Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Atmospheric ice nucleation

Abstract

Atmospheric ice nucleation is crucial for global precipitation and affects the structure, lifetime and reflectivity of clouds, thereby impacting climate. Ice nucleates in various ways from aerosol particles, termed ice-nucleating particles, over an extensive temperature and humidity range. Quantifying the kinetic and thermodynamic regimes of nucleation is necessary to relate fundamental physics to theoretically based predictions of ice formation for implementation in cloud and climate models. We review how the molecular picture of ice nucleation has advanced in recent years and consequential impacts on the interpretation and parameterization of ice nucleation. Advances include the role of interfacial free energy and pressure on ice nucleation rates, mobility regions of water that generate the critical ice nucleus, classical and non-classical pathways of nucleation, the type of ice polymorph that forms, the impact of solutes on freezing and the role of nanopores as surface features promoting ice nucleation. We also introduce currently debated and evaluated freezing parameterizations for application in model environments. Finally, we outline what we believe are the current needs for improving predictive understanding of ice nucleation.

Key points

  • Homogeneous ice nucleation is affected by pressure, temperature and solute strength and is predictable using water activity. However, research into the dynamics of water molecules and ice germ physicochemical properties is needed to better constrain nucleation parameters.

  • Heterogeneous ice nucleation from nano-sized confinements can lead to the formation of cubic ice or stacking disordered ice. Which ice phase forms impacts nucleation rate derivations owing to differences in the free energy of formation of the critical ice nucleus.

  • The water activity criterion is a thermodynamic predictor of kinetic ice nucleation for both homogeneous and heterogeneous ice nucleation. It can be applied to describe immersion freezing and reveals a direct relationship to the water structure at the ice-nucleating particle surface or the contact angle, allowing for interpretation of the interaction between the ice-nucleating particle and the critical ice nucleus.

  • Water in nanometre-sized confinements at the surface of aerosol particles can serve as the origin of ice formation. Pore condensation freezing in nanometre-sized pores can explain ice formation by particles in the absence of a coverage of liquid water.

  • Although nucleation is a stochastically driven process, an unambiguous evaluation of the underlying physical processes from experimental data is challenging. This is because it is difficult to obtain nanoscale control of the physicochemical properties of the nucleating substrate while observing a significant number of ice nucleation events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Homogeneous and heterogeneous ice nucleation pathways superimposed on the ice–water phase diagram as a function of temperature, relative humidity and water activity.
Fig. 2: Homogeneous ice nucleation rate coefficients compared with nucleation rate expressions as a function of degree of supercooling.
Fig. 3: The kinetic pathways of heterogeneous ice nucleation.
Fig. 4: Heterogeneous nucleation of cubic ice on substrates and in nanopores.
Fig. 5: Contact angle between the critical ice nucleus and a biological ice-nucleating surface, as a function of the water activity criterion.
Fig. 6: The role of substrate surface features such as pores and cavities in heterogeneous ice nucleation.
Fig. 7: Determination of immersion freezing kinetics.

Similar content being viewed by others

References

  1. Abbott, B. W. et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 12, 533 (2019).

    Article  ADS  Google Scholar 

  2. Boucher, O. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  3. Storelvmo, T. in Annual Review of Earth and Planetary Sciences Vol. 45 (eds Jeanloz, R. & Freeman, K. H.) 199–222 (Annual Reviews, 2017).

  4. Murray, B. J. & Liu, X. in Aerosols and Climate (ed. Carslaw, K. S.) Ch. 15, 619–649 (Elsevier, 2022).

  5. Gasparini, B., Meyer, A., Neubauer, D., Munch, S. & Lohmann, U. Cirrus cloud properties as seen by the CALIPSO satellite and ECHAM-HAM global climate model. J. Clim. 31, 1983–2003 (2018).

    Article  ADS  Google Scholar 

  6. Korolev, A. Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci. 64, 3372–3375 (2007).

    Article  ADS  Google Scholar 

  7. Mülmenstädt, J., Sourdeval, O., Delanoe, J. & Quaas, J. Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-train satellite retrievals. Geophys. Res. Lett. 42, 6502–6509 (2015).

    Article  ADS  Google Scholar 

  8. Lau, K. M. & Wu, H. T. Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett. 30, 2290 (2003).

    Article  ADS  Google Scholar 

  9. Lohmann, U. & Feichter, J. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005).

    Article  ADS  Google Scholar 

  10. Held, I. M. & Soden, B. J. Water vapor feedback and global warming. Annu. Rev. Energ. Env. 25, 441–475 (2000).

    Article  Google Scholar 

  11. Cantrell, W. & Heymsfield, A. Production of ice in tropospheric clouds — a review. Bull. Am. Meteorol. Soc. 86, 795–807 (2005).

    Article  ADS  Google Scholar 

  12. Chen, T., Rossow, W. B. & Zhang, Y. C. Radiative effects of cloud-type variations. J. Clim. 13, 264–286 (2000).

    Article  ADS  Google Scholar 

  13. Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (Kluwer Academic Publishers, 1997).

  14. Hegg, D. A. & Baker, M. B. Nucleation in the atmosphere. Rep. Prog. Phys. 72, 056801 (2009).

    Article  ADS  Google Scholar 

  15. Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change 2nd edn (Wiley-Interscience, 2006).

  16. Pöschl, U. Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44, 7520–7540 (2005).

    Article  Google Scholar 

  17. Fröhlich-Nowoisky, J. et al. Bioaerosols in the earth system: climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376 (2016).

    Article  Google Scholar 

  18. Knopf, D. A., Alpert, P. A. & Wang, B. The role of organic aerosol in atmospheric ice nucleation: a review. ACS Earth Space Chem. 2, 168–202 (2018).

    Article  ADS  Google Scholar 

  19. Kanji, Z. A. et al. in Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges Vol. 58 Meteorological Monographs Ch. 1, 1.1–1.33 (American Meteorological Society, 2017).

  20. Cziczo, D. J. et al. in Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges Vol. 58, Ch. 8, 8.1–8.13 (American Meteorological Society, 2017).

  21. Yang, Y. & Liu, R. Anthropogenic aerosols effects on ice clouds: a review. Atmosphere 13, 9 (2022).

    Article  ADS  Google Scholar 

  22. Vali, G., DeMott, P. J., Möhler, O. & Whale, T. F. Technical note: a proposal for ice nucleation terminology. Atmos. Chem. Phys. 15, 10263–10270 (2015).

    Article  ADS  Google Scholar 

  23. Koop, T. Homogeneous ice nucleation in water and aqueous solutions. Z. Phys. Chem. Int. J. Res. Phys. Chem. Chem. Phys. 218, 1231–1258 (2004).

    Google Scholar 

  24. de Boer, G., Morrison, H., Shupe, M. D. & Hildner, R. Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors. Geophys. Res. Lett. 38, L01803 (2011).

    ADS  Google Scholar 

  25. Ansmann, A. et al. Dust and smoke transport from Africa to South America: lidar profiling over Cape Verde and the Amazon rainforest. Geophys. Res. Lett. 36, L11802 (2009).

    Article  ADS  Google Scholar 

  26. David, R. O. et al. Pore condensation and freezing is responsible for ice formation below water saturation for porous particles. Proc. Natl Acad. Sci. USA 116, 8184–8189 (2019).

    Article  ADS  Google Scholar 

  27. Marcolli, C. Technical note: fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice. Atmos. Chem. Phys. 20, 3209–3230 (2020).

    Article  ADS  Google Scholar 

  28. Marcolli, C. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys. 14, 2071–2104 (2014).

    Article  ADS  Google Scholar 

  29. Ladino Moreno, L. A., Stetzer, O. & Lohmann, U. Contact freezing: a review of experimental studies. Atmos. Chem. Phys. 13, 9745–9769 (2013).

    Article  ADS  Google Scholar 

  30. Hussain, S. & Haji-Akbari, A. Role of nanoscale interfacial proximity in contact freezing in water. J. Am. Chem. Soc. 143, 2272–2284 (2021).

    Article  Google Scholar 

  31. Yang, F., Cantrell, W. H., Kostinski, A. B., Shaw, R. A. & Vogelmann, A. M. Is contact nucleation caused by pressure perturbation. Atmosphere 11, 16 (2020).

    Google Scholar 

  32. Niehaus, J. et al. A technique to measure ice nuclei in the contact mode. J. Atmos. Ocean. Technol. 31, 913–922 (2014).

    Article  ADS  Google Scholar 

  33. Hoffmann, N., Duft, D., Kiselev, A. & Leisner, T. Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: quantitative size and temperature dependence for illite particles. Faraday Discuss. 165, 383–390 (2013).

    Article  ADS  Google Scholar 

  34. Shaw, R. A., Durant, A. J. & Mi, Y. Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem. B 109, 9865–9868 (2005).

    Article  Google Scholar 

  35. Gurganus, C., Kostinski, A. B. & Shaw, R. A. Fast imaging of freezing drops: no preference for nucleation at the contact line. J. Phys. Chem. Lett. 2, 1449–1454 (2011).

    Article  Google Scholar 

  36. Durant, A. J. & Shaw, R. A. Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett. 32, L20814 (2005).

    Article  ADS  Google Scholar 

  37. Korolev, A. & Leisner, T. Review of experimental studies of secondary ice production. Atmos. Chem. Phys. 20, 11767–11797 (2020).

    Article  ADS  Google Scholar 

  38. Field, P. R. et al. in Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges Vol. 58, Ch. 7, 7.1–7.20 (American Meteorological Society, 2017).

  39. Zipori, A. et al. The role of secondary ice processes in mid‐latitude continental clouds. J. Geophys. Res. 123, 12762–12777 (2018).

    Article  Google Scholar 

  40. Phillips, V. T. J., Patade, S., Gutierrez, J. & Bansemer, A. Secondary ice production by fragmentation of freezing drops: formulation and theory. J. Atmos. Sci. 75, 3031–3070 (2018).

    Article  ADS  Google Scholar 

  41. Korolev, A. et al. A new look at the environmental conditions favorable to secondary ice production. Atmos. Chem. Phys. 20, 1391–1429 (2020).

    Article  ADS  Google Scholar 

  42. Murphy, D. M. & Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. Roy. Meteor. Soc. 131, 1539–1565 (2005).

    Article  ADS  Google Scholar 

  43. DeMott, P. J. et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA 107, 11217–11222 (2010).

    Article  ADS  Google Scholar 

  44. Salzmann, C. G., Loveday, J. S., Rosu-Finsen, A. & Bull, C. L. Structure and nature of ice XIX. Nat. Commun. 12, 7 (2021).

    Article  Google Scholar 

  45. Rosu-Finsen, A. et al. Medium-density amorphous ice. Science 379, 474–478 (2023).

    Article  ADS  Google Scholar 

  46. Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).

    Article  ADS  Google Scholar 

  47. Yamane, R. et al. Experimental evidence for the existence of a second partially-ordered phase of ice VI. Nat. Commun. 12, 6 (2021).

    ADS  Google Scholar 

  48. Prakapenka, V. B., Holtgrewe, N., Lobanov, S. S. & Goncharov, A. F. Structure and properties of two superionic ice phases. Nat. Phys. 17, 1233 (2021).

    Article  Google Scholar 

  49. Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J. & Salzmann, C. G. Structure of ice crystallized from supercooled water. Proc. Natl. Acad. Sci. USA 109, 1041–1045 (2012).

    Article  ADS  Google Scholar 

  50. del Rosso, L. et al. Cubic ice Ic without stacking defects obtained from ice XVII. Nat. Mater. 19, 663–668 (2020).

    Article  ADS  Google Scholar 

  51. Malkin, T. L. et al. Stacking disorder in ice I. Phys. Chem. Chem. Phys. 17, 60–76 (2015).

    Article  Google Scholar 

  52. Koop, T., Luo, B. P., Tsias, A. & Peter, T. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611–614 (2000).

    Article  ADS  Google Scholar 

  53. Burrows, S. M. et al. Ice-nucleating particles that impact clouds and climate: observational and modeling research needs. Rev. Geophys. 60, 45 (2022).

    Article  Google Scholar 

  54. Knopf, D. A. et al. Aerosol–ice formation closure: a southern great plains field campaign. Bull. Am. Meteorol. Soc. 102, E1952–E1971 (2021).

    Article  Google Scholar 

  55. Amaya, A. J. & Wyslouzil, B. E. Ice nucleation rates near similar to 225 K. J. Chem. Phys. 148, 9 (2018).

    Article  Google Scholar 

  56. Fitzner, M., Sosso, G. C., Cox, S. J. & Michaelides, A. Ice is born in low-mobility regions of supercooled liquid water. Proc. Natl. Acad. Sci. USA 116, 2009–2014 (2019).

    Article  ADS  Google Scholar 

  57. Li, C., Liu, Z., Goonetilleke, E. C. & Huang, X. H. Temperature-dependent kinetic pathways of heterogeneous ice nucleation competing between classical and non-classical nucleation. Nat. Commun. 12, 9 (2021).

    ADS  Google Scholar 

  58. Barahona, D. On the thermodynamic and kinetic aspects of immersion ice nucleation. Atmos. Chem. Phys. 18, 17119–17141 (2018).

    Article  ADS  Google Scholar 

  59. Schwidetzky, R. et al. Specific ion-protein interactions influence bacterial ice nucleation. Chem. Eur. J. 27, 7402–7407 (2021).

    Article  Google Scholar 

  60. David, R. O. et al. The role of contact angle and pore width on pore condensation and freezing. Atmos. Chem. Phys. 20, 9419–9440 (2020).

    Article  ADS  Google Scholar 

  61. Mohammed, S., Asgar, H., Benmore, C. J. & Gadikota, G. Structure of ice confined in silica nanopores. Phys. Chem. Chem. Phys. 23, 12706–12717 (2021).

    Article  Google Scholar 

  62. Knopf, D. A., Alpert, P. A., Zipori, A., Reicher, N. & Rudich, Y. Stochastic nucleation processes and substrate abundance explain time-dependent freezing in supercooled droplets. npj. Clim. Atmos. Sci. 3, 2 (2020).

    Article  Google Scholar 

  63. Turnbull, D. & Fisher, J. C. Rate of nucleation in condensed systems. J. Chem. Phys. 17, 71–73 (1949).

    Article  ADS  Google Scholar 

  64. Laidler, K. J. & King, M. C. The development of transition-state theory. J. Phys. Chem. 87, 2657–2664 (1983).

    Article  Google Scholar 

  65. Espinosa, J. R. et al. Interfacial free energy as the key to the pressure-induced deceleration of ice nucleation. Phys. Rev. Lett. 117, 6 (2016).

    Article  Google Scholar 

  66. Barahona, D. Analysis of the effect of water activity on ice formation using a new thermodynamic framework. Atmos. Chem. Phys. 14, 7665–7680 (2014).

    Article  ADS  Google Scholar 

  67. Knopf, D. A. & Rigg, Y. J. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates. J. Phys. Chem. A 115, 762–773 (2011).

    Article  Google Scholar 

  68. Alpert, P. A., Aller, J. Y. & Knopf, D. A. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases. Phys. Chem. Chem. Phys. 13, 19882–19894 (2011).

    Article  Google Scholar 

  69. Bullock, G. & Molinero, V. Low-density liquid water is the mother of ice: on the relation between mesostructure, thermodynamics and ice crystallization in solutions. Faraday Discuss. 167, 371–388 (2013).

    Article  ADS  Google Scholar 

  70. Murata, K. & Tanaka, H. General nature of liquid–liquid transition in aqueous organic solutions. Nat. Commun. 4, 2844 (2013).

    Article  ADS  Google Scholar 

  71. Knopf, D. A. & Alpert, P. A. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets. Faraday Discuss. 165, 513–534 (2013).

    Article  ADS  Google Scholar 

  72. Baker, M. B. & Baker, M. A new look at homogeneous freezing of water. Geophys. Res. Lett. 31, L19102 (2004).

    Article  ADS  Google Scholar 

  73. Berkemeier, T., Shiraiwa, M., Pöschl, U. & Koop, T. Competition between water uptake and ice nucleation by glassy organic aerosol particles. Atmos. Chem. Phys. 14, 12513–12531 (2014).

    Article  ADS  Google Scholar 

  74. Koop, T., Bookhold, J., Shiraiwa, M. & Pöschl, U. Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 13, 19238–19255 (2011).

    Article  Google Scholar 

  75. Shiraiwa, M. et al. Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat. Commun. 8, 15002 (2017).

    Article  ADS  Google Scholar 

  76. Barahona, D. Thermodynamic derivation of the activation energy for ice nucleation. Atmos. Chem. Phys. 15, 13819–13831 (2015).

    Article  ADS  Google Scholar 

  77. Mishima, O. Relationship between melting and amorphization of ice. Nature 384, 546–549 (1996).

    Article  ADS  Google Scholar 

  78. Kanno, H. & Angell, C. A. Homogeneous nucleation and glass formation in aqueous alkali-halide solutions at high-pressures. J. Phys. Chem. 81, 2639–2643 (1977).

    Article  Google Scholar 

  79. Kanno, H., Speedy, R. J. & Angell, C. A. Supercooling of water to −92 degrees C under pressure. Science 189, 880–881 (1975).

    Article  ADS  Google Scholar 

  80. Cai, Y. Q. et al. Ordering of hydrogen bonds in high-pressure low-temperature H2O. Phys. Rev. Lett. 94, 4 (2005).

    Article  Google Scholar 

  81. Laksmono, H. et al. Anomalous behavior of the homogeneous ice nucleation rate in ‘No-Man’s Land’. J. Phys. Chem. Lett. 6, 2826–2832 (2015).

    Article  Google Scholar 

  82. Prielmeier, F. X., Lang, E. W., Speedy, R. J. & Ludemann, H. D. The pressure-dependence of self-diffusion in supercooled light and heavy water. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 92, 1111–1117 (1988).

    Article  Google Scholar 

  83. Koop, T. & Murray, B. J. A physically constrained classical description of the homogeneous nucleation of ice in water. J. Chem. Phys. 145, 211915 (2016).

    Article  ADS  Google Scholar 

  84. Espinosa, J. R., Navarro, C., Sanz, E., Valeriani, C. & Vega, C. On the time required to freeze water. J. Chem. Phys. 145, 14 (2016).

    Article  Google Scholar 

  85. Espinosa, J. R., Vega, C. & Sanz, E. Ice-water interfacial free energy for the TIP4P, TIP4P/2005, TIP4P/Ice, and mW models as obtained from the mold integration technique. J. Phys. Chem. C 120, 8068–8075 (2016).

    Article  Google Scholar 

  86. Xu, L. M. et al. Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc. Natl. Acad. Sci. USA 102, 16558–16562 (2005).

    Article  ADS  Google Scholar 

  87. Kim, K. H. et al. Maxima in the thermodynamic response and correlation functions of deeply supercooled water. Science 358, 1589–1593 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Lupi, L. et al. Role of stacking disorder in ice nucleation. Nature 551, 218–222 (2017).

    Article  ADS  Google Scholar 

  89. Zobrist, B., Koop, T., Luo, B. P., Marcolli, C. & Peter, T. Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J. Phys. Chem. C. 111, 2149–2155 (2007).

    Article  Google Scholar 

  90. Khvorostyanov, V. I. & Curry, J. A. Thermodynamic theory of freezing and melting of water and aqueous solutions. J. Phys. Chem. A 108, 11073–11085 (2004).

    Article  Google Scholar 

  91. Barahona, D. On the ice nucleation spectrum. Atmos. Chem. Phys. 12, 3733–3752 (2012).

    Article  ADS  Google Scholar 

  92. Maattanen, A. et al. Nucleation studies in the Martian atmosphere. J. Geophys. Res. Planets 110, 12 (2005).

    Article  Google Scholar 

  93. Wang, B. & Knopf, D. A. Heterogeneous ice nucleation on particles composed of humic-like substances impacted by O3. J. Geophys. Res. 116, D03205 (2011).

    ADS  Google Scholar 

  94. Metya, A. K. & Molinero, V. Is ice nucleation by organic crystals nonclassical? An assessment of the monolayer hypothesis of ice nucleation. J. Am. Chem. Soc. 143, 4607–4624 (2021).

    Article  Google Scholar 

  95. Davies, M. B., Fitzner, M. & Michaelides, A. Routes to cubic ice through heterogeneous nucleation. Proc. Natl Acad. Sci. USA 118, 8 (2021).

    Article  Google Scholar 

  96. China, S. et al. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean. J. Geophys. Res. 122, 3065–3079 (2017).

    Article  Google Scholar 

  97. Alpert, P. A. et al. Ice nucleation imaged with X-ray spectro-microscopy. Environ. Sci. Atmos. 2, 335–351 (2022).

    Article  Google Scholar 

  98. Knopf, D. A. et al. Micro-spectroscopic and freezing characterization of ice-nucleating particles collected in the marine boundary layer in the eastern North Atlantic. Atmos. Chem. Phys. 22, 5377–5398 (2022).

    Article  ADS  Google Scholar 

  99. Alpert, P. A. et al. Ice-nucleating agents in sea spray aerosol identified and quantified with a holistic multimodal freezing model. Sci. Adv. 8, eabq6842 (2022).

    Article  ADS  Google Scholar 

  100. Gavish, M., Popovitzbiro, R., Lahav, M. & Leiserowitz, L. Ice nucleation by alcohols arranged in monolayers at the surface of water drops. Science 250, 973–975 (1990).

    Article  ADS  Google Scholar 

  101. Cantrell, W. & Robinson, C. Heterogeneous freezing of ammonium sulfate and sodium chloride solutions by long chain alcohols. Geophys. Res. Lett. 33, L07802 (2006).

    Article  ADS  Google Scholar 

  102. Knopf, D. A. & Forrester, S. M. Freezing of water and aqueous NaCl droplets coated by organic monolayers as a function of surfactant properties and water activity. J. Phys. Chem. A 115, 5579–5591 (2011).

    Article  Google Scholar 

  103. Yang, H. Y. et al. Ordered hydrogen bonding structure of water molecules adsorbed on silver iodide particles under subsaturated conditions. J. Phys. Chem. C 125, 11628–11635 (2021).

    Article  Google Scholar 

  104. Hofmeister, F. Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 24, 247–260 (1888).

    Article  Google Scholar 

  105. Cacace, M. G., Landau, E. M. & Ramsden, J. J. The Hofmeister series: salt and solvent effects on interfacial phenomena. Q. Rev. Biophys. 30, 241–277 (1997).

    Article  Google Scholar 

  106. Kumar, A., Marcolli, C. & Peter, T. Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions — part 2: quartz and amorphous silica. Atmos. Chem. Phys. 19, 6035–6058 (2019).

    Article  ADS  Google Scholar 

  107. Kumar, A., Marcolli, C. & Peter, T. Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions — part 3: aluminosilicates. Atmos. Chem. Phys. 19, 6059–6084 (2019).

    Article  ADS  Google Scholar 

  108. Kumar, A., Marcolli, C., Luo, B. P. & Peter, T. Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions — part 1: the K-feldspar microcline. Atmos. Chem. Phys. 18, 7057–7079 (2018).

    Article  ADS  Google Scholar 

  109. Whale, T. F., Holden, M. A., Wilson, T. W., O’Sullivan, D. & Murray, B. J. The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes. Chem. Sci. 9, 6313 (2018).

    Article  Google Scholar 

  110. Kumar, A., Bertram, A. K. & Patey, G. N. Molecular simulations of feldspar surfaces interacting with aqueous inorganic solutions: interfacial water/ion structure and implications for ice nucleation. ACS Earth Space Chem. 5, 2169–2183 (2021).

    Article  ADS  Google Scholar 

  111. Whale, T. F. Disordering effect of the ammonium cation accounts for anomalous enhancement of heterogeneous ice nucleation. J. Chem. Phys. 156, 14 (2022).

    Article  Google Scholar 

  112. Wang, B. et al. Direct observation of ice nucleation events on individual atmospheric particles. Phys. Chem. Chem. Phys. 18, 29721–29731 (2016).

    Article  Google Scholar 

  113. Zimmermann, F., Ebert, M., Worringen, A., Schutz, L. & Weinbruch, S. Environmental scanning electron microscopy (ESEM) as a new technique to determine the ice nucleation capability of individual atmospheric aerosol particles. Atmos. Environ. 41, 8219–8227 (2007).

    Article  ADS  Google Scholar 

  114. Kiselev, A. et al. Active sites in heterogeneous ice nucleation — the example of K-rich feldspars. Science 355, 367–371 (2017).

    Article  ADS  Google Scholar 

  115. Friddle, R. W. & Thürmer, K. Mapping ice formation to mineral-surface topography using a micro mixing chamber with video and atomic-force microscopy. Atmos. Meas. Tech. 13, 2209–2218 (2020).

    Article  Google Scholar 

  116. Holden, M. A. et al. High-speed imaging of ice nucleation in water proves the existence of active sites. Sci. Adv. 5, eaav4316 (2019).

    Article  ADS  Google Scholar 

  117. Mahrt, F. et al. Aging induced changes in ice nucleation activity of combustion aerosol as determined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Environ. Sci. Process. Impacts 22, 895–907 (2020).

    Article  Google Scholar 

  118. Holden, M. A., Campbell, J. M., Meldrum, F. C., Murray, B. J. & Christenson, H. K. Active sites for ice nucleation differ depending on nucleation mode. Proc. Natl. Acad. Sci. USA 118, 9 (2021).

    Article  Google Scholar 

  119. Friddle, R. W. & Thürmer, K. How nanoscale surface steps promote ice growth on feldspar: microscopy observation of morphology-enhanced condensation and freezing. Nanoscale 11, 21147–21154 (2019).

    Article  Google Scholar 

  120. Knopf, D. A. et al. Microspectroscopic imaging and characterization of individually identified ice nucleating particles from a case field study. J. Geophys. Res. 119, 10365–10381 (2014).

    Article  Google Scholar 

  121. Fukuta, N. Activation of atmospheric particles as ice nuclei in cold and dry air. J. Atmos. Sci. 23, 741–750 (1966).

    Article  ADS  Google Scholar 

  122. Marcolli, C. Pre-activation of aerosol particles by ice preserved in pores. Atmos. Chem. Phys. 17, 1596–1623 (2017).

    Article  ADS  Google Scholar 

  123. Gao, K. F., Zhou, C. W., Meier, E. J. B. & Kanji, Z. A. Laboratory studies of ice nucleation onto bare and internally mixed soot-sulfuric acid particles. Atmos. Chem. Phys. 22, 5331–5364 (2022).

    Article  ADS  Google Scholar 

  124. Gao, K. F., Friebel, F., Zhou, C. W. & Kanji, Z. A. Enhanced soot particle ice nucleation ability induced by aggregate compaction and densification. Atmos. Chem. Phys. 22, 4985–5016 (2022).

    Article  ADS  Google Scholar 

  125. Marcolli, C., Mahrt, F. & Karcher, B. Soot PCF: pore condensation and freezing framework for soot aggregates. Atmos. Chem. Phys. 21, 7791–7843 (2021).

    Article  ADS  Google Scholar 

  126. Campbell, J. M. & Christenson, H. K. Nucleation- and emergence-limited growth of ice from pores. Phys. Rev. Lett. 120, 5 (2018).

    Article  Google Scholar 

  127. Campbell, J. M., Meldrum, F. C. & Christenson, H. K. Observing the formation of ice and organic crystals in active sites. Proc. Natl. Acad. Sci. USA 114, 810–815 (2017).

    Article  ADS  Google Scholar 

  128. Roudsari, G., Pakarinen, O. H., Reischl, B. & Vehkamaki, H. Atomistic and coarse-grained simulations reveal increased ice nucleation activity on silver iodide surfaces in slit and wedge geometries. Atmos. Chem. Phys. 22, 10099–10114 (2022).

    Article  ADS  Google Scholar 

  129. Vali, G. Quantitative evaluation of experimental results on heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 28, 402–409 (1971).

    Article  ADS  Google Scholar 

  130. Connolly, P. J. et al. Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys. 9, 2805–2824 (2009).

    Article  ADS  Google Scholar 

  131. Alpert, P. A. & Knopf, D. A. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model. Atmos. Chem. Phys. 16, 2083–2107 (2016).

    Article  ADS  Google Scholar 

  132. Coluzza, I. et al. Perspectives on the future of ice nucleation research: research needs and unanswered questions identified from two International Workshops. Atmosphere https://doi.org/10.3390/atmos8080138 (2017).

    Article  Google Scholar 

  133. Bauer, S. E. et al. MATRIX (multiconfiguration aerosol tracker of mixing state): an aerosol microphysical module for global atmospheric models. Atmos. Chem. Phys. 8, 6003–6035 (2008).

    Article  ADS  Google Scholar 

  134. Liu, X. et al. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model. Dev. 9, 505–522 (2016).

    Article  ADS  Google Scholar 

  135. Fan, J. W., Wang, Y., Rosenfeld, D. & Liu, X. H. Review of aerosol–cloud interactions: mechanisms, significance, and challenges. J. Atmos. Sci. 73, 4221–4252 (2016).

    Article  ADS  Google Scholar 

  136. Ke, Z. M., Liu, X. H., Wu, M. X., Shan, Y. P. & Shi, Y. Improved dust representation and impacts on dust transport and radiative effect in CAM5. J. Adv. Model. Earth Syst. 14, 24 (2022).

    Article  Google Scholar 

  137. Zhao, X., Liu, X. H., Burrows, S. M. & Shi, Y. Effects of marine organic aerosols as sources of immersion-mode ice-nucleating particles on high-latitude mixed-phase clouds. Atmos. Chem. Phys. 21, 2305–2327 (2021).

    Article  ADS  Google Scholar 

  138. Fridlind, A. M. et al. Ice properties of single-layer stratocumulus during the mixed-phase arctic cloud experiment: 2. Model results. J. Geophys. Res. 112, D05208 (2007).

    Article  Google Scholar 

  139. Morrison, H. et al. Intercomparison of model simulations of mixed-phase clouds observed during the ARM mixed-phase arctic cloud experiment. II: multilayer cloud. Q. J. R. Meteorol. Soc. 135, 1003–1019 (2009).

    Article  ADS  Google Scholar 

  140. Yang, F., Ovchinnikov, M. & Shaw, R. A. Minimalist model of ice microphysics in mixed-phase stratiform clouds. Geophys. Res. Lett. 40, 3756–3760 (2013).

    Article  ADS  Google Scholar 

  141. Fridlind, A. M. & Ackerman, A. S. in Mixed-Phase Clouds: Observation and Modeling (ed. Andronache, C.) Ch. 7, 153–182 (Elsevier, 2018).

  142. Fridlind, A. M. et al. A FIRE-ACE/SHEBA case study of mixed-phase arctic boundary layer clouds: entrainment rate limitations on rapid primary ice nucleation processes. J. Atmos. Sci. 69, 365–389 (2012).

    Article  ADS  Google Scholar 

  143. Savre, J. & Ekman, A. M. L. Large-eddy simulation of three mixed-phase cloud events during ISDAC: conditions for persistent heterogeneous ice formation. J. Geophys. Res. 120, 7699–7725 (2015).

    Article  Google Scholar 

  144. Solch, I. & Karcher, B. A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Q. J. R. Meteorol. Soc. 136, 2074–2093 (2010).

    Article  ADS  Google Scholar 

  145. Harrington, J. Y. & Olsson, P. Q. On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics. J. Geophys. Res. 106, 27473–27484 (2001).

    Article  ADS  Google Scholar 

  146. Solomon, A. et al. The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds. Atmos. Chem. Phys. 18, 17047–17059 (2018).

    Article  ADS  Google Scholar 

  147. Ovchinnikov, M. et al. Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: importance of ice size distribution assumptions. J. Adv. Model. Earth Syst. 6, 223–248 (2014).

    Article  ADS  Google Scholar 

  148. Westbrook, C. D. & Illingworth, A. J. The formation of ice in a long-lived supercooled layer cloud. Q. J. Roy. Meteor. Soc. 139, 2209–2221 (2013).

    Article  ADS  Google Scholar 

  149. Murray, B. J. et al. Kinetics of the homogeneous freezing of water. Phys. Chem. Chem. Phys. 12, 10380–10387 (2010).

    Article  Google Scholar 

  150. Riechers, B., Wittbracht, F., Hutten, A. & Koop, T. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Phys. Chem. Chem. Phys. 15, 5873–5887 (2013).

    Article  Google Scholar 

  151. Stöckel, P., Weidinger, I. M., Baumgärtel, H. & Leisner, T. Rates of homogeneous ice nucleation in levitated H2O and D2O droplets. J. Phys. Chem. A 109, 2540–2546 (2005).

    Article  Google Scholar 

  152. Stan, C. A. et al. A microfluidic apparatus for the study of ice nucleation in supercooled water drops. Lab Chip 9, 2293–2305 (2009).

    Article  Google Scholar 

  153. Hagen, D. E., Anderson, R. J. & Kassner, J. L. Homogeneous condensation-freezing nucleation rate measurements for small water droplets in an expansion cloud chamber. J. Atmos. Sci. 38, 1236–1243 (1981).

    Article  ADS  Google Scholar 

  154. Bhabhe, A., Pathak, H. & Wyslouzil, B. E. Freezing of heavy water (D2O) nanodroplets. J. Phys. Chem. A 117, 5472–5482 (2013).

    Article  Google Scholar 

  155. Bartell, L. S. & Chushak, Y. G. in Water in Confining Geometries Springer Series in Cluster Physics (eds Buch, V. & Devlin, J. P.) Ch. 16 (Springer, 2003).

  156. Koop, T., Luo, B. P., Biermann, U. M., Crutzen, P. J. & Peter, T. Freezing of HNO3/H2SO4/H2O solutions at stratospheric temperatures: nucleation statistics and experiments. J. Phys. Chem. A 101, 1117–1133 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Atmospheric System Research Program and Atmospheric Radiation Measurement Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division, grant DE-SC0021034. The authors are grateful to J. Aller for careful proofreading of the initial manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of this manuscript.

Corresponding author

Correspondence to Daniel A. Knopf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Xiaohong Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knopf, D.A., Alpert, P.A. Atmospheric ice nucleation. Nat Rev Phys 5, 203–217 (2023). https://doi.org/10.1038/s42254-023-00570-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00570-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing