Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

How to optimize high-order harmonic generation in gases

Abstract

High-order harmonic generation (HHG) in gases leads to short-pulse extreme ultraviolet (XUV) radiation that is useful in a number of applications, such as attosecond science and nanoscale imaging. However, this process depends on many parameters, and there is still no consensus on how to choose the target geometry to optimize the source efficiency. We review the physics of HHG with emphasis on the macroscopic aspects of the nonlinear interaction, discussing the influence of length of medium, pressure, and intensity of the driving laser on the HHG conversion efficiency. Efficient HHG can be realized over a large range of pressures and medium lengths, if these follow a certain hyperbolic equation. This explains the large versatility in gas target designs for efficient HHG and provides design guidance for future high-flux XUV sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atoms in strong laser fields.
Fig. 2: Energy-dependent parameters governing phase matching.
Fig. 3: Phase matching.
Fig. 4: Phase-matching window.
Fig. 5: Influence of absorption.
Fig. 6: Validity of hyperbola.

Similar content being viewed by others

References

  1. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    Article  ADS  Google Scholar 

  2. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Article  Google Scholar 

  3. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  4. Zürch, M. et al. Real-time and sub-wavelength ultrafast coherent diffraction imaging in the extreme ultraviolet. Sci. Rep. 4, 7356 (2014).

    Article  Google Scholar 

  5. Schmidt, O. et al. Time-resolved two photon photoemission electron microscopy. Appl. Phys. B 74, 223–227 (2002).

    Article  ADS  Google Scholar 

  6. Heyl, C. M., Arnold, C. L., Couairon, A. & L’Huillier, A. Introduction to macroscopic power scaling principles for high-order harmonic generation. J. Phys. B 50, 013001 (2017).

    Article  ADS  Google Scholar 

  7. Coudert-Alteirac, H. et al. Micro-focusing of broadband high-order harmonic radiation by a double toroidal mirror. Appl. Sci. 7, 1159 (2017).

    Article  Google Scholar 

  8. Kühn, S. et al. The ELI-ALPS facility: the next generation of attosecond sources. J. Phys. B 50, 132002 (2017).

    Article  ADS  Google Scholar 

  9. Kleine, C. et al. Soft X-ray absorption spectroscopy of aqueous solutions using a table-top femtosecond soft X-ray source. J. Phys. Chem. Lett. 10, 52–58 (2019).

    Article  Google Scholar 

  10. Tsatrafyllis, N. et al. The ion microscope as a tool for quantitative measurements in the extreme ultraviolet. Sci. Rep. 6, 21556 (2016).

    Article  ADS  Google Scholar 

  11. Fu, Y. et al. High efficiency ultrafast water-window harmonic generation for single-shot soft X-ray spectroscopy. Commun. Phys. 3, 92 (2020).

    Article  Google Scholar 

  12. Rothhardt, J. et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime. New J. Phys. 16, 033022 (2014).

    Article  ADS  Google Scholar 

  13. Comby, A. et al. Cascaded harmonic generation from a fiber laser: a milliwatt XUV source. Opt. Express 27, 20383–20396 (2019).

    Article  ADS  Google Scholar 

  14. Mikaelsson, S. et al. A high-repetition rate attosecond light source for time-resolved coincidence spectroscopy. Nanophotonics 10, 117–128 (2021).

    Article  Google Scholar 

  15. Boullet, J. et al. High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system. Opt. Lett. 34, 1489–1491 (2009).

    Article  ADS  Google Scholar 

  16. Hädrich, S. et al. High photon flux table-top coherent extreme-ultraviolet source. Nat. Photon. 8, 779–783 (2014).

    Article  ADS  Google Scholar 

  17. Sheehy, B. et al. High harmonic generation at long wavelengths. Phys. Rev. Lett. 83, 5270–5273 (1999).

    Article  ADS  Google Scholar 

  18. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  19. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  20. Spielmann, C. et al. Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science 278, 661–664 (1997).

    Article  ADS  Google Scholar 

  21. Sutherland, J. R. et al. High harmonic generation in a semi-infinite gas cell. Opt. Express 12, 4430–4436 (2004).

    Article  ADS  Google Scholar 

  22. Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998).

    Article  ADS  Google Scholar 

  23. Krause, J. L., Schafer, K. J. & Kulander, K. C. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992).

    Article  ADS  Google Scholar 

  24. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  25. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  26. L’Huillier, A., Schafer, K. J. & Kulander, K. C. Higher-order harmonic generation in xenon at 1064 nm: the role of phase matching. Phys. Rev. Lett. 66, 2200–2203 (1991).

    Article  ADS  Google Scholar 

  27. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  28. Kazamias, S. et al. Global optimization of high harmonic generation. Phys. Rev. Lett. 90, 193901 (2003).

    Article  ADS  Google Scholar 

  29. Gaarde, M. B., Tate, J. L. & Schafer, K. J. Macroscopic aspects of attosecond pulse generation. J. Phys. B 41, 132001 (2008).

    Article  ADS  Google Scholar 

  30. Popmintchev, T., Chen, M.-C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nat. Photon. 4, 822–832 (2010).

    Article  ADS  Google Scholar 

  31. Constant, E. et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).

    Article  ADS  Google Scholar 

  32. Popmintchev, D. et al. Ultraviolet surprise: efficient soft X-ray high-harmonic generation in multiply ionized plasmas. Science 350, 1225–1231 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  33. Kim, I. J. et al. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field. Phys. Rev. Lett. 94, 243901 (2005).

    Article  ADS  Google Scholar 

  34. Brizuela, F. et al. Efficient high-order harmonic generation boosted by below-threshold harmonics. Sci. Rep. 3, 1410 (2013).

    Article  Google Scholar 

  35. Christov, I. P., Kapteyn, H. C. & Murnane, M. M. Quasi-phase matching of high-harmonics and attosecond pulses in modulated waveguides. Opt. Express 7, 362–367 (2000).

    Article  ADS  Google Scholar 

  36. Hareli, L., Shoulga, G. & Bahabad, A. Phase matching and quasi-phase matching of high-order harmonic generation — a tutorial. J. Phys. B 53, 233001 (2020).

    Article  ADS  Google Scholar 

  37. Heyl, C. M. et al. Scale-invariant nonlinear optics in gases. Optica 3, 75–81 (2016).

    Article  ADS  Google Scholar 

  38. Nefedova, V., Albrecht, M., Kozlová, M. & Nejdl, J. Development of a high-flux XUV source based on high-order harmonic generation. J. Electron Spectros. Relat. Phenomena 220, 9–13 (2017).

    Article  Google Scholar 

  39. Takahashi, E., Nabekawa, Y. & Midorikawa, K. Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics. Opt. Lett. 27, 1920–1922 (2002).

    Article  ADS  Google Scholar 

  40. Takahashi, E., Nabekawa, Y., Nurhuda, M. & Midorikawa, K. Generation of high-energy high-order harmonics by use of a long interaction medium. J. Opt. Soc. Am. B 20, 158–165 (2003).

    Article  ADS  Google Scholar 

  41. Rudawski, P. et al. A high-flux high-order harmonic source. Rev. Sci. Instrum. 84, 073103 (2013).

    Article  ADS  Google Scholar 

  42. Hädrich, S. et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl. 4, e320 (2015).

    Article  Google Scholar 

  43. Comby, A. et al. Absolute gas density profiling in high-order harmonic generation. Opt. Express 26, 6001–6009 (2018).

    Article  ADS  Google Scholar 

  44. Nayak, A. et al. Multiple ionization of argon via multi-XUV-photon absorption induced by 20-GW high-order harmonic laser pulses. Phys. Rev. A 98, 023426 (2018).

    Article  ADS  Google Scholar 

  45. Weissenbilder, R., Guo, C., Arnold, C. L. & L’Huillier, A. Choice of an efficient gas target for high-order harmonic generation. In Conference on Lasers and Electro-Optics, SW3Q.6 (Optica Publishing Group, 2021); http://opg.optica.org/abstract.cfm?URI=CLEO_SI-2021-SW3Q.6.

  46. Cassou, K. et al. Enhanced high harmonic generation driven by high-intensity laser in argon gas-filled hollow core waveguide. Opt. Lett. 39, 3770–3773 (2014).

    Article  ADS  Google Scholar 

  47. Rivas, D. E. et al. Propagation-enhanced generation of intense high-harmonic continua in the 100-eV spectral region. Optica 5, 1283–1289 (2018).

    Article  ADS  Google Scholar 

  48. Major, B. et al. Propagation-assisted generation of intense few-femtosecond high-harmonic pulses. J. Phys. Photonics 2, 034002 (2020).

    Article  ADS  Google Scholar 

  49. Johnson, A. S. et al. High-flux soft X-ray harmonic generation from ionization-shaped few-cycle laser pulses. Sci. Adv. 4, eaar3761 (2018).

    Article  ADS  Google Scholar 

  50. Major, B. et al. High-harmonic generation in a strongly overdriven regime. Preprint at https://arxiv.org/abs/2203.11021 (2022).

  51. Schafer, K. J. in Strong Field Laser Physics (ed. Brabec, T.) 111–145 (Springer, 2009); https://doi.org/10.1007/978-0-387-34755-4_6.

  52. Perelomov, A. M., Popov, V. S. & Terent’ev, M. V. Ionization of atoms in an alternating electric field. Sov. J. Exp. Theor. Phys. 23, 924 (1966).

    ADS  Google Scholar 

  53. Ammosov, M., Delone, N. & Krainov, V. Tunnelling ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986).

    ADS  Google Scholar 

  54. Geissler, M., Tempea, G. & Brabec, T. Phase-matched high-order harmonic generation in the nonadiabatic limit. Phys. Rev. A 62, 033817 (2000).

    Article  ADS  Google Scholar 

  55. Kroon, D. et al. Attosecond pulse walk-off in high-order harmonic generation. Opt. Lett. 39, 2218–2221 (2014).

    Article  ADS  Google Scholar 

  56. Hernández-García, C. et al. Group velocity matching in high-order harmonic generation driven by mid-infrared lasers. New J. Phys. 18, 073031 (2016).

    Article  ADS  Google Scholar 

  57. Rudawski, P. et al. Carrier-envelope phase dependent high-order harmonic generation with a high-repetition rate OPCPA-system. Eur. Phys. J. D 69, 70 (2015).

    Article  ADS  Google Scholar 

  58. Yudin, G. L. & Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001).

    Article  ADS  Google Scholar 

  59. Kulander, K. C., Schafer, K. J. & Krause, J. L. in Atoms in Intense Laser Fields (ed. Gavrila, M.) 247–300 (Academic, 1992).

  60. Lewenstein, M., Kulander, K. C., Schafer, K. J. & Bucksbaum, P. H. Rings in above-threshold ionization: a quasiclassical analysis. Phys. Rev. A 51, 1495–1507 (1995).

    Article  ADS  Google Scholar 

  61. Kulander, K. & L’Huillier, A. Theory of high-order processes in atoms in intense laser fields: introduction. J. Opt. Soc. Am. B 7, 403–402 (1990).

    Article  ADS  Google Scholar 

  62. L’Huillier, A., Balcou, P., Candel, S., Schafer, K. J. & Kulander, K. C. Calculations of high-order harmonic-generation processes in xenon at 1064 nm. Phys. Rev. A 46, 2778–2790 (1992).

    Article  ADS  Google Scholar 

  63. Boyd, R. W. Nonlinear Optics (Academic, 2003).

  64. L’Huillier, A., Schafer, K. J. & Kulander, K. C. Theoretical aspects of intense field harmonic generation. J. Phys. B 24, 3315–3341 (1991).

    Article  ADS  Google Scholar 

  65. Marcatili, E. A. J. & Schmeltzer, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Techn. J. 43, 1783–1809 (1964).

    Article  Google Scholar 

  66. Guo, C. et al. Phase control of attosecond pulses in a train. J. Phys. B 51, 034006 (2018).

    Article  ADS  Google Scholar 

  67. Wikmark, H. et al. Spatiotemporal coupling of attosecond pulses. Proc. Natl Acad. Sci. USA 116, 4779–4787 (2019).

    Article  ADS  Google Scholar 

  68. Varjú, K. et al. Frequency chirp of harmonic and attosecond pulses. J. Mod. Opt. 52, 379–394 (2005).

    Article  ADS  Google Scholar 

  69. Durfee, C. G. et al. Phase matching of high-order harmonics in hollow waveguides. Phys. Rev. Lett. 83, 2187–2190 (1999).

    Article  ADS  Google Scholar 

  70. Antoine, P., L’Huillier, A. & Lewenstein, M. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

    Article  ADS  Google Scholar 

  71. Popmintchev, T. et al. Extended phase matching of high harmonics driven by mid-infrared light. Opt. Lett. 33, 2128–2130 (2008).

    Article  ADS  Google Scholar 

  72. Shiner, A. D. et al. Wavelength scaling of high harmonic generation efficiency. Phys. Rev. Lett. 103, 073902 (2009).

    Article  ADS  Google Scholar 

  73. Klas, R. et al. Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source. PhotoniX 2, 4 (2021).

    Article  Google Scholar 

  74. Klas, R. Efficiency Scaling of High Harmonic Generation Using Ultrashort Fiber Lasers. PhD thesis, Friedrich Schiller Univ. Jena (2021).

  75. Ludwig, A. et al. Breakdown of the dipole approximation in strong-field ionization. Phys. Rev. Lett. 113, 243001 (2014).

    Article  ADS  Google Scholar 

  76. Seres, E., Seres, J., Krausz, F. & Spielmann, C. Generation of coherent soft-X-ray radiation extending far beyond the titanium l edge. Phys. Rev. Lett. 92, 163002 (2004).

    Article  ADS  Google Scholar 

  77. Chevreuil, P.-A. et al. Water-window high harmonic generation with 0.8-μm and 2.2-μm OPCPAs at 100 khz. Opt. Express 29, 32996–33008 (2021).

    Article  ADS  Google Scholar 

  78. Balcou, P., Sali‘eres, P., L’Huillier, A. & Lewenstein, M. Generalized phase-matching conditions for high harmonics: the role of field-gradient forces. Phys. Rev. A 55, 3204–3210 (1997).

    Article  ADS  Google Scholar 

  79. Salières, P., L’Huillier, A. & Lewenstein, M. Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995).

    Article  ADS  Google Scholar 

  80. Cooper, J. W. Photoionization from outer atomic subshells. A model study. Phys. Rev. 128, 681–693 (1962).

    Article  ADS  Google Scholar 

  81. Ruchon, T. et al. Macroscopic effects in attosecond pulse generation. New. J. Phys. 10, 025027 (2008).

    Article  ADS  Google Scholar 

  82. Major, B. & Varju, K. Extended model for optimizing high-order harmonic generation in absorbing gases. J. Phys. B https://doi.org/10.1088/1361-6455/ac3fbe (2021).

  83. Kim, H. T. et al. Optimization of high-order harmonic brightness in the space and time domains. Phys. Rev. A 69, 031805 (2004).

    Article  ADS  Google Scholar 

  84. Major, B. et al. Effect of plasma-core-induced self-guiding on phase matching of high-order harmonic generation in gases. J. Opt. Soc. Am. B 36, 1594–1601 (2019).

    Article  ADS  Google Scholar 

  85. Sun, H.-W. et al. Extended phase matching of high harmonic generation by plasma-induced defocusing. Optica 4, 976–981 (2017).

    Article  ADS  Google Scholar 

  86. Fill, E. E. Focusing limits of ultrashort laser pulses: analytical theory. J. Opt. Soc. Am. B 11, 2241–2245 (1994).

    Article  ADS  Google Scholar 

  87. Leemans, W. P. et al. Experiments and simulations of tunnel-ionized plasmas. Phys. Rev. A 46, 1091–1105 (1992).

    Article  ADS  Google Scholar 

  88. Rae, S. Ionization-induced defocusing of intense laser pulses in high-pressure gases. Opt. Commun. 97, 25–28 (1993).

    Article  ADS  Google Scholar 

  89. Tao, Y. et al. Temporal model for quasi-phase matching in high-order harmonic generation. Opt. Express 25, 3621–3638 (2017).

    Article  ADS  Google Scholar 

  90. Koliyadu, J. C. P. et al. Optimization and characterization of high-harmonic generation for probing solid density plasmas. Photonics https://www.mdpi.com/2304-6732/4/2/25 (2017).

  91. Sayrac, M. et al. Pressure optimization of high harmonic generation in a differentially pumped Ar or H2 gas jet. Rev. Sci. Instrum. 86, 043108 (2015).

    Article  ADS  Google Scholar 

  92. Henke, B., Gullikson, E. & Davis, J. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181 – 342 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank K. J. Schafer and M. B. Gaarde for help regarding the numerical simulations. The authors acknowledge support from the Swedish Research Council (2013-8185, 2016-04907), the European Research Council (advanced grant QPAP, 884900) and the Knut and Alice Wallenberg Foundation. A.L. is partly supported by the Wallenberg Center for Quantum Technology (WACQT) funded by the Knut and Alice Wallenberg foundation. L.R. acknowledges support from Ministerio de Educación, Cultura y Deporte (FPU16/02591).

Author information

Authors and Affiliations

Authors

Contributions

R.W., S.C., L.R., C.G., P.S. and A.L. provided data for the article. R.W., C.M.H., P.S., E.C., C.L.A. and A.L. contributed substantially to the discussion of the content. R.W. and A.L. wrote the article. All authors contributed with input on the manuscript before submission.

Corresponding authors

Correspondence to R. Weissenbilder or A. L’Huillier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weissenbilder, R., Carlström, S., Rego, L. et al. How to optimize high-order harmonic generation in gases. Nat Rev Phys 4, 713–722 (2022). https://doi.org/10.1038/s42254-022-00522-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00522-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing