Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gravitational-wave and X-ray probes of the neutron star equation of state

Abstract

The physics of neutron stars is a remarkable combination of Einstein’s theory of general relativity and nuclear physics. Their interiors harbour extreme matter that cannot be probed in the laboratory. At such high densities and pressures, their cores may consist predominantly of exotic matter, such as free quarks or hyperons. Observations from the Laser Interferometer Gravitational-Wave Observatory (LIGO) and other gravitational-wave interferometers and X-ray observations from the Neutron Star Interior Composition Explorer (NICER) are beginning to provide information about neutron star cores and, therefore, about the mechanisms that make such objects possible. In this Review, we discuss what has been learned so far about the physics of neutron stars from gravitational-wave and X-ray observations. We focus on what has been observed with certainty and what should be observable in the near future, emphasizing the physical understanding that these new observations will bring.

Key points

  • The processes at play inside neutron stars are a combination of general relativity, quantum mechanics, particle physics and nuclear physics effects that cannot be replicated in the lab.

  • Gravitational-wave observations of binary neutron star mergers are beginning to provide information about the equation of state of supranuclear matter through constraints on the tidal deformability of neutron stars.

  • The X-rays emitted by hotspots on the surface of certain pulsars are starting to provide information about nuclear physics through constraints on the radius of neutron stars.

  • Future observations of gravitational waves and X-rays from LIGO, Virgo, Kamioka Gravitational Wave Detector (KAGRA) and the Neutron Star Interior Composition Explorer will provide unprecedented insights into the physics of neutron stars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the structure of a neutron star and its internal structure.
Fig. 2: Schematic representation of equations of state.
Fig. 3: Gravitational waveform from the last few cycles of a compact binary inspiral.
Fig. 4: Posterior for M and R of each component (blue and orange) of the binary system that generated GW170817.
Fig. 5: Posterior distribution of M and R of neutron stars derived from NICER observations.

Similar content being viewed by others

References

  1. Shapiro, S. L. & Teukolsky, S. A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, 1983).

  2. Kaspi, V. M. & Beloborodov, A. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    Article  ADS  Google Scholar 

  3. Rawley, L. A., Taylor, J. H., Davis, M. M. & Allan, D. W. Millisecond pulsar PSR 1937+21: a highly stable clock. Science 238, 761–765 (1987).

    Article  ADS  Google Scholar 

  4. Baym, G., Pethick, C. & Sutherland, P. The ground state of matter at high densities: equation of state and stellar models. Astrophys. J. 170, 299–317 (1971).

    Article  ADS  Google Scholar 

  5. Ambartsumyan, V. A. & Saakyan, G. S. The degenerate superdense gas of elementary particles. Sov. Astron. 4, 187 (1960).

    ADS  MathSciNet  Google Scholar 

  6. Chatterjee, D. & Vidaña, I. Do hyperons exist in the interior of neutron stars? Eur. Phys. J. A 52, 29 (2016).

    Article  ADS  Google Scholar 

  7. Ivanenko, D. D. & Kurdgelaidze, D. F. Hypothesis concerning quark stars. Astrophysics 1, 251–252 (1965).

    Article  ADS  Google Scholar 

  8. Lattimer, J. M. & Prakash, M. Neutron star structure and the equation of state. Astrophys. J. 550, 426 (2001).

    Article  ADS  Google Scholar 

  9. Most, E. R. et al. Projecting the likely importance of weak-interaction-driven bulk viscosity in neutron star mergers. Mon. Not. R. Astron. Soc. 509, 1096–1108 (2022).

    Article  ADS  Google Scholar 

  10. Troyer, M. & Wiese, U.-J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005).

    Article  ADS  Google Scholar 

  11. Aoki, Y., Endrodi, G., Fodor, Z., Katz, S. D. & Szabo, K. K. The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675–678 (2006).

    Article  ADS  Google Scholar 

  12. Baym, G. et al. From hadrons to quarks in neutron stars: a review. Rep. Prog. Phys. 81, 056902 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  13. Nambu, Y. & Jona-Lasinio, G. Dynamical model of elementary particles based on an analogy with superconductivity. 1. Phys. Rev. 122, 345–358 (1961).

    Article  ADS  Google Scholar 

  14. Alford, M. G., Rajagopal, K. & Wilczek, F. QCD at finite baryon density: nucleon droplets and color superconductivity. Phys. Lett. B 422, 247–256 (1998).

    Article  ADS  Google Scholar 

  15. Dexheimer, V. A. & Schramm, S. A novel approach to model hybrid stars. Phys. Rev. C 81, 045201 (2010).

    Article  ADS  Google Scholar 

  16. Tews, I., Krüger, T., Hebeler, K. & Schwenk, A. Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory. Phys. Rev. Lett. 110, 032504 (2013).

    Article  ADS  Google Scholar 

  17. Read, J. S., Lackey, B. D., Owen, B. J. & Friedman, J. L. Constraints on a phenomenologically parameterized neutron-star equation of state. Phys. Rev. D 79, 124032 (2009).

    Article  ADS  Google Scholar 

  18. Annala, E., Gorda, T., Kurkela, A. & Vuorinen, A. Gravitational-wave constraints on the neutron-star-matter Equation of State. Phys. Rev. Lett. 120, 172703 (2018).

    Article  ADS  Google Scholar 

  19. Alford, M. G., Han, S. & Prakash, M. Generic conditions for stable hybrid stars. Phys. Rev. D 88, 083013 (2013).

    Article  ADS  Google Scholar 

  20. Haque, N. et al. Three-loop HTLpt thermodynamics at finite temperature and chemical potential. J. High Energy Phys. 2014, 27 (2014).

    Article  Google Scholar 

  21. Glendenning, N. K. & Kettner, C. Non-identical neutron star twins. Astron. Astrophys. 353, L9 (2000).

    ADS  Google Scholar 

  22. Page, D., Lattimer, J. M., Prakash, M. & Steiner, A. W. Minimal cooling of neutron stars: a new paradigm. Astrophys. J. Suppl. 155, 623–650 (2004).

    Article  ADS  Google Scholar 

  23. Blaschke, D., Grigorian, H. & Voskresensky, D. N. Cooling of neutron stars: hadronic model. Astron. Astrophys. 424, 979–992 (2004).

    Article  ADS  Google Scholar 

  24. Piekarewicz, J., Fattoyev, F. J. & Horowitz, C. J. Pulsar glitches: the crust may be enough. Phys. Rev. C 90, 015803 (2014).

    Article  ADS  Google Scholar 

  25. Haskell, B. & Melatos, A. Models of pulsar glitches. Int. J. Mod. Phys. D 24, 1530008 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  26. Fattoyev, F. J., Horowitz, C. J. & Lu, H. Crust breaking and the limiting rotational frequency of neutron stars. Preprint at https://arxiv.org/abs/1804.04952 (2018).

  27. Haskell, B. & Schwenzer, K. Gravitational waves from isolated neutron stars. Preprint at https://arxiv.org/abs/2104.03137v1 (2021).

  28. Saito, T. R. et al. New directions in hypernuclear physics. Nat. Rev. Phys. 3, 803–813 (2021).

    Article  Google Scholar 

  29. Hulse, R. A. & Taylor, J. H. Discovery of a pulsar in a binary system. Astrophys. J. Lett. 195, L51–L53 (1975).

    Article  ADS  Google Scholar 

  30. Cromartie, H. T. et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 4, 72–76 (2019).

    Article  ADS  Google Scholar 

  31. Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E. & Hessels, J. W. T. A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083 (2010).

    Article  ADS  Google Scholar 

  32. Antoniadis, J. et al. A massive pulsar in a compact relativistic binary. Science 340, 448 (2013).

    Article  ADS  Google Scholar 

  33. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  34. Abbott, R. et al. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys. Rev. X 11, 021053 (2021).

    MathSciNet  Google Scholar 

  35. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  36. Flanagan, E. E. & Hinderer, T. Constraining neutron-star tidal Love numbers with gravitational-wave detectors. Phys. Rev. D 77, 021502 (2008).

    Article  ADS  Google Scholar 

  37. Hinderer, T., Lackey, B. D., Lang, R. N. & Read, J. S. Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 81, 123016 (2010).

    Article  ADS  Google Scholar 

  38. Abbott, B. P. et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).

    Article  ADS  Google Scholar 

  39. Chatziioannou, K. Neutron-star tidal deformability and equation-of-state constraints. Gen. Relativ. Gravit. 52, 109 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Lindblom, L. Spectral representations of neutron-star equations of state. Phys. Rev. D 82, 103011 (2010).

    Article  ADS  Google Scholar 

  41. Greif, S. K., Raaijmakers, G., Hebeler, K., Schwenk, A. & Watts, A. L. Equation of state sensitivities when inferring neutron star and dense matter properties. Mon. Not. R. Astron. Soc. 485, 5363–5376 (2019).

    Article  ADS  Google Scholar 

  42. Tews, I., Carlson, J., Gandolfi, S. & Reddy, S. Constraining the speed of sound inside neutron stars with chiral effective field theory interactions and observations. Astrophys. J. 860, 149 (2018).

    Article  ADS  Google Scholar 

  43. Yagi, K. & Yunes, N. Approximate universal relations for neutron stars and quark stars. Phys. Rep. 681, 1–72 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Yagi, K. & Yunes, N. I-Love-Q: unexpected universal relations for neutron stars and quark stars. Science 341, 365–368 (2013).

    Article  ADS  Google Scholar 

  45. Yagi, K. & Yunes, N. I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves and fundamental physics. Phys. Rev. D 88, 023009 (2013).

    Article  ADS  Google Scholar 

  46. Yagi, K. & Yunes, N. Binary Love relations. Class. Quantum Gravity 33, 13LT01 (2016).

    Article  Google Scholar 

  47. Yagi, K. & Yunes, N. Approximate universal relations among tidal parameters for neutron star binaries. Class. Quantum Gravity 34, 015006 (2017).

    Article  ADS  MATH  Google Scholar 

  48. De, S. et al. Tidal deformabilities and radii of neutron stars from the observation of GW170817. Phys. Rev. Lett. 121, 091102 (2018); erratum 121, 259902 (2018).

  49. Maselli, A., Cardoso, V., Ferrari, V., Gualtieri, L. & Pani, P. Equation-of-state-independent relations in neutron stars. Phys. Rev. D 88, 023007 (2013).

    Article  ADS  Google Scholar 

  50. Chatziioannou, K., Haster, C.-J. & Zimmerman, A. Measuring the neutron star tidal deformability with equation-of-state-independent relations and gravitational waves. Phys. Rev. D 97, 104036 (2018).

    Article  ADS  Google Scholar 

  51. Carson, Z., Chatziioannou, K., Haster, C.-J., Yagi, K. & Yunes, N. Equation-of-state insensitive relations after GW170817. Phys. Rev. D 99, 083016 (2019).

    Article  ADS  Google Scholar 

  52. Tan, H., Dexheimer, V., Noronha-Hostler, J. & Yunes, N. The slope, the hill, the drop, and the swoosh: learning about the nuclear matter equation of state from the binary Love relations. Preprint at https://arxiv.org/abs/2111.10260v1 (2021).

  53. Kastaun, W. & Ohme, F. Finite tidal effects in GW170817: observational evidence or model assumptions? Phys. Rev. D 100, 103023 (2019).

    Article  ADS  Google Scholar 

  54. Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017).

    Article  ADS  Google Scholar 

  55. Metzger, B. D. Kilonovae. Living Rev. Relativ. 23, 1 (2020).

    Article  ADS  Google Scholar 

  56. Bauswein, A., Baumgarte, T. W. & Janka, H. T. Prompt merger collapse and the maximum mass of neutron stars. Phys. Rev. Lett. 111, 131101 (2013).

    Article  ADS  Google Scholar 

  57. Fryer, C. L. et al. The fate of the compact remnant in neutron star mergers. Astrophys. J. 812, 24 (2015).

    Article  ADS  Google Scholar 

  58. Lawrence, S., Tervala, J. G., Bedaque, P. F. & Miller, M. C. An upper bound on neutron star masses from models of short gamma-ray bursts. Astrophys. J. 808, 186 (2015).

    Article  ADS  Google Scholar 

  59. Margalit, B. & Metzger, B. D. Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817. Astrophys. J. Lett. 850, L19 (2017).

    Article  ADS  Google Scholar 

  60. Shibata, M. et al. Modeling GW170817 based on numerical relativity and its implications. Phys. Rev. D 96, 123012 (2017).

    Article  ADS  Google Scholar 

  61. Rezzolla, L., Most, E. R. & Weih, L. R. Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars. Astrophys. J. Lett. 852, L25 (2018).

    Article  ADS  Google Scholar 

  62. Ruiz, M., Shapiro, S. L. & Tsokaros, A. GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. Phys. Rev. D 97, 021501 (2018).

    Article  ADS  Google Scholar 

  63. Webb, N. A. & Barret, D. Constraining the equation of state of supra-nuclear dense matter from XMM-Newton observations of neutron stars in globular clusters. Astrophys. J. 671, 727 (2007).

    Article  ADS  Google Scholar 

  64. Servillat, M. et al. Neutron star atmosphere composition: the quiescent, low-mass X-ray binary in the globular cluster M28. Mon. Not. R. Astron. Soc. 423, 1556–1561 (2012).

    Article  ADS  Google Scholar 

  65. Catuneanu, A., Heinke, C. O., Sivakoff, G. R., Ho, W. C. G. & Servillat, M. Mass/radius constraints on the quiescent neutron star in M13 using hydrogen and helium atmospheres. Astrophys. J. 764, 145 (2013).

    Article  ADS  Google Scholar 

  66. Lo, K. H., Coleman Miller, M., Bhattacharyya, S. & Lamb, F. K. Determining neutron star masses and radii using energy-resolved waveforms of X-ray burst oscillations. Astrophys. J. 776, 19 (2013); erratum 854, 187 (2018).

  67. Miller, M. C. & Lamb, F. K. Determining neutron star properties by fitting oblate-star waveform models to X-ray burst oscillations. Astrophys. J. 808, 31 (2015).

    Article  ADS  Google Scholar 

  68. Miller, M. C. et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. Lett. 887, L24 (2019).

    Article  ADS  Google Scholar 

  69. Riley, T. E. et al. A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887, L21 (2019).

    Article  ADS  Google Scholar 

  70. Miller, M. C. et al. The radius of PSR J0740+6620 from NICER and XMM-Newton data. Astrophys. J. Lett. 918, L28 (2021).

    Article  ADS  Google Scholar 

  71. Riley, T. E. et al. A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-Newton spectroscopy. Astrophys. J. Lett. 918, L27 (2021).

    Article  ADS  Google Scholar 

  72. Miller, M. C. et al. The radius of PSR J0740+6620 from NICER and XMM-Newton data. Astrophys. J. Lett. 918, L28 (2021).

    Article  ADS  Google Scholar 

  73. Bailes, M. et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys. 3, 344–366 (2021).

    Article  Google Scholar 

  74. Bauswein, A. & Blacker, S. Impact of quark deconfinement in neutron star mergers and hybrid star mergers. Eur. Phys. J. Spec. Top. 229, 3595–3604 (2020).

    Article  Google Scholar 

  75. Blaschke, D. & Cierniak, M. Studying the onset of deconfinement with multi-messenger astronomy of neutron stars. Astron. Nachr. 342, 227–233 (2021).

    Article  ADS  Google Scholar 

  76. Tan, H., Dore, T., Dexheimer, V., Noronha-Hostler, J. & Yunes, N. Extreme matter meets extreme gravity: ultra-heavy neutron stars with phase transitions. Phys. Rev. D 105, 023018 (2021).

    Article  ADS  Google Scholar 

  77. Carson, Z. Probing Fundamental Physics with Gravitational Waves. PhD thesis, Univ. Virginia (2020).

  78. Buchdahl, H. A. General relativistic fluid spheres. Phys. Rev. 116, 1027–1034 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Hinderer, T. Tidal Love numbers of neutron stars. Astrophys. J. 677, 1216–1220 (2008).

    Article  ADS  Google Scholar 

  80. Binnington, T. & Poisson, E. Relativistic theory of tidal Love numbers. Phys. Rev. D 80, 084018 (2009).

    Article  ADS  Google Scholar 

  81. Damour, T. & Nagar, A. Relativistic tidal properties of neutron stars. Phys. Rev. D 80, 084035 (2009).

    Article  ADS  Google Scholar 

  82. Racine, E. & Flanagan, E. E. Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies. Phys. Rev. D 71, 044010 (2005); erratum 88, 089903 (2013).

Download references

Acknowledgements

The authors thank K. Chatziioannou and J. Noronha-Hostler for carefully reading the manuscript and giving us valuable comments. N.Y. acknowledges support from National Science Foundation (NSF) grant AST award no. 2009268 and the Simons Foundation. M.C.M. acknowledges support from NASA ADAP grant 80NSSC21K0649. N.Y. and M.C.M. performed part of their work on this paper at the Aspen Center for Physics, which is supported by NSF grant PHY-1607611. K.Y. acknowledges support from NSF grant PHY-1806776, NASA grant 80NSSC20K0523, a Sloan Foundation Research Fellowship and the Owens Family Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Nicolás Yunes, M. Coleman Miller or Kent Yagi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physic thanks Nanda Rea, Scott Ransom and the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Supranuclear densities

Densities above nuclear saturation 2.7 × 1014 g cm−3.

Speed of sound

cs = (dp/dε)1/2, that is, the square root of the derivative of the pressure p with respect to the energy density ε.

Primary stable branch

First stable range of masses and radii in the mass–radius diagram of neutron stars where the mass increases as the central density increases.

Magnetic braking

Decrease in rotational angular momentum of a star because of the interaction of the star’s magnetic field with ejected ionized material that escapes the star and is transported along the magnetic field lines.

High-Lorentz-factor electrons

The Lorentz factor of electrons is \(\Gamma ={(1-{v}^{2}/{c}^{2})}^{-1/2}\), where v is the electron velocity and c is the speed of light. A high Lorentz factor, Γ  1, corresponds to electron velocities close to the speed of light.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunes, N., Miller, M.C. & Yagi, K. Gravitational-wave and X-ray probes of the neutron star equation of state. Nat Rev Phys 4, 237–246 (2022). https://doi.org/10.1038/s42254-022-00420-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00420-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing