Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Learning quantum systems

Abstract

The future development of quantum technologies relies on creating and manipulating quantum systems of increasing complexity, with key applications in computation, simulation and sensing. This poses severe challenges in the efficient control, calibration and validation of quantum states and their dynamics. Although the full simulation of large-scale quantum systems may only be possible on a quantum computer, classical characterization and optimization methods still play an important role. Here, we review different approaches that use classical post-processing techniques, possibly combined with adaptive optimization, to learn quantum systems, their correlation properties, dynamics and interaction with the environment. We discuss theoretical proposals and successful implementations across different multiple-qubit architectures such as spin qubits, trapped ions, photonic and atomic systems, and superconducting circuits. This Review provides a brief background of key concepts recurring across many of these approaches with special emphasis on the Bayesian formalism and neural networks.

Key points

  • The complexity of quantum systems increases exponentially with their size, but in many practical contexts there are assumptions (such as low rank, sparsity, or a specific type of expected dynamics) that enable classical algorithms to be efficient in the characterization of quantum states, dynamics and measurements.

  • Bayesian inference provides a robust approach to learning models for quantum systems, while preserving physical intuition about the processes involved.

  • Neural networks enable the characterization of complex systems, at the expense of physical intuition.

  • Adaptive approaches, which select the next measurement based on knowledge acquired earlier in the estimation, can speed up the characterization process.

  • Classical optimization and learning algorithms can improve the performance of quantum sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Learning quantum states, dynamics and measurements.
Fig. 2: Different examples of neural networks for learning quantum systems.
Fig. 3: Bayesian techniques for quantum model learning.
Fig. 4: Optimizing quantum experiments.

Similar content being viewed by others

References

  1. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982).

    Article  MathSciNet  Google Scholar 

  2. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  3. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019).

    Article  ADS  Google Scholar 

  4. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460 (2020).

    Article  ADS  Google Scholar 

  5. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227 (2021).

    Article  ADS  Google Scholar 

  6. Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 56, 172 (2015).

    Article  ADS  MATH  Google Scholar 

  7. Biamonte, J. et al. Quantum machine learning. Nature 549, 195 (2017).

    Article  ADS  Google Scholar 

  8. Dunjko, V. & Briegel, H. J. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81, 074001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  9. Elben, A. et al. The randomized measurement toolbox. Nat. Rev. Phys. 5, 9 (2023).

    Article  Google Scholar 

  10. García-Pérez, G. et al. Learning to measure: adaptive informationally complete generalized measurements for quantum algorithms. PRX Quantum 2, 040342 (2021).

    Article  ADS  Google Scholar 

  11. Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).

    Article  ADS  Google Scholar 

  12. Carrasquilla, J. Machine learning for quantum matter. Adv. Phys. X 5, 1797528 (2020).

    Google Scholar 

  13. Carrasquilla, J. & Torlai, G. How to use neural networks to investigate quantum many-body physics. PRX Quantum 2, 040201 (2021).

    Article  ADS  Google Scholar 

  14. Marquardt, F. Machine learning and quantum devices. SciPost Phys. Lect. Notes https://doi.org/10.21468/SciPostPhysLectNotes.29 (2021).

    Article  Google Scholar 

  15. Dawid, A. et al. Modern applications of machine learning in quantum sciences. Preprint at https://arxiv.org/abs/2204.04198 (2022).

  16. Krenn, M., Landgraf, J., Foesel, T. & Marquardt, F. Artificial intelligence and machine learning for quantum technologies. Phys. Rev. A 107, 010101 (2023).

    Article  ADS  Google Scholar 

  17. Bharti, K., Haug, T., Vedral, V. & Kwek, L.-C. Machine learning meets quantum foundations: a brief survey. AVS Quantum Sci. 2, 034101 (2020).

    Article  ADS  Google Scholar 

  18. Krenn, M., Erhard, M. & Zeilinger, A. Computer-inspired quantum experiments. Nat. Rev. Phys. 2, 649 (2020).

    Article  Google Scholar 

  19. Vogel, K. & Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847 (1989).

    Article  ADS  Google Scholar 

  20. Raymer, M. G., Beck, M. & McAlister, D. Complex wave-field reconstruction using phase-space tomography. Phys. Rev. Lett. 72, 1137 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Leonhardt, U. Quantum-state tomography and discrete Wigner function. Phys. Rev. Lett. 74, 4101 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Leibfried, D. et al. Experimental determination of the motional quantum state of a trapped atom. Phys. Rev. Lett. 77, 4281 (1996).

    Article  ADS  Google Scholar 

  23. Hradil, Z. Quantum-state estimation. Phys. Rev. A 55, R1561 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  24. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  ADS  Google Scholar 

  25. Banaszek, K., Cramer, M. & Gross, D. Focus on quantum tomography. New J. Phys. 15, 125020 (2013).

    Article  ADS  Google Scholar 

  26. Paris, M. G. & Rehacek, J. Quantum State Estimation Vol. 649 (Springer, 2004).

  27. Lvovsky, A. I. & Raymer, M. G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299 (2009).

    Article  ADS  Google Scholar 

  28. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 10th anniversary edition (Cambridge Univ. Press, 2011).

  29. D’Ariano, G. M. Universal quantum observables. Phys. Lett. A 300, 1 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Banchi, L., Kolthammer, W. S. & Kim, M. Multiphoton tomography with linear optics and photon counting. Phys. Rev. Lett. 121, 250402 (2018).

    Article  ADS  Google Scholar 

  31. Titchener, J. G. et al. Scalable on-chip quantum state tomography. npj Quantum Inf. 4, 19 (2018).

    Article  ADS  Google Scholar 

  32. Allahverdyan, A. E., Balian, R. & Nieuwenhuizen, T. M. Determining a quantum state by means of a single apparatus. Phys. Rev. Lett. 92, 120402 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Banaszek, K., D’Ariano, G. M., Paris, M. G. A. & Sacchi, M. F. Maximum-likelihood estimation of the density matrix. Phys. Rev. A 61, 010304 (1999).

    Article  ADS  Google Scholar 

  34. Shang, J., Zhang, Z. & Ng, H. K. Superfast maximum-likelihood reconstruction for quantum tomography. Phys. Rev. A 95, 062336 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  35. Smolin, J. A., Gambetta, J. M. & Smith, G. Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise. Phys. Rev. Lett. 108, 070502 (2012).

    Article  ADS  Google Scholar 

  36. Řeháček, J., Hradil, Z., Knill, E. & Lvovsky, A. I. Diluted maximum-likelihood algorithm for quantum tomography. Phys. Rev. A 75, 042108 (2007).

    Article  ADS  Google Scholar 

  37. Bolduc, E., Knee, G. C., Gauger, E. M. & Leach, J. Projected gradient descent algorithms for quantum state tomography. npj Quantum Inf. 3, 44 (2017).

    Article  ADS  Google Scholar 

  38. Blume-Kohout, R. Optimal, reliable estimation of quantum states. New J. Phys. 12, 043034 (2010).

    Article  ADS  MATH  Google Scholar 

  39. Christandl, M. & Renner, R. Reliable quantum state tomography. Phys. Rev. Lett. 109, 120403 (2012).

    Article  ADS  Google Scholar 

  40. Granade, C., Combes, J. & Cory, D. G. Practical Bayesian tomography. New J. Phys. 18, 033024 (2016).

    Article  ADS  MATH  Google Scholar 

  41. Granade, C., Ferrie, C. & Flammia, S. T. Practical adaptive quantum tomography. New J. Phys. 19, 113017 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  42. Granade, C. et al. QInfer: statistical inference software for quantum applications. Quantum 1, 5 (2017).

    Article  Google Scholar 

  43. Faist, P. & Renner, R. Practical and reliable error bars in quantum tomography. Phys. Rev. Lett. 117, 010404 (2016).

    Article  ADS  Google Scholar 

  44. Mahler, D. H. et al. Adaptive quantum state tomography improves accuracy quadratically. Phys. Rev. Lett. 111, 183601 (2013).

    Article  ADS  Google Scholar 

  45. Qi, B. et al. Adaptive quantum state tomography via linear regression estimation: theory and two-qubit experiment. npj Quantum Inf. 3, 19 (2017).

    Article  ADS  Google Scholar 

  46. Ferrie, C. Self-guided quantum tomography. Phys. Rev. Lett. 113, 190404 (2014).

    Article  ADS  Google Scholar 

  47. Chapman, R. J., Ferrie, C. & Peruzzo, A. Experimental demonstration of self-guided quantum tomography. Phys. Rev. Lett. 117, 040402 (2016).

    Article  ADS  Google Scholar 

  48. Rambach, M. et al. Robust and efficient high-dimensional quantum state tomography. Phys. Rev. Lett. 126, 100402 (2021).

    Article  ADS  Google Scholar 

  49. Gross, D., Liu, Y.-K., Flammia, S. T., Becker, S. & Eisert, J. Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010).

    Article  ADS  Google Scholar 

  50. Flammia, S. T., Gross, D., Liu, Y.-K. & Eisert, J. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14, 095022 (2012).

    Article  ADS  MATH  Google Scholar 

  51. Riofrío, C. A. et al. Experimental quantum compressed sensing for a seven-qubit system. Nat. Comm. 8, 15305 (2017).

    Article  ADS  Google Scholar 

  52. Kyrillidis, A. et al. Provable compressed sensing quantum state tomography via non-convex methods. npj Quantum Inf. 4, 36 (2018).

    Article  ADS  Google Scholar 

  53. Haah, J., Harrow, A. W., Ji, Z., Wu, X. & Yu, N. Sample-optimal tomography of quantum states. IEEE Trans. Inf. Theory 63, 5628 (2017).

    MathSciNet  MATH  Google Scholar 

  54. O’Donnell, R. & Wright, J. Efficient quantum tomography. In Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing (ACM, 2016)

  55. Kueng, R., Rauhut, H. & Terstiege, U. Low rank matrix recovery from rank one measurements. Appl. Comput. Harmon. Anal. 42, 88 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  56. Chen, S., Huang, B., Li, J., Liu, A. & Sellke, M. Tight bounds for state tomography with incoherent measurements. Preprint at https://arxiv.org/abs/2206.05265 (2022).

  57. Häffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643 (2005).

    Article  ADS  Google Scholar 

  58. Tóth, G. et al. Permutationally invariant quantum tomography. Phys. Rev. Lett. 105, 250403 (2010).

    Article  ADS  Google Scholar 

  59. Moroder, T. et al. Permutationally invariant state reconstruction. New J. Phys. 14, 105001 (2012).

    Article  ADS  MATH  Google Scholar 

  60. Klose, G., Smith, G. & Jessen, P. S. Measuring the quantum state of a large angular momentum. Phys. Rev. Lett. 86, 4721 (2001).

    Article  ADS  Google Scholar 

  61. Hofmann, H. F. & Takeuchi, S. Quantum-state tomography for spin-l systems. Phys. Rev. A 69, 042108 (2004).

    Article  ADS  Google Scholar 

  62. Perez-Garcia, D., Verstraete, F., Wolf, M. M. & Cirac, J. I. Matrix product state representations. Quantum Inf. Comput. 7, 401 (2007).

    MathSciNet  MATH  Google Scholar 

  63. Cramer, M. et al. Efficient quantum state tomography. Nat. Commun. 1, 149 (2010).

    Article  ADS  Google Scholar 

  64. Baumgratz, T., Gross, D., Cramer, M. & Plenio, M. B. Scalable reconstruction of density matrices. Phys. Rev. Lett. 111, 020401 (2013).

    Article  ADS  Google Scholar 

  65. Lanyon, B. P. et al. Efficient tomography of a quantum many-body system. Nat. Phys. 13, 1158 (2017).

    Article  Google Scholar 

  66. Wang, J. et al. Scalable quantum tomography with fidelity estimation. Phys. Rev. A 101, 032321 (2020).

    Article  ADS  Google Scholar 

  67. Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Torlai, G. et al. Neural-network quantum state tomography. Nat. Phys. 14, 447 (2018).

    Article  Google Scholar 

  69. Carrasquilla, J., Torlai, G., Melko, R. G. & Aolita, L. Reconstructing quantum states with generative models. Nat. Mach. Intell. 1, 155 (2019).

    Article  Google Scholar 

  70. Morawetz, S., De Vlugt, I. J. S., Carrasquilla, J. & Melko, R. G. U(1)-symmetric recurrent neural networks for quantum state reconstruction. Phys. Rev. A 104, 012401 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  71. Palmieri, A. M. et al. Experimental neural network enhanced quantum tomography. npj Quantum Inf. 6, 20 (2020).

    Article  ADS  Google Scholar 

  72. Torlai, G. et al. Integrating neural networks with a quantum simulator for state reconstruction. Phys. Rev. Lett. 123, 230504 (2019).

    Article  ADS  Google Scholar 

  73. Melkani, A., Gneiting, C. & Nori, F. Eigenstate extraction with neural-network tomography. Phys. Rev. A 102, 022412 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  74. Lloyd, S. & Weedbrook, C. Quantum generative adversarial learning. Phys. Rev. Lett. 121, 040502 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  75. Ahmed, S., Muñoz, C. S., Nori, F. & Kockum, A. F. Quantum state tomography with conditional generative adversarial networks. Phys. Rev. Lett. 127, 140502 (2021).

    Article  ADS  Google Scholar 

  76. Braccia, P., Banchi, L. & Caruso, F. Quantum noise sensing by generating fake noise. Phys. Rev. Appl. 17, 024002 (2022).

    Article  ADS  Google Scholar 

  77. Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  78. Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  79. Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260 (2019).

    Article  ADS  Google Scholar 

  80. Elben, A. et al. Mixed-state entanglement from local randomized measurements. Phys. Rev. Lett. 125, 200501 (2020).

    Article  ADS  Google Scholar 

  81. Pezzè, L. & Smerzi, A. Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  82. Strobel, H. et al. Fisher information and entanglement of non-Gaussian spin states. Science 345, 424 (2014).

    Article  ADS  Google Scholar 

  83. Lu, C.-Y. et al. Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91 (2007).

    Article  Google Scholar 

  84. Walborn, S., Ribeiro, P. S., Davidovich, L., Mintert, F. & Buchleitner, A. Experimental determination of entanglement with a single measurement. Nature 440, 1022 (2006).

    Article  ADS  Google Scholar 

  85. Gray, J., Banchi, L., Bayat, A. & Bose, S. Machine-learning-assisted many-body entanglement measurement. Phys. Rev. Lett. 121, 150503 (2018).

    Article  ADS  Google Scholar 

  86. Gebhart, V. et al. Identifying nonclassicality from experimental data using artificial neural networks. Phys. Rev. Res. 3, 023229 (2021).

    Article  Google Scholar 

  87. Aaronson, S. The learnability of quantum states. Proc. R. Soc. A 463, 3089 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Rocchetto, A. et al. Experimental learning of quantum states. Sci. Adv. 5, 1946 (2019).

    Article  ADS  Google Scholar 

  89. Aaronson, S. Shadow tomography of quantum states. SIAM J. Comput. 49, 368 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  90. Bădescu, C. & O’Donnell, R. Improved quantum data analysis. In Proc. 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC 2021) 1398–1411 (Association for Computing Machinery, 2021); https://doi.org/10.1145/3406325.3451109

  91. Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16, 1050 (2020).

    Article  Google Scholar 

  92. Paini, M. & Kalev, A. An approximate description of quantum states. Preprint at https://arxiv.org/abs/1910.10543 (2019).

  93. Huang, H.-Y., Kueng, R. & Preskill, J. Efficient estimation of pauli observables by derandomization. Phys. Rev. Lett. 127, 030503 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  94. Lukens, J. M., Law, K. J. & Bennink, R. S. A Bayesian analysis of classical shadows. npj Quantum Inf. 7, 113 (2021).

    Article  ADS  Google Scholar 

  95. Rath, A., Branciard, C., Minguzzi, A. & Vermersch, B. Quantum Fisher information from randomized measurements. Phys. Rev. Lett. 127, 260501 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  96. Huang, H.-Y., Kueng, R., Torlai, G., Albert, V. V. & Preskill, J. Provably efficient machine learning for quantum many-body problems. Science 377, 1397 (2022).

    Article  MathSciNet  Google Scholar 

  97. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542 (2010).

    Article  ADS  Google Scholar 

  98. Myerson, A. et al. High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett. 100, 200502 (2008).

    Article  ADS  Google Scholar 

  99. Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297 (2010).

    Article  ADS  Google Scholar 

  100. Elzerman, J. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431 (2004).

    Article  ADS  Google Scholar 

  101. Magesan, E., Gambetta, J. M., Córcoles, A. D. & Chow, J. M. Machine learning for discriminating quantum measurement trajectories and improving readout. Phys. Rev. Lett. 114, 200501 (2015).

    Article  ADS  Google Scholar 

  102. Liu, G., Chen, M., Liu, Y.-X., Layden, D. & Cappellaro, P. Repetitive readout enhanced by machine learning. Mach. Learn. Sci. Technol. 1, 015003 (2020).

    Article  Google Scholar 

  103. Gambetta, J., Braff, W., Wallraff, A., Girvin, S. & Schoelkopf, R. Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement. Phys. Rev. A 76, 012325 (2007).

    Article  ADS  Google Scholar 

  104. D’Anjou, B. & Coish, W. A. Optimal post-processing for a generic single-shot qubit readout. Phys. Rev. A 89, 012313 (2014).

    Article  ADS  Google Scholar 

  105. Struck, T. et al. Robust and fast post-processing of single-shot spin qubit detection events with a neural network. Sci. Rep. 11, 16203 (2021).

    Article  ADS  Google Scholar 

  106. Lienhard, B. et al. Deep-neural-network discrimination of multiplexed superconducting-qubit states. Phys. Rev. Appl. 17, 014024 (2022).

    Article  ADS  Google Scholar 

  107. Seif, A. et al. Machine learning assisted readout of trapped-ion qubits. J. Phys. B 51, 174006 (2018).

    Article  ADS  Google Scholar 

  108. Flurin, E., Martin, L. S., Hacohen-Gourgy, S. & Siddiqi, I. Using a recurrent neural network to reconstruct quantum dynamics of a superconducting qubit from physical observations. Phys. Rev. X 10, 011006 (2020).

    Google Scholar 

  109. Dinani, H. T., Berry, D. W., Gonzalez, R., Maze, J. R. & Bonato, C. Bayesian estimation for quantum sensing in the absence of single-shot detection. Phys. Rev. B 99, 125413 (2019).

    Article  ADS  Google Scholar 

  110. Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997).

    Article  ADS  Google Scholar 

  111. Mohseni, M. & Lidar, D. A. Direct characterization of quantum dynamics. Phys. Rev. Lett. 97, 170501 (2006).

    Article  ADS  Google Scholar 

  112. Poyatos, J. F., Cirac, J. I. & Zoller, P. Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997).

    Article  ADS  Google Scholar 

  113. Altepeter, J. B. et al. Ancilla assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003).

    Article  ADS  Google Scholar 

  114. Polino, E., Valeri, M., Spagnolo, N. & Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2, 024703 (2020).

    Article  ADS  Google Scholar 

  115. Knee, G. C., Bolduc, E., Leach, J. & Gauger, E. M. Quantum process tomography via completely positive and trace-preserving projection. Phys. Rev. A 98, 062336 (2018).

    Article  ADS  Google Scholar 

  116. Surawy-Stepney, T., Kahn, J., Kueng, R. & Guta, M. Projected least-squares quantum process tomography. Quantum 6, 844 (2022).

    Article  Google Scholar 

  117. Mohseni, M., Rezakhani, A. T. & Lidar, D. A. Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A 77, 032322 (2008).

    Article  ADS  Google Scholar 

  118. Kosut, R., Walmsley, I. A. & Rabitz, H. Optimal experiment design for quantum state and process tomography and Hamiltonian parameter estimation. Preprint at https://arxiv.org/abs/quantph/0411093 (2004).

  119. Merkel, S. T. et al. Self-consistent quantum process tomography. Phys. Rev. A 87, 062119 (2013).

    Article  ADS  Google Scholar 

  120. Shabani, A. et al. Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett. 106, 100401 (2011).

    Article  ADS  Google Scholar 

  121. Kosut, R. L. Quantum process tomography via L1-norm minimization. Preprint at https://arxiv.org/abs/0812.4323 (2009).

  122. Rodionov, A. V. et al. Compressed sensing quantum process tomography for superconducting quantum gates. Phys. Rev. B 90, 144504 (2014).

    Article  ADS  Google Scholar 

  123. Kliesch, M., Kueng, R., Eisert, J. & Gross, D. Guaranteed recovery of quantum processes from few measurements. Quantum 3, 171 (2019).

    Article  Google Scholar 

  124. Seif, A., Hafezi, M. & Liu, Y.-K. Compressed sensing measurement of long-range correlated noise. Preprint at https://arxiv.org/abs/2105.12589 (2021).

  125. Ahmed, S., Quijandría, F. & Kockum, A. F. Gradient-descent quantum process tomography by learning Kraus operators. Preprint at https://arxiv.org/abs/2208.00812 (2022).

  126. Nielsen, E. et al. Gate set tomography. Quantum 5, 557 (2021).

    Article  Google Scholar 

  127. Blume-Kohout, R. et al. Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit. Preprint at https://arxiv.org/abs/1310.4492 (2013).

  128. Song, C. et al. Quantum computation with universal error mitigation on a superconducting quantum processor. Sci. Adv. 5, eaaw5686 (2019).

    Article  ADS  Google Scholar 

  129. Zhang, S. et al. Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system. Nat. Commun. 11, 587 (2020).

    Article  ADS  Google Scholar 

  130. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    Article  ADS  Google Scholar 

  131. Epstein, J. M., Cross, A. W., Magesan, E. & Gambetta, J. M. Investigating the limits of randomized benchmarking protocols. Phys. Rev. A 89, 062321 (2014).

    Article  ADS  Google Scholar 

  132. Granade, C., Ferrie, C. & Cory, D. G. Accelerated randomized benchmarking. New J. Phys. 17, 013042 (2015).

    Article  ADS  MATH  Google Scholar 

  133. Claes, J., Rieffel, E. & Wang, Z. Character randomized benchmarking for non-multiplicity-free groups with applications to subspace, leakage, and matchgate randomized benchmarking. PRX Quantum 2, 010351 (2021).

    Article  Google Scholar 

  134. Brieger, R., Roth, I. & Kliesch, M. Compressive gate set tomography. Preprint at https://arxiv.org/abs/2112.05176 (2021).

  135. Roth, I. et al. Recovering quantum gates from few average gate fidelities. Phys. Rev. Lett. 121, 170502 (2018).

    Article  ADS  Google Scholar 

  136. Torlai, G. et al. Quantum process tomography with unsupervised learning and tensor networks. Preprint at https://arxiv.org/abs/2006.02424 (2020).

  137. Gazit, Y., Ng, H. K. & Suzuki, J. Quantum process tomography via optimal design of experiments. Phys. Rev. A 100, 012350 (2019).

    Article  ADS  Google Scholar 

  138. Bennink, R. S. & Lougovski, P. Quantum process identification: a method for characterizing non-Markovian quantum dynamics. New J. Phys. 21, 083013 (2019).

    Article  ADS  Google Scholar 

  139. Han, C.-D., Glaz, B., Haile, M. & Lai, Y.-C. Tomography of time-dependent quantum Hamiltonians with machine learning. Phys. Rev. A 104, 062404 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  140. Carolan, J. et al. Variational quantum unsampling on a quantum photonic processor. Nat. Phys. 16, 322 (2020).

    Article  Google Scholar 

  141. Xue, S. et al. Variational quantum process tomography of unitaries. Phys. Rev. A 105, 032427 (2022).

    Article  ADS  Google Scholar 

  142. Mohseni, N., Fösel, T., Guo, L., Navarrete-Benlloch, C. & Marquardt, F. Deep learning of quantum many-body dynamics via random driving. Quantum 6, 714 (2022).

    Article  Google Scholar 

  143. Breuer, H., Petruccione, F. & Petruccione, S. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

  144. Huang, H.-Y., Tong, Y., Fang, D. & Su, Y. Learning many-body Hamiltonians with Heisenberg-limited scaling. Preprint at https://arxiv.org/abs/2210.03030 (2022).

  145. Di Franco, C., Paternostro, M. & Kim, M. S. Hamiltonian tomography in an access-limited setting without state initialization. Phys. Rev. Lett. 102, 187203 (2009).

    Article  ADS  Google Scholar 

  146. Cole, J. H. et al. Identifying an experimental two-state Hamiltonian to arbitrary accuracy. Phys. Rev. A 71, 062312 (2005).

    Article  ADS  Google Scholar 

  147. Devitt, S. J., Cole, J. H. & Hollenberg, L. C. L. Scheme for direct measurement of a general two-qubit Hamiltonian. Phys. Rev. A 73, 052317 (2006).

    Article  ADS  Google Scholar 

  148. Zhang, J. & Sarovar, M. Quantum Hamiltonian identification from measurement time traces. Phys. Rev. Lett. 113, 080401 (2014).

    Article  ADS  Google Scholar 

  149. Sone, A. & Cappellaro, P. Hamiltonian identifiability assisted by a single-probe measurement. Phys. Rev. A 95, 022335 (2017).

    Article  ADS  Google Scholar 

  150. Hangleiter, D., Roth, I., Eisert, J. & Roushan, P. Precise Hamiltonian identification of a superconducting quantum processor. Preprint at https://arxiv.org/abs/2108.08319 (2021).

  151. Granade, C. E., Ferrie, C., Wiebe, N. & Cory, D. G. Robust online Hamiltonian learning. New J. Phys. 14, 103013 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  152. Wiebe, N., Granade, C., Ferrie, C. & Cory, D. Hamiltonian learning and certification using quantum resources. Phys. Rev. Lett. 112, 190501 (2014).

    Article  ADS  Google Scholar 

  153. Wiebe, N., Granade, C., Ferrie, C. & Cory, D. Quantum Hamiltonian learning using imperfect quantum resources. Phys. Rev. A 89, 042314 (2014).

    Article  ADS  Google Scholar 

  154. Stenberg, M. P., Sanders, Y. R. & Wilhelm, F. K. Efficient estimation of resonant coupling between quantum systems. Phys. Rev. Lett. 113, 210404 (2014).

    Article  ADS  Google Scholar 

  155. Wiebe, N., Granade, C. & Cory, D. G. Quantum bootstrapping via compressed quantum Hamiltonian learning. New J. Phys. 17, 022005 (2015).

    Article  ADS  MATH  Google Scholar 

  156. Wang, J. et al. Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551 (2017).

    Article  Google Scholar 

  157. Hou, P.-Y. et al. Experimental Hamiltonian learning of an 11-qubit solid-state quantum spin register. Chinese Phys. Lett. 36, 100303 (2019).

    Article  ADS  Google Scholar 

  158. Gentile, A. A. et al. Learning models of quantum systems from experiments. Nat. Phys. 17, 837 (2021).

    Article  Google Scholar 

  159. Hincks, I., Granade, C. & Cory, D. G. Statistical inference with quantum measurements: methodologies for nitrogen vacancy centers in diamond. New J. Phys. 20, 013022 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  160. Santagati, R. et al. Magnetic-field learning using a single electronic spin in diamond with one-photon readout at room temperature. Phys. Rev. X 9, 021019 (2019).

    Google Scholar 

  161. Joas, T. et al. Online adaptive quantum characterization of a nuclear spin. npj Quantum Inf. 7, 56 (2021).

    Article  ADS  Google Scholar 

  162. Wittler, N. et al. Integrated tool set for control, calibration, and characterization of quantum devices applied to superconducting qubits. Phys. Rev. Appl. 15, 034080 (2021).

    Article  ADS  Google Scholar 

  163. Schirmer, S. G. & Langbein, F. C. Ubiquitous problem of learning system parameters for dissipative two-level quantum systems: Fourier analysis versus Bayesian estimation. Phys. Rev. A 91, 022125 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  164. Flynn, B., Gentile, A. A., Wiebe, N., Santagati, R. & Laing, A. Quantum model learning agent: characterisation of quantum systems through machine learning. New J. Phys. 24, 053034 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  165. Xin, T. et al. Local-measurement-based quantum state tomography via neural networks. npj Quantum Inf. 5, 109 (2019).

    Article  ADS  Google Scholar 

  166. Che, L. et al. Learning quantum Hamiltonians from single-qubit measurements. Phys. Rev. Res. 3, 023246 (2021).

    Article  Google Scholar 

  167. Youssry, A., Chapman, R. J., Peruzzo, A., Ferrie, C. & Tomamichel, M. Modeling and control of a reconfigurable photonic circuit using deep learning. Quantum Sci. Technol. 5, 025001 (2020).

    Article  ADS  Google Scholar 

  168. Youssry, A. et al. Experimental graybox quantum control. Preprint at https://arxiv.org/abs/2206.12201 (2022).

  169. Wang, S.-T., Deng, D.-L. & Duan, L.-M. Hamiltonian tomography for quantum many-body systems with arbitrary couplings. New J. Phys. 17, 093017 (2015).

    Article  ADS  MATH  Google Scholar 

  170. Qi, X.-L. & Ranard, D. Determining a local Hamiltonian from a single eigenstate. Quantum 3, 159 (2019).

    Article  Google Scholar 

  171. Chertkov, E. & Clark, B. K. Computational inverse method for constructing spaces of quantum models from wave functions. Phys. Rev. X 8, 031029 (2018).

    Google Scholar 

  172. Greiter, M., Schnells, V. & Thomale, R. Method to identify parent Hamiltonians for trial states. Phys. Rev. B 98, 081113 (2018).

    Article  ADS  Google Scholar 

  173. Bairey, E., Arad, I. & Lindner, N. H. Learning a local Hamiltonian from local measurements. Phys. Rev. Lett. 122, 020504 (2019).

    Article  ADS  Google Scholar 

  174. Zhu, W., Huang, Z. & He, Y.-C. Reconstructing entanglement Hamiltonian via entanglement eigenstates. Phys. Rev. B 99, 235109 (2019).

    Article  ADS  Google Scholar 

  175. Evans, T. J., Harper, R. & Flammia, S. T. Scalable Bayesian Hamiltonian learning. Preprint at https://arxiv.org/abs/1912.07636 (2019).

  176. Anshu, A., Arunachalam, S., Kuwahara, T. & Soleimanifar, M. Sample-efficient learning of interacting quantum systems. Nat. Phys. 17, 931 (2021).

    Article  Google Scholar 

  177. Haah, J., Kothari, R. & Tang, E. Optimal learning of quantum Hamiltonians from high-temperature Gibbs states. Preprint at https://arxiv.org/abs/2108.04842 (2021).

  178. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987).

    Article  ADS  Google Scholar 

  179. Gorini, V., Kossakowski, A. & Sudarshan, E. C. G. Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 17, 821 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  180. Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  181. Samach, G. O. et al. Lindblad tomography of a superconducting quantum processor. Phys. Rev. Appl. 18, 064056 (2022).

    Article  ADS  Google Scholar 

  182. Zhang, J. & Sarovar, M. Identification of open quantum systems from observable time traces. Phys. Rev. A 91, 052121 (2015).

    Article  ADS  Google Scholar 

  183. Bairey, E., Guo, C., Poletti, D., Lindner, N. H. & Arad, I. Learning the dynamics of open quantum systems from their steady states. New J. Phys. 22, 032001 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  184. Cattaneo, M., Giorgi, G. L., Maniscalco, S. & Zambrini, R. Symmetry and block structure of the Liouvillian superoperator in partial secular approximation. Phys. Rev. A 101, 042108 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  185. Pastori, L., Olsacher, T., Kokail, C. & Zoller, P. Characterization and verification of Trotterized digital quantum simulation via Hamiltonian and Liouvillian learning. PRX Quantum 3, 030324 (2022).

    Article  ADS  Google Scholar 

  186. Rivas, Á. & Huelga, S. Open Quantum Systems: An Introduction (Springer, 2011).

  187. Li, L., Hall, M. J. & Wiseman, H. M. Concepts of quantum non-Markovianity: a hierarchy. Phys. Rep. 759, 1 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  188. Pollock, F. A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M. & Modi, K. Non-Markovian quantum processes: complete framework and efficient characterization. Phys. Rev. A 97, 012127 (2018).

    Article  ADS  Google Scholar 

  189. Jørgensen, M. R. & Pollock, F. A. Exploiting the causal tensor network structure of quantum processes to efficiently simulate non-Markovian path integrals. Phys. Rev. Lett. 123, 240602 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  190. Cygorek, M. et al. Simulation of open quantum systems by automated compression of arbitrary environments. Nat. Phys. 18, 662 (2022).

    Article  Google Scholar 

  191. Luchnikov, I., Vintskevich, S., Grigoriev, D. & Filippov, S. Machine learning non-Markovian quantum dynamics. Phys. Rev. Lett. 124, 140502 (2020).

    Article  ADS  Google Scholar 

  192. White, G., Pollock, F., Hollenberg, L., Modi, K. & Hill, C. Non-Markovian quantum process tomography. PRX Quantum 3, 020344 (2022).

    Article  ADS  Google Scholar 

  193. Banchi, L., Grant, E., Rocchetto, A. & Severini, S. Modelling non-Markovian quantum processes with recurrent neural networks. New J. Phys. 20, 123030 (2018).

    Article  Google Scholar 

  194. Krastanov, S. et al. Unboxing quantum black box models: learning non-Markovian dynamics. Preprint at http://arxiv.org/abs/2009.03902 (2020).

  195. Luis, A. & Sánchez-Soto, L. L. Complete characterization of arbitrary quantum measurement processes. Phys. Rev. Lett. 83, 3573 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  196. Fiurášek, J. Maximum-likelihood estimation of quantum measurement. Phys. Rev. A 64, 024102 (2001).

    Article  ADS  Google Scholar 

  197. D’Ariano, G. M., Maccone, L. & Presti, P. L. Quantum calibration of measurement instrumentation. Phys. Rev. Lett. 93, 250407 (2004).

    Article  ADS  Google Scholar 

  198. Hetzel, M. et al. Tomography of a number-resolving detector by reconstruction of an atomic many-body quantum state. Preprint at https://arxiv.org/abs/2207.01270 (2022).

  199. Lundeen, J. et al. Tomography of quantum detectors. Nat. Phys. 5, 27 (2009).

    Article  Google Scholar 

  200. D’Auria, V., Lee, N., Amri, T., Fabre, C. & Laurat, J. Quantum decoherence of single-photon counters. Phys. Rev. Lett. 107, 050504 (2011).

    Article  ADS  Google Scholar 

  201. Brida, G. et al. Quantum characterization of superconducting photon counters. New J. Phys. 14, 085001 (2012).

    Article  ADS  Google Scholar 

  202. Zhang, L. et al. Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nat. Photon. 6, 364 (2012).

    Article  ADS  Google Scholar 

  203. Grandi, S., Zavatta, A., Bellini, M. & Paris, M. G. Experimental quantum tomography of a homodyne detector. New J. Phys. 19, 053015 (2017).

    Article  ADS  Google Scholar 

  204. Chen, Y., Farahzad, M., Yoo, S. & Wei, T.-C. Detector tomography on IBM quantum computers and mitigation of an imperfect measurement. Phys. Rev. A 100, 052315 (2019).

    Article  ADS  Google Scholar 

  205. Renema, J. J. et al. Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector. Phys. Rev. Lett. 112, 117604 (2014).

    Article  ADS  Google Scholar 

  206. Mogilevtsev, D., Řeháček, J. & Hradil, Z. Self-calibration for self-consistent tomography. New J. Phys. 14, 095001 (2012).

    Article  ADS  MATH  Google Scholar 

  207. Keith, A. C., Baldwin, C. H., Glancy, S. & Knill, E. Joint quantum-state and measurement tomography with incomplete measurements. Phys. Rev. A 98, 042318 (2018).

    Article  ADS  Google Scholar 

  208. Zhang, A. et al. Experimental self-characterization of quantum measurements. Phys. Rev. Lett. 124, 040402 (2020).

    Article  ADS  Google Scholar 

  209. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  210. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222 (2011).

    Article  ADS  Google Scholar 

  211. Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of light. Nat. Rev. Phys. 1, 367–380 (2019).

    Article  Google Scholar 

  212. Pirandola, S. On quantum reading, quantum illumination, and other notions. IOP SciNotes 2, 015203 (2021).

    Article  ADS  Google Scholar 

  213. Helstrom, C. W. (ed.) Quantum Detection and Estimation Theory (Academic Press, 1976).

  214. Braunstein, S. L. & Caves, C. M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  215. Li, Y. et al. Frequentist and Bayesian quantum phase estimation. Entropy 20, 628 (2018).

    Article  ADS  Google Scholar 

  216. Cimini, V. et al. Calibration of quantum sensors by neural networks. Phys. Rev. Lett. 123, 230502 (2019).

    Article  ADS  Google Scholar 

  217. Cimini, V. et al. Calibration of multiparameter sensors via machine learning at the single-photon level. Phys. Rev. Appl. 15, 044003 (2021).

    Article  ADS  Google Scholar 

  218. Nolan, S. P., Pezzè, L. & Smerzi, A. Frequentist parameter estimation with supervised learning. AVS Quantum Sci. 3, 034401 (2021).

    Article  ADS  Google Scholar 

  219. Nolan, S., Smerzi, A. & Pezzè, L. A machine learning approach to Bayesian parameter estimation. npj Quantum Inf. 7, 169 (2021).

    Article  ADS  Google Scholar 

  220. Tóth, G. & Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 47, 424006 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  221. Hyllus, P. et al. Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012).

    Article  ADS  Google Scholar 

  222. Tóth, G. Multipartite entanglement and high-precision metrology. Phys. Rev. A 85, 022322 (2012).

    Article  ADS  Google Scholar 

  223. Albarelli, F., Barbieri, M., Genoni, M. & Gianani, I. A perspective on multiparameter quantum metrology: from theoretical tools to applications in quantum imaging. Phys. Lett. A 384, 126311 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  224. Demkowicz-Dobrzański, R., Górecki, W. & Guţă, M. Multi-parameter estimation beyond quantum Fisher information. J. Phys. A Math. Theor. 53, 363001 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  225. Gessner, M., Pezzè, L. & Smerzi, A. Sensitivity bounds for multiparameter quantum metrology. Phys. Rev. Lett. 121, 130503 (2018).

    Article  ADS  Google Scholar 

  226. Liu, L.-Z. et al. Distributed quantum phase estimation with entangled photons. Nat. Photon. 15, 137 (2021).

    Article  ADS  Google Scholar 

  227. Hassani, M., Macchiavello, C. & Maccone, L. Digital quantum estimation. Phys. Rev. Lett. 119, 200502 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  228. Zhuang, Q. & Zhang, Z. Physical-layer supervised learning assisted by an entangled sensor network. Phys. Rev. X 9, 041023 (2019).

    Google Scholar 

  229. Banchi, L., Zhuang, Q. & Pirandola, S. Quantum-enhanced barcode decoding and pattern recognition. Phys. Rev. Appl. 14, 064026 (2020).

    Article  ADS  Google Scholar 

  230. Li, Z.-M. et al. Fast correlated-photon imaging enhanced by deep learning. Optica 8, 323 (2021).

    Article  ADS  Google Scholar 

  231. Picard, L. R., Mark, M. J., Ferlaino, F. & van Bijnen, R. Deep learning-assisted classification of site-resolved quantum gas microscope images. Meas. Sci. Technol. 31, 025201 (2019).

    Article  ADS  Google Scholar 

  232. Harney, C., Banchi, L. & Pirandola, S. Ultimate limits of thermal pattern recognition. Phys. Rev. A 103, 052406 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  233. Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393 (2007).

    Article  ADS  Google Scholar 

  234. Fiderer, L. J., Schuff, J. & Braun, D. Neural-network heuristics for adaptive Bayesian quantum estimation. PRX Quantum 2, 020303 (2021).

    Article  Google Scholar 

  235. Berry, D. W. & Wiseman, H. M. Optimal states and almost optimal adaptive measurements for quantum interferometry. Phys. Rev. Lett. 85, 5098 (2000).

    Article  ADS  Google Scholar 

  236. Hentschel, A. & Sanders, B. C. Efficient algorithm for optimizing adaptive quantum metrology processes. Phys. Rev. Lett. 107, 233601 (2011).

    Article  ADS  Google Scholar 

  237. Lovett, N. B., Crosnier, C., Perarnau-Llobet, M. & Sanders, B. C. Differential evolution for many-particle adaptive quantum metrology. Phys. Rev. Lett. 110, 220501 (2013).

    Article  ADS  Google Scholar 

  238. Fallani, A., Rossi, M. A. C., Tamascelli, D. & Genoni, M. G. Learning feedback control strategies for quantum metrology. PRX Quantum 3, 020310 (2022).

    Article  ADS  Google Scholar 

  239. Pezzè, L. & Smerzi, A. Heisenberg-limited noisy atomic clock using a hybrid coherent and squeezed state protocol. Phys. Rev. Lett. 125, 210503 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  240. Pezzè, L. & Smerzi, A. Quantum phase estimation algorithm with Gaussian spin states. PRX Quantum 2, 040301 (2021).

    Article  ADS  Google Scholar 

  241. Kaubruegger, R. et al. Variational spin-squeezing algorithms on programmable quantum sensors. Phys. Rev. Lett. 123, 260505 (2019).

    Article  ADS  Google Scholar 

  242. Kaubruegger, R., Vasilyev, D. V., Schulte, M., Hammerer, K. & Zoller, P. Quantum variational optimization of Ramsey interferometry and atomic clocks. Phys. Rev. X 11, 041045 (2021).

    Google Scholar 

  243. Haine, S. A. & Hope, J. J. Machine-designed sensor to make optimal use of entanglement-generating dynamics for quantum sensing. Phys. Rev. Lett. 124, 060402 (2020).

    Article  ADS  Google Scholar 

  244. Pang, S. & Jordan, A. N. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians. Nat. Comm. 8, 14695 (2017).

    Article  ADS  Google Scholar 

  245. Xu, H. et al. Generalizable control for quantum parameter estimation through reinforcement learning. npj Quantum Inf. 5, 82 (2019).

    Article  ADS  Google Scholar 

  246. Schuff, J., Fiderer, L. J. & Braun, D. Improving the dynamics of quantum sensors with reinforcement learning. New J. Phys. 22, 035001 (2020).

    Article  ADS  Google Scholar 

  247. Xiao, T., Fan, J. & Zeng, G. Parameter estimation in quantum sensing based on deep reinforcement learning. npj Quantum Inf. 8, 2 (2022).

    Article  ADS  Google Scholar 

  248. Cimini, V. et al. Deep reinforcement learning for quantum multiparameter estimation. Preprint at https://arxiv.org/abs/2209.00671 (2022).

  249. Daryanoosh, S., Slussarenko, S., Berry, D. W., M, W. H. & Pryde, G. J. Experimental optical phase measurement approaching the exact Heisenberg limit. Nat. Commun. 9, 4606 (2018).

    Article  ADS  Google Scholar 

  250. Valeri, M. et al. Experimental adaptive Bayesian estimation of multiple phases with limited data. npj Quantum Inf. 6, 92 (2020).

    Article  ADS  Google Scholar 

  251. Bonato, C. et al. Optimized quantum sensing with a single electron spin using real-time adaptive measurements. Nat. Nanotechnol. 11, 247 (2016).

    Article  ADS  Google Scholar 

  252. Dushenko, S., Ambal, K. & McMichael, R. D. Sequential Bayesian experiment design for optically detected magnetic resonance of nitrogen-vacancy centers. Phys. Rev. Appl. 14, 054036 (2020).

    Article  ADS  Google Scholar 

  253. McMichael, R. D., Dushenko, S. & Blakley, S. M. Sequential Bayesian experiment design for adaptive Ramsey sequence measurements. J. Appl. Phys. 130, 144401 (2021).

    Article  ADS  Google Scholar 

  254. Caouette-Mansour, M. et al. Robust spin relaxometry with fast adaptive Bayesian estimation. Phys. Rev. Appl. 17, 064031 (2022).

    Article  ADS  Google Scholar 

  255. Bonato, C. & Berry, D. W. Adaptive tracking of a time-varying field with a quantum sensor. Phys. Rev. A 95, 052348 (2017).

    Article  ADS  Google Scholar 

  256. Shulman, M. D. et al. Suppressing qubit dephasing using real-time Hamiltonian estimation. Nat. Commun. 5, 5156 (2014).

    Article  ADS  Google Scholar 

  257. Mavadia, S., Frey, V., Sastrawan, J., Dona, S. & Biercuk, M. J. Prediction and real-time compensation of qubit decoherence via machine learning. Nat. Commun. 8, 14106 (2017).

    Article  ADS  Google Scholar 

  258. Cappellaro, P. Spin-bath narrowing with adaptive parameter estimation. Phys. Rev. A 85, 030301 (2012).

    Article  ADS  Google Scholar 

  259. Blok, M. S. et al. Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback. Nat. Phys. 10, 189 (2014).

    Article  Google Scholar 

  260. Scerri, E., Gauger, E. M. & Bonato, C. Extending qubit coherence by adaptive quantum environment learning. New J. Phys. 22, 035002 (2020).

    Article  ADS  Google Scholar 

  261. Innocenti, L., Banchi, L., Ferraro, A., Bose, S. & Paternostro, M. Supervised learning of time-independent hamiltonians for gate design. New J. Phys. 22, 065001 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  262. Gao, X., Erhard, M., Zeilinger, A. & Krenn, M. Computer-inspired concept for high-dimensional multipartite quantum gates. Phys. Rev. Lett. 125, 050501 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  263. Valenti, A., van Nieuwenburg, E., Huber, S. & Greplova, E. Hamiltonian learning for quantum error correction. Phys. Rev. Res. 1, 033092 (2019).

    Article  Google Scholar 

  264. Roy, A. S., Pack, K., Wittler, N. & Machnes, S. Software tool-set for automated quantum system identification and device bring up. Preprint at https://arxiv.org/abs/2205.04829 (2022).

  265. Fösel, T., Tighineanu, P., Weiss, T. & Marquardt, F. Reinforcement learning with neural networks for quantum feedback. Phys. Rev. X 8, 031084 (2018).

    Google Scholar 

  266. Bukov, M. et al. Reinforcement learning in different phases of quantum control. Phys. Rev. X 8, 031086 (2018).

    Google Scholar 

  267. Niu, M. Y., Boixo, S., Smelyanskiy, V. N. & Neven, H. Universal quantum control through deep reinforcement learning. npj Quantum Inf. 5, 33 (2019).

    Article  ADS  Google Scholar 

  268. Baum, Y. et al. Experimental deep reinforcement learning for error-robust gate-set design on a superconducting quantum computer. PRX Quantum 2, 040324 (2021).

    Article  ADS  Google Scholar 

  269. Nguyen, V. et al. Deep reinforcement learning for efficient measurement of quantum devices. npj Quantum Inf. 7, 100 (2021).

    Article  ADS  Google Scholar 

  270. Sivak, V. et al. Model-free quantum control with reinforcement learning. Phys. Rev. X 12, 011059 (2022).

    Google Scholar 

  271. Schwemmer, C. et al. Experimental comparison of efficient tomography schemes for a six-qubit state. Phys. Rev. Lett. 113, 040503 (2014).

    Article  ADS  Google Scholar 

  272. Valenti, A., Jin, G., Léonard, J., Huber, S. D. & Greplova, E. Scalable Hamiltonian learning for large-scale out-of-equilibrium quantum dynamics. Phys. Rev. A 105, 023302 (2022).

    Article  ADS  Google Scholar 

  273. Chen, R. T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. In Advances in Neural Information Processing Systems Vol. 31 (eds Bengio, S. et al.) (Curran Associates Inc., 2018); https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf

  274. Cranmer, M. et al. Lagrangian neural networks. Preprint at https://arxiv.org/abs/2003.04630 (2020).

  275. Schäfer, F., Kloc, M., Bruder, C. & Lörch, N. A differentiable programming method for quantum control. Mach. Learn. Sci. Technol. 1, 035009 (2020).

    Article  Google Scholar 

  276. Schäfer, F., Sekatski, P., Koppenhöfer, M., Bruder, C. & Kloc, M. Control of stochastic quantum dynamics by differentiable programming. Mach. Learn. Sci. Technol. 2, 035004 (2021).

    Article  Google Scholar 

  277. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  278. Elhamod, M. et al. CoPhy-PGNN: Learning physics-guided neural networks with competing physics loss: a summary of results in solving eigenvalue problems. ACM Trans. Intell. Syst. Technol. 13, 1 (2022).

    Article  Google Scholar 

  279. Güngördü, U. & Kestner, J. P. Robust quantum gates using smooth pulses and physics-informed neural networks. Phys. Rev. Res. 4, 023155 (2022).

    Article  Google Scholar 

  280. Huang, H.-Y. et al. Quantum advantage in learning from experiments. Science 376, 1182 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  281. Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431 (2017).

    Article  Google Scholar 

  282. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  283. Lennon, D. T. et al. Efficiently measuring a quantum device using machine learning. npj Quantum Inf. 5, 79 (2019).

    Article  ADS  Google Scholar 

  284. Porotti, R., Essig, A., Huard, B. & Marquardt, F. Deep reinforcement learning for quantum state preparation with weak nonlinear measurements. Quantum 6, 747 (2022).

    Article  Google Scholar 

  285. Wiebe, N. & Granade, C. Efficient Bayesian phase estimation. Phys. Rev. Lett. 117, 010503 (2016).

    Article  ADS  Google Scholar 

  286. Gebhart, V., Smerzi, A. & Pezzè, L. Bayesian quantum multiphase estimation algorithm. Phys. Rev. Appl. 16, 014035 (2021).

    Article  ADS  Google Scholar 

  287. Loredo, T. J. Bayesian adaptive exploration. In AIP Conference Proceedings Vol. 707, 330 (American Institute of Physics, 2004).

  288. Del Moral, P., Doucet, A. & Jasra, A. Sequential Monte Carlo samplers. J. R. Stat. Soc. Series B 68, 411 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  289. Granade, C. & Wiebe, N. Structured filtering. New J. Phys. 19, 083014 (2017).

    Article  ADS  Google Scholar 

  290. Hornik, K. Some new results on neural network approximation. Neural Netw. 6, 1069 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank C. Ferrie for discussions. C.B. is supported by the Engineering and Physical Sciences Research Council (EPSRC) (EP/S000550/1 and EP/V053779/1), the Leverhulme Trust (RPG-2019-388) and the European Commission (QuanTELCO, grant agreement no. 862721). N.A. acknowledges support by the Royal Society (URF/R1/191150), EPSRC Platform grant (EP/R029229/1), the European Research Council (grant agreement 948932) and FQXi grant no. FQXI-IAF19-01. L.B.’s work is supported by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under contract no. DE-AC02-07CH11359, and by the INFN via the QubIT, SFT and INFN-ML projects. V.G. and L.P. acknowledge financial support from the European Union’s Horizon 2020 research and innovation programme-Qombs Project, FET Flagship on Quantum Technologies grant no. 820419.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Luca Pezzè or Cristian Bonato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Anton Kockum, Ng Hui Khoon and Richard Kueng for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebhart, V., Santagati, R., Gentile, A.A. et al. Learning quantum systems. Nat Rev Phys 5, 141–156 (2023). https://doi.org/10.1038/s42254-022-00552-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00552-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing