Scholar 

  78. Stevenson, R. M. et al. Quantum teleportation of laser-generated photons with an entangled-light-emitting diode. Nat. Commun. 4, 2859 (2013).

    Article  ADS  Google Scholar 

  79. Nilsson, J. et al. Quantum teleportation using a light-emitting diode. Nat. Photon 7, 311–315 (2013).

    Article  ADS  Google Scholar 

  80. Huwer, J. et al. Quantum-dot-based telecommunication-wavelength quantum relay. Phys. Rev. Appl. 8, 024007 (2017).

    Article  ADS  Google Scholar 

  81. Varnava, C. et al. An entangled-LED-driven quantum relay over 1 km. npj Quantum Inf. 2, 16006 (2016).

    Article  ADS  Google Scholar 

  82. Basso Basset, F. et al. Entanglement swapping with photons generated on demand by a quantum dot. Phys. Rev. Lett. 123, 160501 (2019).

    Article  ADS  Google Scholar 

  83. Wein, S. C. et al. Photon-number entanglement generated by sequential excitation of a two-level atom. Nat. Photon. 16, 374–379 (2022).

    Article  ADS  Google Scholar 

  84. Huber, D., Reindl, M., Aberl, J., Rastelli, A. & Trotta, R. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review. J. Opt. 20, 73002 (2018).

    Article  Google Scholar 

  85. Piro, N. et al. Heralded single-photon absorption by a single atom. Nat. Phys. 7, 17–20 (2011).

    Article  Google Scholar 

  86. Seri, A. et al. Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory. Phys. Rev. X 7, 021028 (2017).

    Google Scholar 

  87. Askarani, M. F. et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide. Phys. Rev. Appl. 11, 054056 (2019).

    Article  ADS  Google Scholar 

  88. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    Article  ADS  Google Scholar 

  89. Delteil, A., Sun, Z., Fält, S. & Imamoglu, A. Realization of a cascaded quantum system: heralded absorption of a single photon qubit by a single-electron charged quantum dot. Phys. Rev. Lett. 118, 177401 (2017).

    Article  ADS  Google Scholar 

  90. Duan, L.-M. & Kimble, H. J. Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003).

    Article  ADS  Google Scholar 

  91. Simon, C. & Irvine, W. T. M. Robust long-distance entanglement and a loophole-free Bell test with ions and photons. Phys. Rev. Lett. 91, 110405 (2003).

    Article  ADS  Google Scholar 

  92. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    Article  ADS  Google Scholar 

  93. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    Article  ADS  Google Scholar 

  94. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

    Article  Google Scholar 

  95. Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).

    Article  ADS  Google Scholar 

  96. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article  ADS  Google Scholar 

  97. Rosenfeld, W. et al. Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes. Phys. Rev. Lett. 119, 10402 (2017).

    Article  ADS  Google Scholar 

  98. Vajner, D. A., Rickert, L., Gao, T., Kaymazlar, K. & Heindel, T. Quantum communication using semiconductor quantum dots. Adv. Quantum Technol. 5, 2100116 (2022).

    Article  Google Scholar 

  99. Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).

    Article  ADS  Google Scholar 

  100. Li, Z.-D. et al. Experimental quantum repeater without quantum memory. Nat. Photon. 13, 644–648 (2019).

    Article  ADS  Google Scholar 

  101. Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

    Article  ADS  Google Scholar 

  102. Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    Article  ADS  Google Scholar 

  103. Lee, J. P. et al. Multi-dimensional photonic states from a quantum dot. Quantum Sci. Technol. 3, 24008 (2018).

    Article  Google Scholar 

  104. Bourgoin, J.-P. et al. Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations. Phys. Rev. A 92, 226 (2015).

    Article  Google Scholar 

  105. Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    Article  ADS  Google Scholar 

  106. Stucki, D., Gisin, N., Guinnard, O., Ribordy, G. & Zbinden, H. Quantum key distribution over 67 km with a plug&play system. Rev. Mod. Phys. 4, 41 (2002).

    Google Scholar 

  107. Dynes, J. F. et al. Stability of high bit rate quantum key distribution on installed fiber. Opt. Express 20, 16339–16347 (2012).

    Article  ADS  Google Scholar 

  108. Cao, Y. et al. Long-distance free-space measurement-device-independent quantum key distribution. Pan. Phys. Rev. Lett. 125, 260503 (2020).

    Article  ADS  Google Scholar 

  109. Peev, M. et al. The SECOQC quantum key distribution network in Vienna. N. J. Phys. 11, 75001 (2009).

    Article  Google Scholar 

  110. Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387–10409 (2011).

    Article  ADS  Google Scholar 

  111. Dynes, J. F. et al. Cambridge quantum network. npj Quantum Inf. 5, 101 (2019).

    Article  ADS  Google Scholar 

  112. Townsend, P. D. Quantum cryptography on multiuser optical fibre networks. Nature 385, 47–49 (1997).

    Article  ADS  Google Scholar 

  113. Elliott, C. et al. Current status of the DARPA quantum network. In Proceedings Volume 5815, Quantum Information and Computation III https://doi.org/10.1117/12.606489 (SPIE, 2005).

  114. Chen, T.-Y. et al. Metropolitan all-pass and inter-city quantum communication network. Opt. Express 18, 27217–27225 (2010).

    Article  ADS  Google Scholar 

  115. Schmitt-Manderbach, T. et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 10504 (2007).

    Article  ADS  Google Scholar 

  116. Hughes, R. J., Nordholt, J. E., Derkacs, D. & Peterson, C. G. Practical free-space quantum key distribution over 10 km in daylight and at night. Quantum Sci. Technol. 4, 43 (2002).

    Google Scholar 

  117. Kurtsiefer, C. et al. A step towards global key distribution. Nature 419, 450 (2002).

    Article  ADS  Google Scholar 

  118. Liao, S.-K. et al. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018).

    Article  ADS  Google Scholar 

  119. Li, Y. et al. Space–ground QKD network based on a compact payload and medium-inclination orbit. Optica 9, 933–938 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  120. Treiber, A. et al. A fully automated entanglement-based quantum cryptography system for telecom fiber networks. N. J. Phys. 11, 45013 (2009).

    Article  Google Scholar 

  121. Marcikic, I., Lamas-Linares, A. & Kurtsiefer, C. Free-space quantum key distribution with entangled photons. Appl. Phys. Lett. 89, 101122 (2006).

    Article  ADS  Google Scholar 

  122. Ursin, R. et al. Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007).

    Article  Google Scholar 

  123. Peng, C.-Z. et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005).

    Article  ADS  Google Scholar 

  124. Resch, K. et al. Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13, 202–209 (2005).

    Article  ADS  Google Scholar 

  125. Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    Article  Google Scholar 

  126. Tittel, W., Brendel, J., Zbinden, H. & Gisin, N. Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563 (1998).

    Article  ADS  Google Scholar 

  127. Wengerowsky, S. et al. Entanglement distribution over a 96-km-long submarine optical fiber. Proc. Natl Acad. Sci. USA 116, 6684–6688 (2019).

    Article  ADS  Google Scholar 

  128. Salart, D., Baas, A., Branciard, C., Gisin, N. & Zbinden, H. Testing the speed of ‘spooky action at a distance’. Nature 454, 861–864 (2008).

    Article  ADS  Google Scholar 

  129. Sun, Q.-C. et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photon 10, 671–675 (2016).

    Article  ADS  Google Scholar 

  130. Valivarthi, R. et al. Quantum teleportation across a metropolitan fibre network. Nat. Photon 10, 676–680 (2016).

    Article  ADS  Google Scholar 

  131. Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

    Article  ADS  Google Scholar 

  132. Yin, J. et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).

    Article  ADS  Google Scholar 

  133. He, Y. et al. Quantum state transfer from a single photon to a distant quantum-dot electron spin. Phys. Rev. Lett. 119, 60501 (2017).

    Article  ADS  Google Scholar 

  134. Dréau, A., Tcheborateva, A., Mahdaoui, A. E., Bonato, C. & Hanson, R. Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths. Phys. Rev. Appl. 9, 064031 (2018).

    Article  ADS  Google Scholar 

  135. Bock, M. et al. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nat. Commun. 9, 1998 (2018).

    Article  ADS  Google Scholar 

  136. Weber, J. H. et al. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nat. Nanotechnol. 14, 23–26 (2019).

    Article  ADS  Google Scholar 

  137. Xiang, Z.-H. et al. Long-term transmission of entangled photons from a single quantum dot over deployed fiber. Sci. Rep. 9, 4111 (2019).

    Article  ADS  Google Scholar 

  138. Xiang, Z. H. et al. A tuneable telecom wavelength entangled light emitting diode deployed in an installed fibre network. Commun. Phys. 3, 121 (2020).

    Article  Google Scholar 

  139. Chen, Y. A. et al. An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 589, 214–219 (2021).

    Article  ADS  Google Scholar 

  140. He, X. et al. Carbon nanotubes as emerging quantum-light sources. Nat. Mater. 17, 663–670 (2018).

    Article  ADS  Google Scholar 

  141. Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).

    Article  ADS  Google Scholar 

  142. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurements of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987).

    Article  ADS  Google Scholar 

  143. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  144. O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264 (2003).

    Article  ADS  Google Scholar 

  145. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007).

    Article  ADS  Google Scholar 

  146. Barz, S. Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments. J. Phys. B . Mol. Opt. Phys. 48, 083001 (2015).

    Article  ADS  Google Scholar 

  147. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  148. Gimeno-Segovia, M., Shadbolt, P., Browne, D. E. & Rudolph, T. From three-photon Greenberger–Horne–Zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett. 115, 020502 (2015).

    Article  ADS  Google Scholar 

  149. Morley-Short, S., Bartolucci, S., Gimeno-Segovia, M., Shadbolt, P. & Cable, H. Physical-depth architectural requirements for generating universal photonic cluster states. Quantum Sci. Technol. 3, 015005 (2017).

    Article  ADS  Google Scholar 

  150. Rudolph, T. Why I am optimistic about the silicon photonic route to quantum computing. APL Photon. 2, 030901 (2017).

    Article  ADS  Google Scholar 

  151. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  ADS  Google Scholar 

  152. Gasparoni, S., Pan, J.-W., Walther, P., Rudolph, T. & Zeilinger, A. Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004).

    Article  ADS  Google Scholar 

  153. Kiesel, N. et al. Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005).

    Article  ADS  Google Scholar 

  154. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019).

    Article  ADS  Google Scholar 

  155. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O’Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  156. Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    Article  ADS  Google Scholar 

  157. Politi, A., Matthews, J. C. F. & O’Brien, J. L. Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  158. Matthews, J. C. F., Politi, A., Andre, S. & O’Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 346–350 (2009).

    Article  ADS  Google Scholar 

  159. Smith, B. J., Kundys, D., Thomas-Peter, N., Smith, P. G. R. & Walmsley, I. A. Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009).

    Article  ADS  Google Scholar 

  160. Laing, A. et al. High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109 (2010).

    Article  ADS  Google Scholar 

  161. Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2012).

    Article  ADS  Google Scholar 

  162. Corrielli, G. et al. Rotated waveplates in integrated waveguide optics. Nat. Commun. 5, 4249 (2014).

    Article  ADS  Google Scholar 

  163. Crespi, A. et al. Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011).

    Article  ADS  Google Scholar 

  164. Sansoni, L. et al. Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010).

    Article  ADS  Google Scholar 

  165. Wang, J. et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016).

    Article  ADS  Google Scholar 

  166. Kwiat, P. G., Mitchell, J. R., Schwindt, P. D. D. & White, A. G. Grover’s search algorithm: an optical approach. J. Mod. Opt. 47, 257–266 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  167. Duan, Z.-C. et al. Proof-of-principle demonstration of compiled Shor’s algorithm using a quantum dot single-photon source. Opt. Express 28, 18917–18930 (2020).

    Article  ADS  Google Scholar 

  168. Cai, X.-D. et al. Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 230501 (2013).

    Article  ADS  Google Scholar 

  169. Barz, S. et al. Solving systems of linear equations on a quantum computer. Sci. Rep. 4, 6115 (2014).

    Article  Google Scholar 

  170. Pan, J. et al. Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A 89, 022313 (2014).

    Article  ADS  Google Scholar 

  171. Lumino, A. et al. Experimental phase estimation enhanced by machine learning. Phys. Rev. Appl. 10, 044033 (2018).

    Article  ADS  Google Scholar 

  172. Rocchetto, A. et al. Experimental learning of quantum states. Sci. Adv. 5, eaau1946 (2019).

    Article  ADS  Google Scholar 

  173. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).

    Article  ADS  MATH  Google Scholar 

  174. Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation with cluster states. Phys. Rev. A 68, 022312 (2003).

    Article  ADS  Google Scholar 

  175. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  176. Schmid, C., Kiesel, N., Wieczorek, W. & Weinfurter, H. The entanglement of the four-photon cluster state. N. J. Phys. 9, 236 (2007).

    Article  Google Scholar 

  177. Arnolfo Ciampini, M. et al. Path–polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 5, e16064 (2016).

    Article  Google Scholar 

  178. Adcock, J. C. et al. Programmable four-photon graph states on a silicon chip. Nat. Commun. 10, 3528 (2019).

    Article  ADS  Google Scholar 

  179. Vigliar, C. et al. Error protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).

    Article  Google Scholar 

  180. Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

    Article  ADS  Google Scholar 

  181. Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal blind quantum computation. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science 517–526 (IEEE, 2009).

  182. Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–308 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  183. Greganti, C., Roehsner, M.-C., Barz, S., Morimae, T. & Walther, P. Demonstration of measurement-only blind quantum computing. N. J. Phys. 18, 013020 (2016).

    Article  Google Scholar 

  184. Barz, S., Fitzsimons, J. F., Kashefi, E. & Walther, P. Experimental verification of quantum computations. Nat. Phys. 9, 727–731 (2013).

    Article  Google Scholar 

  185. Aaronson, S. & Alex Arkhipov, A. The computational complexity of linear optics. Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing 333–342 (ACM, 2011).

  186. Brod, D. J. et al. Photonic implementation of boson sampling: a review. Adv. Photon. 1, 034001 (2019).

    ADS  Google Scholar 

  187. Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    Article  ADS  Google Scholar 

  188. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    Article  ADS  Google Scholar 

  189. Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

    Article  ADS  Google Scholar 

  190. Bentivegna, M. et al. Experimental scattershot boson sampling. Sci. Adv. 1, e1400255 (2015).

    Article  ADS  Google Scholar 

  191. He, Y. et al. Time-bin-encoded Boson sampling with a single-photon device. Phys. Rev. Lett. 118, 190501 (2017).

    Article  ADS  Google Scholar 

  192. Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

    Article  ADS  Google Scholar 

  193. Zhong, H.-S. et al. 12-Photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    Article  ADS  Google Scholar 

  194. Barkhofen, S. et al. Driven boson sampling. Phys. Rev. Lett. 118, 020502 (2017).

    Article  ADS  Google Scholar 

  195. Lund, A. P. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014).

    Article  ADS  Google Scholar 

  196. Hamilton, C. S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).

    Article  ADS  Google Scholar 

  197. Hamilton, C. S. et al. Detailed study of Gaussian boson sampling. Phys. Rev. A 100, 032326 (2019).

    Article  ADS  Google Scholar 

  198. Bradler, K., Dallaire-Demers, P.-L., Rebentrost, P., Su, D. & Weedbrook, C. Gaussian boson sampling for perfect matchings of arbitrary graphs. Phys. Rev. A 98, 032310 (2018).

    Article  ADS  Google Scholar 

  199. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  ADS  Google Scholar 

  200. Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article  ADS  Google Scholar 

  201. Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615–620 (2015).

    Article  ADS  Google Scholar 

  202. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article  ADS  Google Scholar 

  203. Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).

    Article  Google Scholar 

  204. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  ADS  Google Scholar 

  205. Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).

    Article  ADS  Google Scholar 

  206. Loredo, J.-C. et al. Boson sampling with single-photon Fock states from a bright solid-state source. Phys. Rev. Lett. 118, 130503 (2017).

    Article  ADS  Google Scholar 

  207. He, X. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photon. 11, 577–582 (2017).

    Article  Google Scholar 

  208. Wang, H. et al. Toward scalable boson sampling with photon loss. Phys. Rev. Lett. 120, 230502 (2018).

    Article  ADS  Google Scholar 

  209. Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article  ADS  Google Scholar 

  210. Silverstone, J. et al. On-chip quantum interference between two silicon waveguide sources. Nat. Photon. 8, 104–108 (2014).

    Article  ADS  Google Scholar 

  211. Faruque, I. I., Sinclair, G. F., Bonneau, D., Rarity, J. G. & Thompson, M. G. On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics. Opt. Express 26, 20379–20395 (2018).

    Article  ADS  Google Scholar 

  212. Vernon, Z. et al. Truly unentangled photon pairs without spectral filtering. Opt. Lett. 42, 3638–3641 (2017).

    Article  ADS  Google Scholar 

  213. Paesani, S. et al. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11, 2505 (2020).

    Article  ADS  Google Scholar 

  214. Mendoza, G. J. et al. Active temporal and spatial multiplexing of photons. Optica 3, 127–132 (2016).

    Article  ADS  Google Scholar 

  215. Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  216. Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).

    Google Scholar 

  217. Comandar, L. C. et al. Near perfect mode overlap between independently seeded, gain-switched lasers. Opt. Express 24, 17849–17859 (2016).

    Article  ADS  Google Scholar 

  218. Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013).

    Article  ADS  Google Scholar 

  219. Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012).

    Article  ADS  Google Scholar 

  220. Maunz, P. et al. Quantum interference of photon pairs from two remote trapped atomic ions. Nat. Phys. 3, 538–541 (2007).

    Article  Google Scholar 

  221. Higginbottom, D. B. et al. Pure single photons from a trapped atom source. Quantum Sci. Technol. 18, 93038 (2016).

    Google Scholar 

  222. Luo, Y. et al. Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands. Nano Lett. 19, 9037 (2019).

    Article  ADS  Google Scholar 

  223. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article  ADS  Google Scholar 

  224. Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.C. and T.D. thank the COST Action MP1403 ‘Nanoscale Quantum Optics’, supported by COST (European Cooperation in Science and Technology). C.C. thanks the Graduate School NANO-PHOT ANR project. R.P. was supported by the European Molecular Biology Laboratory. G.W. acknowledges support by the Austrian Science Fund FWF, project F7114 (SFB BeyondC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussing and writing the article, and C.C. coordinated the contributions and provided oversight.

Corresponding author

Correspondence to Christophe Couteau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Igor Aharonovich, Stéphane Clemmen, Peter Lodahl and Pascale Senellart for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couteau, C., Barz, S., Durt, T. et al. Applications of single photons to quantum communication and computing. Nat Rev Phys 5, 326–338 (2023). https://doi.org/10.1038/s42254-023-00583-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00583-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing