Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-Fourier phonon heat conduction at the microscale and nanoscale

Abstract

The description of phonon heat conduction has typically been based on Fourier diffusion theory. However, over the past three decades, a host of interesting phonon transport phenomena beyond the Fourier diffusion picture have drawn much attention. Although most of the studies focused on classical size effects that lead to reduced thermal conductivity, other phenomena have been observed, often at the microscale and nanoscale, that are either completely novel or appear only at elevated temperatures. Examples are the prediction and observation of phonon second sound at high temperatures, quantized heat conduction and Anderson localization. These developments reveal rich phonon heat conduction phenomena analogous to those of electrical conduction. This Review discusses different non-Fourier heat conduction regimes (including the Casimir–Knudsen classical size effect regime), phonon hydrodynamics, the coherent phonon transport regimes (including localization and quantization of heat conduction) and the possibility of divergent heat conduction in low dimensions.

Key points

  • The Casimir–Knudsen classical size effects occur not only when phonons are dominantly scattered at boundaries, but also when the size of the heat source is comparable to or smaller than the phonon mean free path.

  • Phonon hydrodynamic transport has been observed experimentally at temperatures over 100 K in graphite via second sound measurements and predicted to exist even at room temperature in some two-dimensional materials.

  • A coherent heat conduction effect has been observed in superlattices because mid-to-high frequency phonons are strongly scattered at individual interfaces, making the relative contribution of low-frequency coherent phonons to heat conduction dominant.

  • Impacts of phonon Anderson localization on heat conduction have been observed in superlattices with nanodots embedded at interfaces around 30–50 K.

  • Quantized phonon heat conduction has been observed in the sub-Kelvin range.

  • Theories have predicted that the thermal conductivity of one- and two-dimensional materials can be divergent with length, although such predictions await experimental demonstration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of heat conduction regimes.
Fig. 2: Classical size effects in silicon.
Fig. 3: Phonon hydrodynamic transport regime.
Fig. 4: Coherent phonon transport.
Fig. 5: Transition from three dimensions to one dimension and divergence of thermal conductivity.

Similar content being viewed by others

References

  1. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1997).

  2. Ferry, D. Transport in Nanostructures (Cambridge Univ. Press, 1997).

  3. Guo, H., Ilseven, E., Falkovich, G. & Levitov, L. Higher-than-ballistic conduction of viscous electron flows. Proc. Natl Acad. Sci. USA 114, 3068–3073 (2016).

    Article  ADS  Google Scholar 

  4. Casimir, H. B. G. Note on the conduction of heat in crystals. Physica 5, 495–500 (1938).

    Article  ADS  Google Scholar 

  5. Cahill, D. G. et al. Nanoscale thermal transport. II. 2003−2012. Appl. Phys. Rev. 1, 011305 (2014).

    Article  ADS  Google Scholar 

  6. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    Article  ADS  Google Scholar 

  7. Henry, A., Prasher, R. & Majumdar, A. Five thermal energy grand challenges for decarbonization. Nat. Energy 5, 635–637 (2020).

    Article  ADS  Google Scholar 

  8. Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

    Article  ADS  Google Scholar 

  9. Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).

    Article  ADS  Google Scholar 

  10. Luckyanova, M. N. et al. Phonon localization in heat conduction. Sci. Adv. 4, eeat9460 (2018).

    Article  ADS  Google Scholar 

  11. Huberman, S. et al. Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019).

    Article  ADS  Google Scholar 

  12. Goodson, K. E. & Ju, Y. S. Heat conduction in novel electronic films. Annu. Rev. Mater. Sci. 29, 261–293 (1999).

    Article  ADS  Google Scholar 

  13. Lepri, S., Livi, R., Politi, A. & Campbell, D. K. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  14. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011).

    Article  ADS  Google Scholar 

  15. Gu, X., Wei, Y., Yin, X., Li, B. & Yang, R. Colloquium: Phononic thermal properties of two-dimensional materials. Rev. Mod. Phys. 90, 41002 (2018).

    Article  Google Scholar 

  16. Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J. & Dames, C. Thermal diodes, regulators, and switches: physical mechanisms and potential applications. Appl. Phys. Rev. 4, 041304 (2017).

    Article  ADS  Google Scholar 

  17. Chen, G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford Univ. Press, 2005).

  18. Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. https://doi.org/10.1038/s41563-021-00918-3 (2021).

  19. Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 2001).

  20. de Haas, W. J. & Biermasz, T. The dependence on thickness of the thermal resistance of crystals at low temperatures. Physica 5, 619–624 (1938).

    Article  ADS  Google Scholar 

  21. Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).

    Article  ADS  Google Scholar 

  22. Fuchs, K. The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Camb. Phil. Soc. 34, 100–108 (1938).

    Article  ADS  Google Scholar 

  23. Sondheimer, E. H. The mean free path of electrons in metals. Adv. Phys. 1, 1–42 (1952).

    Article  ADS  MATH  Google Scholar 

  24. Asheghi, M., Leung, Y. K., Wong, S. S. & Goodson, K. E. Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71, 1798–1800 (1997).

    Article  ADS  Google Scholar 

  25. Wang, Z., Alaniz, J. E., Jang, W., Garay, J. E. & Dames, C. Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett. 11, 2206–2213 (2011).

    Article  ADS  Google Scholar 

  26. Chen, R., Lee, J., Lee, W. & Li, D. Thermoelectrics of nanowires. Chem. Rev. 119, 9260–9302 (2019).

    Article  Google Scholar 

  27. Mahan, G. D. & Claro, F. Nonlocal theory of thermal conductivity. Phys. Rev. B 38, 1963–1969 (1988).

    Article  ADS  Google Scholar 

  28. Chen, G. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J. Heat Transf. 118, 539–545 (1996).

    Article  Google Scholar 

  29. Schleeh, J. et al. Phonon black-body radiation limit for heat dissipation in electronics. Nat. Mater. 14, 187–192 (2015).

    Article  ADS  Google Scholar 

  30. Knudsen, M. Kinetic Theory of Gases (Methuen, 1950).

  31. Sverdrup, P. G., Sinha, S., Asheghi, M., Uma, S. & Goodson, K. E. Measurement of ballistic phonon conduction near hotspots in silicon. Appl. Phys. Lett. 78, 3331–3333 (2001).

    Article  ADS  Google Scholar 

  32. Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2010).

    Article  ADS  Google Scholar 

  33. Koh, Y. & Cahill, D. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207 (2007).

    Article  ADS  Google Scholar 

  34. Minnich, A. J. et al. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011).

    Article  ADS  Google Scholar 

  35. Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015).

    Article  ADS  Google Scholar 

  36. Zeng, L. et al. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures. Sci. Rep. 5, 17131 (2015).

    Article  ADS  Google Scholar 

  37. Minnich, A. J. Determining phonon mean free paths from observations of quasiballistic thermal transport. Phys. Rev. Lett. 109, 205901 (2012).

    Article  ADS  Google Scholar 

  38. Yang, F. & Dames, C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys. Rev. B 87, 035437 (2013).

    Article  ADS  Google Scholar 

  39. Johnson, J. A. et al. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013).

    Article  ADS  Google Scholar 

  40. Huberman, S. et al. Unifying first-principles theoretical predictions and experimental measurements of size effects in thermal transport in SiGe alloys. Phys. Rev. Mater. 1, 054601 (2017).

    Article  Google Scholar 

  41. Bencivenga, F. et al. Nanoscale transient gratings excited and probed by extreme ultraviolet femtosecond pulses. Sci. Adv. 5, eaaw5805 (2019).

    Article  ADS  Google Scholar 

  42. Pan, Y., Zhou, J. & Chen, G. Quantifying thermal transport in amorphous silicon using mean free path spectroscopy. Phys. Rev. B 101, 144203 (2020).

    Article  ADS  Google Scholar 

  43. Zeng, L. & Chen, G. Disparate quasiballistic heat conduction regimes from periodic heat sources on a substrate. J. Appl. Phys. 116, 064307 (2014).

    Article  ADS  Google Scholar 

  44. Wilson, R. B. & Cahill, D. G. Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments. Nat. Commun. 5, 5075 (2014).

    Article  ADS  Google Scholar 

  45. Duif, A. M., Jansen, A. G. M. & Wyder, P. Point-contact spectroscopy point-contact spectroscopy. J. Phys. Condens. Matter 1, 3157–3189 (1989).

    Article  ADS  Google Scholar 

  46. Hao, Q., Chen, G. & Jeng, M. S. Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores. J. Appl. Phys. 106, 114321 (2009).

    Article  ADS  Google Scholar 

  47. Peraud, J.-P. M., Landon, C. D. & Hadjiconstantinou, N. G. Monte Carlo methods for solving the Boltzmann transport equation. Annu. Rev. Heat Transf. 17, 205–265 (2014).

    Article  Google Scholar 

  48. Chen, G. Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J. Heat Transf. 119, 220–229 (1997).

    Article  Google Scholar 

  49. Little, W. The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, 334–349 (1959).

    Article  ADS  Google Scholar 

  50. Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    Article  ADS  Google Scholar 

  51. Ravichandran, N. K., Zhang, H. & Minnich, A. J. Spectrally resolved specular reflections of thermal phonons from atomically rough surfaces. Phys. Rev. X 8, 41004 (2018).

    Google Scholar 

  52. Tian, Z., Esfarjani, K. & Chen, G. Enhancing phonon transmission across a Si/Ge interface by atomic roughness: first-principles study with the Green’s function method. Phys. Rev. B 86, 235304 (2012).

    Article  ADS  Google Scholar 

  53. Chalopin, Y. & Volz, S. A microscopic formulation of the phonon transmission at the nanoscale. Appl. Phys. Lett. 103, 051602 (2013).

    Article  ADS  Google Scholar 

  54. Gordiz, K. & Henry, A. A formalism for calculating the modal contributions to thermal interface conductance. N. J. Phys. 17, 103002 (2015).

    Article  Google Scholar 

  55. Torres, P., Royo, M., López-Suárez, M., Shiomi, J. & Rurali, R. Quasiballistic phonon transport from first principles. Phys. Rev. B 102, 144305 (2020).

    Article  ADS  Google Scholar 

  56. Chen, G. Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001).

    Article  ADS  Google Scholar 

  57. Hua, C., Lindsay, L., Chen, X. & Minnich, A. J. Generalized Fourier’s law for nondiffusive thermal transport: theory and experiment. Phys. Rev. B 100, 085203 (2019).

    Article  ADS  Google Scholar 

  58. Kwon, O., Wehmeyer, G. & Dames, C. Modified ballistic-diffusive equations for obtaining phonon mean free path spectrum from ballistic thermal resistance: I. Introduction and validation of equations. Nanosc. Microsc. Thermophys. Eng. 23, 259–273 (2019).

    Article  ADS  Google Scholar 

  59. Vermeersch, B., Carrete, J., Mingo, N. & Shakouri, A. Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations. Phys. Rev. B 91, 085202 (2015).

    Article  ADS  Google Scholar 

  60. Li, S. N. & Cao, B. Y. Anomalous heat diffusion from fractional Fokker–Planck equation. Appl. Math. Lett. 99, 105992 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  61. Peierls, R. Zur kinetischen theorie der Warmeleitung in Kristallen. Ann. Phys. 395, 1055–1101 (1929).

    Article  MATH  Google Scholar 

  62. London, F. Liquid helium and the Bose−Einstein degeneracy. Nature 141, 643–644 (1938).

    Article  ADS  Google Scholar 

  63. Tisza, L. Transport phenomena in helium II. Nature 141, 913 (1938).

    Article  ADS  Google Scholar 

  64. Landau, L. Theory of the superfluidity of helium II. Phys. Rev. 60, 356 (1941).

    Article  ADS  MATH  Google Scholar 

  65. Peshkov, V. P. Second sound in helium II. Proc. USSR Acad. Sci. 45, 365–366 (1944).

    Google Scholar 

  66. Ward, J. C. & Wilks, J. Second sound and the thermo-mechanical effect at very low temperatures. Phil. Mag. 43, 48–50 (1952).

    Article  Google Scholar 

  67. Prohofsky, E. W. & Krumhansl, J. A. Second-sound propagation in dielectric solids. Phys. Rev. 133, A1403–A1410 (1964).

    Article  ADS  Google Scholar 

  68. Griffin, A. Brillouin light scattering from crystals in the hydrodynamic region. Rev. Mod. Phys. 40, 167–205 (1968).

    Article  ADS  Google Scholar 

  69. Guyer, R. A. & Krumhansl, J. A. Dispersion relation for second sound in solids. Phys. Rev. 133, A1411–A1417 (1964).

    Article  ADS  Google Scholar 

  70. Joseph, D. D. & Preziosi, L. Heat waves. Rev. Mod. Phys. 61, 41–73 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Guyer, R. A. & Krumhansl, J. A. Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966).

    Article  ADS  Google Scholar 

  72. Guyer, R. A. & Krumhansl, J. A. Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966).

    Article  ADS  Google Scholar 

  73. Cepellotti, A. & Marzari, N. Thermal transport in crystals as a kinetic theory of relaxons. Phys. Rev. X 6, 041013 (2016).

    Google Scholar 

  74. Hardy, R. J. Phonon Boltzmann equation and second sound in solids. Phys. Rev. B 2, 1193 (1970).

    Article  ADS  Google Scholar 

  75. Kwok, P. C. & Martin, P. C. Unified approach to interacting phonon problems. Phys. Rev. 142, 495–504 (1966).

    Article  ADS  Google Scholar 

  76. Enz, C. P. One-particle density, thermal propagation, and second sound in dielectric crystals. Ann. Phys. 173, 114–173 (1968).

    Article  ADS  Google Scholar 

  77. Götze, W. & Michel, K. H. Two-fluid transport equations for lattices. Phys. Rev. 157, 738–743 (1967).

    Article  ADS  Google Scholar 

  78. Beck, H., Meier, P. F. & Thellung, A. Phonon hydrodynamics in solids. Phys. Status Solidi 24, 11–63 (1974).

    Article  ADS  Google Scholar 

  79. Dreyer, W. & Struchtrup, H. Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3–50 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  80. Chemster, M. Second sound in solid. Phys. Rev. 131, 2013–2015 (1963).

    Article  ADS  Google Scholar 

  81. Ackerman, C. C., Bertman, B., Fairbank, H. A. & Guyer, R. A. Second sound in solid helium. Phys. Rev. Lett. 16, 789–791 (1966).

    Article  ADS  Google Scholar 

  82. Ackerman, C. C. & Overton, W. C. Second sound in solid helium-3. Phys. Rev. Lett. 22, 764–767 (1969).

    Article  ADS  Google Scholar 

  83. McNelly, T. F. et al. Heat pulses in NaF: onset of second sound. Phys. Rev. Lett. 24, 100–102 (1970).

    Article  ADS  Google Scholar 

  84. Jackson, H. E., Talker, C. T. & McNelly, T. F. Second sound in NaF. Phys. Rev. Lett. 25, 26 (1970).

    Article  ADS  Google Scholar 

  85. Narayanamurti, V. & Dynes, R. C. Observation of second sound in bismuth. Phys. Rev. Lett. 28, 1461–1465 (1972).

    Article  ADS  Google Scholar 

  86. Pohl, D. W. & Irniger, V. Observation of second sounds in NaF by means of light scattering. Phys. Rev. Lett. 36, 480–483 (1976).

    Article  ADS  Google Scholar 

  87. Mezhov-Deglin, L. P. Measurement of the thermal conductivity of crystalline He4. J. Exp. Theor. Phys. 49, 66–79 (1965).

    Google Scholar 

  88. Kopylov, V. N. & Mezhov-Deglin, L. P. Thermal conductivity of bismuth at low temperatures. JETP Lett. 14, 32 (1971).

    Google Scholar 

  89. Lee, S. & Li, X. Hydrodynamic phonon transport: past, present, and prospect. In Nanoscale Energy Transport: Emerging Phenomena, Methods, and Applications (IOP Publishing, 2020).

  90. Lee, S., Broido, D., Esfarjani, K. & Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015).

    Article  ADS  Google Scholar 

  91. Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015).

    Article  ADS  Google Scholar 

  92. Torres, P., Alvarez, F. X., Cartoixa, X. & Rurali, R. Thermal conductivity and phonon hydrodynamics in transition metal dichalcogenides from first-principles. 2D Mater. 6, 035002 (2019).

    Article  Google Scholar 

  93. Ding, Z. et al. Umklapp scattering is not necessarily resistive. Phys. Rev. B 98, 18 (2018).

    Article  Google Scholar 

  94. Ding, Z. et al. Phonon hydrodynamic heat conduction and knudsen minimum in graphite. Nano Lett. 18, 638–649 (2018).

    Article  ADS  Google Scholar 

  95. Machida, Y., Matsumoto, N., Isono, T. & Behnia, K. Phonon hydrodynamics and ultrahigh–room-temperature thermal conductivity in thin graphite. Science 367, 309–312 (2020).

    Article  ADS  Google Scholar 

  96. Gurevich, V. L. & Tagantsev, A. K. Second sound in ferroelectrics. Ferroelectrics 80, 173–176 (1988).

    Article  Google Scholar 

  97. Martelli, V., Jiménez, J. L., Continentino, M., Baggio-Saitovitch, E. & Behnia, K. Thermal transport and phonon hydrodynamics in strontium titanate. Phys. Rev. Lett. 120, 125901 (2018).

    Article  ADS  Google Scholar 

  98. Torres, P., Seijas-Bellido, J. A., Escorihuela-Sayalero, C., Íñiguez, J. & Rurali, R. Theoretical investigation of lattice thermal conductivity and electrophononic effects in SrTiO3. Phys. Rev. Mater. 3, 044404 (2019).

    Article  Google Scholar 

  99. Hehlen, B., Pérou, A. L., Courtens, E. & Vacher, R. Observation of a doublet in the quasielastic central peak of quantum-paraelectric SrTiO3. Phys. Rev. Lett. 75, 2416–2419 (1995).

    Article  ADS  Google Scholar 

  100. Koreeda, A., Takano, R. & Saikan, S. Second sound in SrTiO3. Phys. Rev. Lett. 99, 2–5 (2007).

    Article  Google Scholar 

  101. Lee, S. & Lindsay, L. Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube. Phys. Rev. B 95, 184304 (2017).

    Article  ADS  Google Scholar 

  102. Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science 351, 1061–1064 (2016).

    Article  ADS  Google Scholar 

  103. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article  ADS  Google Scholar 

  104. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann−Franz law in graphene. Science 351, 1059–1061 (2016).

    Article  ADS  Google Scholar 

  105. Dames, C. & Chen, G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 95, 682–693 (2004).

    Article  ADS  Google Scholar 

  106. Berman, R., Simon, F. E. & Ziman, J. M. The thermal conductivity of diamond at low temperatures. Proc. R. Soc. Lond. Ser. A 220, 171–183 (1953).

    Article  ADS  Google Scholar 

  107. Balandin, A. & Wang, K. L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544–1549 (1998).

    Article  ADS  Google Scholar 

  108. Mingo, N. Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 1–4 (2003).

    Article  Google Scholar 

  109. Volz, S. G. & Chen, G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett. 75, 2056 (1999).

    Article  ADS  Google Scholar 

  110. Narayanamurti, V., Störmer, H. L., Chin, M. A., Gossard, A. C. & Wiegmann, W. Selective transmission of high-frequency phonons by a superlattice: The ‘dielectric’ phonon filter. Phys. Rev. Lett. 43, 2012–2016 (1979).

    Article  ADS  Google Scholar 

  111. Colvard, C., Merlin, R., Klein, M. V. & Gossard, A. C. Observation of folded acoustic phonons in a semiconductor superlattice. Phys. Rev. Lett. 45, 298–301 (1980).

    Article  ADS  Google Scholar 

  112. Yamamoto, A., Mishina, T., Masumoto, Y. & Nakayama, M. Coherent oscillation of zone-folded phonon modes in GaAs−AlAs superlattices. Phys. Rev. Lett. 73, 740–743 (1994).

    Article  ADS  Google Scholar 

  113. Colvard, C. et al. Folded acoustic and quantized optic phonons in (GaAl)As superlattices. Phys. Rev. B 31, 2080–2091 (1985).

    Article  ADS  Google Scholar 

  114. Jusserand, B., Mollot, F., Moison, J. M. & Le Roux, G. Atomic-scale roughness of GaAs/AlAs interfaces: a Raman scattering study of asymmetrical short-period superlattices. Appl. Phys. Lett. 57, 560–562 (1990).

    Article  ADS  Google Scholar 

  115. Yang, B. & Chen, G. Lattice dynamics study of anisotropic heat condution in superlattices. Microscale Thermophys. Eng. 5, 107–116 (2001).

    Article  Google Scholar 

  116. Hyldgaard, P. & Mahan, G. D. Phonon superlattice transport. Phys. Rev. B 56, 10754–10757 (1997).

    Article  ADS  Google Scholar 

  117. Tamura, S., Tanaka, Y. & Maris, H. Phonon group velocity and thermal conduction in superlattices. Phys. Rev. B 60, 2627–2630 (1999).

    Article  ADS  Google Scholar 

  118. Chen, G. Phonon wave heat conduction in thin films and superlattices. J. Heat Transf. 121, 945–953 (1999).

    Article  Google Scholar 

  119. Yang, B. & Chen, G. Phonon heat conduction in superlattices. In Chemistry, Physics, and Materials Science of Thermoelectric Materials, Beyond Bismuth Telluride (eds Kanatzidis, M. G., Mahanti, S. D. & Hogan, T. P.) 147–168 (Springer Science and Business Media, 2002).

  120. Yao, T. Thermal properties of AlAs / GaAs superlattices. Appl. Phys. Lett. 51, 1798–1800 (1987).

    Article  ADS  Google Scholar 

  121. Yu, X. Y., Chen, G., Verma, A. & Smith, J. S. Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure. Appl. Phys. Lett. 67, 3554 (1995).

    Article  ADS  Google Scholar 

  122. Lee, S.-M., Cahill, D. G. & Venkatasubramanian, R. Thermal conductivity of Si-Ge superlattices. Phys. Rev. 70, 2957–2959 (1997).

    Google Scholar 

  123. Liu, W. L., Borca-Tasciuc, T., Chen, G., Liu, J. L. & Wang, K. L. Anisotropic thermal conductivity of ge quantum-dot and symmetrically strained Si/Ge superlattices. J. Nanosci. Nanotechnol. 1, 39–42 (2001).

    Article  Google Scholar 

  124. Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998).

    Article  ADS  Google Scholar 

  125. Capinski, W. S. et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59, 8105 (1999).

    Article  ADS  Google Scholar 

  126. Yang, B. & Chen, G. Partially coherent phonon heat conduction in superlattices. Phys. Rev. B 67, 195311 (2003).

    Article  ADS  Google Scholar 

  127. Venkatasubramanian, R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091–3097 (2000).

    Article  ADS  Google Scholar 

  128. Tong, H. et al. Positive dependence of thermal conductivity on temperature in GeTe/Bi2Te3 superlattices: the contribution of electronic and particle wave lattice thermal conductivity. J. Phys. D 50, 0–5 (2017).

    Article  Google Scholar 

  129. Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2014).

    Article  ADS  Google Scholar 

  130. Simkin, M. & Mahan, G. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927–930 (2000).

    Article  ADS  Google Scholar 

  131. Daly, B. C., Maris, H. J., Imamura, K. & Tamura, S. Molecular dynamics calculation of the thermal conductivity of superlattices. Phys. Rev. B 66, 243011–243017 (2002).

    Article  Google Scholar 

  132. Garg, J. & Chen, G. Minimum thermal conductivity in superlattices: a first-principles formalism. Phys. Rev. B 87, 1–5 (2013).

    Article  Google Scholar 

  133. Cheaito, R. et al. Interplay between total thickness and period thickness in the phonon thermal conductivity of superlattices from the nanoscale to the microscale: Coherent versus incoherent phonon transport. Phys. Rev. B 97, 1–7 (2018).

    Article  Google Scholar 

  134. Mendoza, J. & Chen, G. Anderson localization of thermal phonons leads to a thermal conductivity maximum. Nano Lett. 16, 7616–7620 (2016).

    Article  ADS  Google Scholar 

  135. Song, D. & Chen, G. Thermal conductivity of periodic microporous silicon films. Appl. Phys. Lett. 84, 687–689 (2004).

    Article  ADS  Google Scholar 

  136. Marconnet, A. M., Asheghi, M. & Goodson, K. E. From the Casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology. J. Heat. Transf. 135, 061601 (2013).

    Article  Google Scholar 

  137. Zen, N., Puurtinen, T. A., Isotalo, T. J., Chaudhuri, S. & Maasilta, I. J. Engineering thermal conductance using a two-dimensional phononic crystal. Nat. Commun. 5, 3435 (2014).

    Article  ADS  Google Scholar 

  138. Anufriev, R., Ramiere, A., Maire, J. & Nomura, M. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures. Nat. Commun. 8, 15505 (2017).

    Article  ADS  Google Scholar 

  139. Sledzinska, M. et al. 2D phononic crystals: progress and prospects in hypersound and thermal transport engineering. Adv. Funct. Mater. 30, https://doi.org/10.1002/adfm.201904434 (2020).

  140. Juntunen, T., Vänskä, O. & Tittonen, I. Anderson localization quenches thermal transport in aperiodic superlattices. Phys. Rev. Lett. 122, 105901 (2019).

    Article  ADS  Google Scholar 

  141. Qiu, B., Chen, G. & Tian, Z. Effects of aperiodicity and roughness on coherent heat conduction in superlattices. Nanoscale Microscale Thermophys. Eng. 19, 272–278 (2015).

    Article  ADS  Google Scholar 

  142. Tian, Z. et al. Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations. Phys. Rev. B 85, 184303 (2012).

    Article  ADS  Google Scholar 

  143. Hu, R. et al. Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction. Phys. Rev. X 10, 21050 (2020).

    Google Scholar 

  144. Costescu, R. M., Cahill, D. G., Fabreguette, F. H., Sechrist, Z. A. & George, S. M. Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303, 989–990 (2004).

    Article  ADS  Google Scholar 

  145. Vaziri, S. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 5, eaax1325 (2019).

    Article  ADS  Google Scholar 

  146. Angelescu, D. E., Cross, M. C. & Roukes, M. L. Heat transport in mesoscopic systems. Superlattices Microstruct. 23, 673–689 (1998).

    Article  ADS  Google Scholar 

  147. Rego, L. G. C. & Kirczenow, G. Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232–235 (1998).

    Article  ADS  Google Scholar 

  148. Blencowe, M. P. Quantum energy flow, dissipation and decoherence in mesoscopic dielectric structures. Phys. B 263–264, 459–461 (1999).

    Article  ADS  Google Scholar 

  149. Tavakoli, A. et al. Heat conduction measurements in ballistic 1D phonon waveguides indicate breakdown of the thermal conductance quantization. Nat. Commun. 9, 4287 (2018).

    Article  ADS  Google Scholar 

  150. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  151. Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Springer, 2006).

  152. Berber, S., Kwon, Y.-K. & Tomanek, D. Usually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000).

    Article  ADS  Google Scholar 

  153. Kim, P., Shi, L., Majumdar, A. & McEuen, P. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).

    Article  ADS  Google Scholar 

  154. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  ADS  Google Scholar 

  155. Wang, Q., Guo, R., Chi, C., Zhang, K. & Huang, B. Direct first-principle-based study of mode-wise in-plane phonon transport in ultrathin silicon films. Int. J. Heat. Mass. Transf. 143, 118507 (2019).

    Article  Google Scholar 

  156. Fu, B., Parrish, K. D., Kim, H. Y., Tang, G. & McGaughey, A. J. H. Phonon confinement and transport in ultrathin films. Phys. Rev. B 101, 1–14 (2020).

    Article  Google Scholar 

  157. Henry, A., Chen, G., Plimpton, S. J. & Thompson, A. 1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations. Phys. Rev. B 82, 144308 (2010).

    Article  ADS  Google Scholar 

  158. Lepri, S., Livi, R. & Politi, A. Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78, 1896–1899 (1997).

    Article  ADS  Google Scholar 

  159. Lepri, S. (ed.) Thermal Transport in Low Dimensions, from Statistical Physics to Nanoscale Heat Transfer (Springer, 2016).

  160. Fermi, E. Collected papers of Enrico Fermi Vol. 2, No. 266, 977–987 (Univ. Chicago Press, 1965).

  161. Pace, S. D. & Campbell, D. K. Behavior and breakdown of higher-order Fermi−Pasta−Ulam−Tsingou recurrences. Chaos 29, 023132 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  162. Narayan, O. & Ramaswamy, S. Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 200601 (2002).

    Article  ADS  Google Scholar 

  163. Lepri, S. Relaxation of classical many-body Hamiltonians in one dimension. Phys. Rev. E . 58, 7165–7171 (1998).

    Article  ADS  Google Scholar 

  164. Toda, M. Solitons and heat conduction. Phys. Scr. 20, 424–430 (1979).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  165. Pereverzev, A. Fermi−Pasta−Ulam beta lattice: Peierls equation and anomalous heat conductivity. Phys. Rev. E 68, 056124 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  166. Onorato, M., Vozella, L., Proment, D. & Lvov, Y. V. Route to thermalization in the α-Fermi−Pasta−Ulam system. Proc. Natl Acad. Sci. USA 112, 4208–4213 (2015).

    Article  ADS  Google Scholar 

  167. Zhou, Y., Zhang, X. & Hu, M. Nonmonotonic diameter dependence of thermal conductivity of extremely thin Si nanowires: competition between hydrodynamic phonon flow and boundary scattering. Nano Lett. 17, 1269–1276 (2017).

    Article  ADS  Google Scholar 

  168. Gireesan, S., Torres, P., Alvarez, F. X. & Bobbert, P. A. Diameter-dependent thermal conductivity of ultrathin GaP nanowires: a molecular dynamics study. Phys. Rev. B 101, 1–7 (2020).

    Article  Google Scholar 

  169. Maruyama, S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys. B 323, 193–195 (2002).

    Article  ADS  Google Scholar 

  170. Guo, Z., Zhang, D. & Gong, X. G. Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95, 163103 (2009).

    Article  ADS  Google Scholar 

  171. Mingo, N. & Broido, D. A. Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”. Nano Lett. 5, 1221–1225 (2005).

    Article  ADS  Google Scholar 

  172. Xu, X. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014).

    Article  ADS  Google Scholar 

  173. Hsiao, T.-K. et al. Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously interfaced nanowires. Phys. Rev. B 91, 035406 (2015).

    Article  ADS  Google Scholar 

  174. Smith, B. et al. Mean free path suppression of low-frequency phonons in SiGe nanowires. Nano Lett. 20, 8384–8391 (2020).

    Article  ADS  Google Scholar 

  175. Henry, A. & Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 101, 235502 (2008).

    Article  ADS  Google Scholar 

  176. Henry, A. & Chen, G. Anomalous heat conduction in polyethylene chains: theory and molecular dynamics simulations. Phys. Rev. B 79, 144305 (2009).

    Article  ADS  Google Scholar 

  177. Crnjar, A., Melis, C. & Colombo, L. Assessing the anomalous superdiffusive heat transport in a single one-dimensional PEDOT chain. Phys. Rev. Mater. 2, 2–7 (2018).

    Google Scholar 

  178. Wang, Z. et al. Ultrafast flash thermal conductance of molecular chains. Science 317, 787–790 (2007).

    Article  ADS  Google Scholar 

  179. Lin, Z. & Rubtsov, I. V. Constant-speed vibrational signaling along polyethyleneglycol chain up to 60-Å distance. Proc. Natl Acad. Sci. USA 109, 1413–1418 (2012).

    Article  ADS  Google Scholar 

  180. Cuevas, J. C. et al. Quantized thermal transport in single-atom junctions. Science 355, 1192−1195 (2017).

    Article  ADS  Google Scholar 

  181. Choy, C. L. Thermal conductivity of polymers. Polymer 18, 984–1004 (1977).

    Article  Google Scholar 

  182. Shen, S., Henry, A., Tong, J., Zheng, R. & Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251–255 (2010).

    Article  ADS  Google Scholar 

  183. Chiloyan, V., Huberman, S., Maznev, A. A., Nelson, K. A. & Chen, G. Thermal transport exceeding bulk heat conduction due to nonthermal micro/nanoscale phonon populations. Appl. Phys. Lett. 116, 163102 (2020).

    Article  ADS  Google Scholar 

  184. Simoncelli, M., Marzari, N. & Mauri, F. Unified theory of thermal transport in crystals and glasses. Nat. Phys. 15, 809–813 (2019).

    Article  Google Scholar 

  185. Isaeva, L., Barbalinardo, G., Donadio, D. & Baroni, S. Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach. Nat. Commun. 10, 3853 (2019).

    Article  ADS  Google Scholar 

  186. Lindenberg, A. M., Johnson, S. L. & Reis, D. A. Visualization of atomic-scale motions in materials via femtosecond X-ray scattering techniques. Annu. Rev. Mater. Res. 47, 425–449 (2017).

    Article  Google Scholar 

  187. Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10, 614–619 (2011).

    Article  ADS  Google Scholar 

  188. Wehmeyer, G., Bustillo, K. C., Minor, A. M. & Dames, C. Measuring temperature-dependent thermal diffuse scattering using scanning transmission electron microscopy. Appl. Phys. Lett. 113, 253101 (2018).

    Article  ADS  Google Scholar 

  189. Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).

    Article  ADS  Google Scholar 

  190. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  ADS  Google Scholar 

  191. Glassbrenner, C. J. & Slack, G. A. Thermal conductivity of silicon and germanium from 3°K to the melting point. Phys. Rev. 134, A1058 (1964).

    Article  ADS  Google Scholar 

  192. Liu, W. & Asheghi, M. Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat. Transf. 128, 75–83 (2006).

    Article  Google Scholar 

  193. Lee, J. et al. Thermal transport in silicon nanowires at high temperature up to 700 K. Nano Lett. 16, 4133–4140 (2016).

    Article  ADS  Google Scholar 

  194. Cuffe, J. et al. Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes. Phys. Rev. B 91, 245423 (2015).

    Article  ADS  Google Scholar 

  195. Ghosh, S. et al. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010).

    Article  ADS  Google Scholar 

  196. Jang, W., Bao, W., Jing, L., Lau, C. & Dames, C. Thermal conductivity of suspended few-layer graphene by a modified T-bridge method. Appl. Phys. Lett. 103, 133102 (2013).

    Article  ADS  Google Scholar 

  197. Pettes, M. T., Jo, I., Yao, Z. & Shi, L. Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett. 11, 1195–1200 (2011).

    Article  ADS  Google Scholar 

  198. Lindsay, L., Broido, D. A. & Mingo, N. (2011) Flexural phonons and thermal transport in multilayer graphene and graphite. Phys. Rev. B 83, 235428 (2011).

    Article  ADS  Google Scholar 

  199. Singh, D., Murthy, J. Y. & Fisher, T. S. Mechanism of thermal conductivity reduction in few-layer graphene. J. Appl. Phys. 110, 044317 (2011).

    Article  ADS  Google Scholar 

  200. Kuang, Y., Lindsay, L. & Huang, B. Unusual enhancement in intrinsic thermal conductivity of multilayer graphene by tensile strains. Nano Lett. 15, 6121–6127 (2015).

    Article  ADS  Google Scholar 

  201. Wei, Z., Ni, Z., Bi, K., Chen, M. & Chen, Y. In-plane lattice thermal conductivities of multilayer graphene films. Carbon 49, 2653–2658 (2011).

    Article  Google Scholar 

  202. Latour, B., Volz, S. & Chalopin, Y. Microscopic description of thermal-phonon coherence: from coherent transport to diffuse interface scattering in superlattices. Phys. Rev. B 90, 014307 (2014).

    Article  ADS  Google Scholar 

  203. Latour, B. & Chalopin, Y. Distinguishing between spatial coherence and temporal coherence of phonons. Phys. Rev. B 95, 214310 (2017).

    Article  ADS  Google Scholar 

  204. Born, M. & Wolf, E. Principles of Optics (Pergamon, 1980).

  205. Yang L. et al. Observation of Superdiffusive Phonon Transport in Aligned Atomic Chains. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00884-6 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks many former and current group members who contributed to his understanding of the materials discussed in this Review, especially X. Qian for his help with some of the figures. The author acknowledges past funding from the NSF, the Department of Energy (DOE) and the Office of Naval Research (ONR), as well as current funding by the ONR under Multidisciplinary University Research Initiative grant N00014-16-1-2436 (for high thermal conductivity materials), and the US DOE–Basic Energy Sciences (award no. DE-FG02-02ER45977 (polymers), and the NSF under award CBET 1851052 (thermal metrology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Riccardo Rurali, Bekir Yilbas and Bing-Yang Cao for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G. Non-Fourier phonon heat conduction at the microscale and nanoscale. Nat Rev Phys 3, 555–569 (2021). https://doi.org/10.1038/s42254-021-00334-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00334-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing