Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Revealing key structural features hidden in liquids and glasses

Abstract

A great success of solid state physics comes from the characterization of crystal structures in the reciprocal (wave vector) space. The power of structural characterization in Fourier space originates from the breakdown of translational and rotational symmetries. However, unlike crystals, liquids and amorphous solids possess continuous translational and rotational symmetries on a macroscopic scale, which makes Fourier space analysis much less effective. Lately, several studies have revealed local breakdown of translational and rotational symmetries even for liquids and glasses. Here, we review several mathematical methods used to characterize local structural features of apparently disordered liquids and glasses in real space. We distinguish two types of local ordering in liquids and glasses: energy-driven and entropy-driven. The former, which is favoured energetically by symmetry-selective directional bonding, is responsible for anomalous behaviours commonly observed in water-type liquids such as water, silicon, germanium and silica. The latter, which is often favoured entropically, shows connections with the heterogeneous, slow dynamics found in hard-sphere-like glass-forming liquids. We also discuss the relationship between such local ordering and crystalline structures and its impact on glass-forming ability.

Key points

  • Liquids and glasses possess neither long-range translational nor orientational order but still tend to form local structural order, which is not easily accessed by conventional scattering (wave vector) analysis.

  • Local structural analysis in real space — based on modern mathematical descriptions of geometrical structures and topologies — is a powerful tool to characterize the structure and elucidate its link to the physical properties of liquids.

  • Local structural ordering lowers the free energy locally and can be driven energetically and entropically.

  • Energetically driven ordering — which is commonly seen in liquids with specific directional bonding, such as water and silica — usually leads to the formation of spatially localized structures with translational order.

  • Entropically driven ordering — which is often seen in liquids interacting with isotropic potentials, such as hard spheres — usually leads to the formation of spatially extended structures with orientational order.

  • The understanding of local structural ordering in liquids brings new physical insights into the role of many-body correlations in many mysterious phenomena of fundamental importance in liquids such as the anomalies of water, liquid–liquid transition, glass transition and crystallization.

  • The knowledge of local orders in liquids provides invaluable information on the interpretation of the physical quantities experimentally accessed by scattering and spectroscopic measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major structural descriptors for water.
Fig. 2: Major structural descriptors for glass-forming liquids.
Fig. 3: Comparison of structural descriptors for TIP5P water.
Fig. 4: Development of structural order in hard-sphere-like liquids.
Fig. 5: Correlation between dynamics and structural descriptors.

Similar content being viewed by others

References

  1. Hansen, J.-P. & McDonald, I. R. Theory of simple liquids (Elsevier, 1990).

  2. Finney, J. L. Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. A 319, 479–493 (1970).

    Article  ADS  Google Scholar 

  3. Snook, I., Van Megen, W. & Pusey, P. Structure of colloidal glasses calculated by the molecular-dynamics method and measured by light scattering. Phys. Rev. A 43, 6900–6907 (1991).

    Article  ADS  Google Scholar 

  4. Cargill, G. III Dense random packing of hard spheres as a structural model for noncrystalline metallic solids. J. Appl. Phys. 41, 2248–2250 (1970).

    Article  ADS  Google Scholar 

  5. Truskett, T. M., Torquato, S., Sastry, S., Debenedetti, P. G. & Stillinger, F. H. Structural precursor to freezing in the hard-disk and hard-sphere systems. Phys. Rev. E 58, 3083–3088 (1998).

    Article  ADS  Google Scholar 

  6. O’Malley, B. & Snook, I. Structure of hard-sphere fluid and precursor structures to crystallization. J. Chem. Phys. 123, 054511 (2005).

    Article  ADS  Google Scholar 

  7. Shintani, H. & Tanaka, H. Frustration on the way to crystallization in glass. Nat. Phys. 2, 200–206 (2006).

    Article  Google Scholar 

  8. Russo, J. & Tanaka, H. The microscopic pathway to crystallization in supercooled liquids. Sci. Rep. 2, 505 (2012).

    Article  ADS  Google Scholar 

  9. Tanaka, H. Bond orientational order in liquids: towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization. Eur. Phys. J. E 35, 113 (2012).

    Article  Google Scholar 

  10. Frank, F. C. Supercooling of liquids. Proc. R. Soc. Lond. A 215, 43–46 (1952).

    Article  ADS  Google Scholar 

  11. Tanaka, H. Simple view of waterlike anomalies of atomic liquids with directional bonding. Phys. Rev. B 66, 064202 (2002).

    Article  ADS  Google Scholar 

  12. Soper, A. K. & Ricci, M. A. Structures of high-density and low-density water. Phys. Rev. Lett. 84, 2881–2884 (2000).

    Article  ADS  Google Scholar 

  13. Yan, Z. et al. Structure of the first-and second-neighbor shells of simulated water: quantitative relation to translational and orientational order. Phys. Rev. E 76, 051201 (2007).

    Article  ADS  Google Scholar 

  14. Saika-Voivod, I., Sciortino, F. & Poole, P. H. Computer simulations of liquid silica: equation of state and liquid–liquid phase transition. Phys. Rev. E 63, 011202 (2000).

    Article  ADS  Google Scholar 

  15. Cuthbertson, M. J. & Poole, P. H. Mixturelike behavior near a liquid-liquid phase transition in simulations of supercooled water. Phys. Rev. Lett. 106, 115706 (2011).

    Article  ADS  Google Scholar 

  16. Russo, J. & Tanaka, H. Understanding water’s anomalies with locally favoured structures. Nat. Commun. 5, 3556 (2014).

    Article  ADS  Google Scholar 

  17. Shi, R. & Tanaka, H. Impact of local symmetry breaking on the physical properties of tetrahedral liquids. Proc. Natl Acad. Sci. USA 115, 1980–1985 (2018).

    Article  ADS  Google Scholar 

  18. Shi, R. & Tanaka, H. Microscopic structural descriptor of liquid water. J. Chem. Phys. 148, 124503 (2018).

    Article  ADS  Google Scholar 

  19. Shi, R., Russo, J. & Tanaka, H. Origin of the emergent fragile-to-strong transition in supercooled water. Proc. Natl Acad. Sci. USA 115, 9444–9449 (2018).

    Article  ADS  Google Scholar 

  20. Shi, R., Russo, J. & Tanaka, H. Common microscopic structural origin for water’s thermodynamic and dynamic anomalies. J. Chem. Phys. 149, 224502 (2018).

    Article  Google Scholar 

  21. Shiratani, E. & Sasai, M. Molecular scale precursor of the liquid–liquid phase transition of water. J. Chem. Phys. 108, 3264–3276 (1998).

    Article  ADS  Google Scholar 

  22. Appignanesi, G. A., Fris, J. R. & Sciortino, F. Evidence of a two-state picture for supercooled water and its connections with glassy dynamics. Eur. Phys. J E 29, 305–310 (2009).

    Article  Google Scholar 

  23. Accordino, S., Fris, J. R., Sciortino, F. & Appignanesi, G. Quantitative investigation of the two-state picture for water in the normal liquid and the supercooled regime. Eur. Phys. J E 34, 48 (2011).

    Article  Google Scholar 

  24. Singh, R. S., Biddle, J. W., Debenedetti, P. G. & Anisimov, M. A. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water. J. Chem. Phys. 144, 144504 (2016).

    Article  ADS  Google Scholar 

  25. Wikfeldt, K., Nilsson, A. & Pettersson, L. G. Spatially inhomogeneous bimodal inherent structure of simulated liquid water. Phys. Chem. Chem. Phys. 13, 19918–19924 (2011).

    Article  Google Scholar 

  26. de Oca, J. M. M., Fris, J. A. R., Accordino, S. R., Malaspina, D. C. & Appignanesi, G. A. Structure and dynamics of high-and low-density water molecules in the liquid and supercooled regimes. Eur. Phys. J. E 39, 124 (2016).

    Article  Google Scholar 

  27. Altabet, Y. E., Singh, R. S., Stillinger, F. H. & Debenedetti, P. G. Thermodynamic anomalies in stretched water. Langmuir 33, 11771–11778 (2017).

    Article  Google Scholar 

  28. Chau, P.-L. & Hardwick, A. J. A new order parameter for tetrahedral configurations. Mol. Phys. 93, 511–518 (1998).

    Article  ADS  Google Scholar 

  29. Errington, J. R. & Debenedetti, P. G. Relationship between structural order and the anomalies of liquid water. Nature 409, 318–321 (2001).

    Article  ADS  Google Scholar 

  30. Xu, L. et al. Appearance of a fractional stokes–einstein relation in water and a structural interpretation of its onset. Nat. Phys. 5, 565–569 (2009).

    Article  Google Scholar 

  31. Kumar, P., Buldyrev, S. V. & Stanley, H. E. A tetrahedral entropy for water. Proc. Natl Acad. Sci. USA 106, 22130–22134 (2009).

    Article  ADS  Google Scholar 

  32. Overduin, S. & Patey, G. Understanding the structure factor and isothermal compressibility of ambient water in terms of local structural environments. J. Phys. Chem. B 116, 12014–12020 (2012).

    Article  Google Scholar 

  33. Overduin, S. & Patey, G. An analysis of fluctuations in supercooled tip4p/2005 water. J. Chem. Phys. 138, 184502 (2013).

    Article  ADS  Google Scholar 

  34. Overduin, S. & Patey, G. Fluctuations and local ice structure in model supercooled water. J. Chem. Phys. 143, 094504 (2015).

    Article  ADS  Google Scholar 

  35. Sellberg, J. A. et al. Ultrafast x-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510, 381–384 (2014).

    Article  ADS  Google Scholar 

  36. Ni, Y. & Skinner, J. Evidence for a liquid-liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line. J. Chem. Phys. 144, 214501 (2016).

    Article  ADS  Google Scholar 

  37. Ni, Y. & Skinner, J. IR spectra of water droplets in no man’s land and the location of the liquid-liquid critical point. J. Chem. Phys. 145, 124509 (2016).

    Article  ADS  Google Scholar 

  38. Pathak, H. et al. The structural validity of various thermodynamical models of supercooled water. J. Chem. Phys. 145, 134507 (2016).

    Article  ADS  Google Scholar 

  39. Luzar, A. et al. Hydrogen-bond kinetics in liquid water. Nature 379, 55–57 (1996).

    Article  ADS  Google Scholar 

  40. Luzar, A. & Chandler, D. Effect of environment on hydrogen bond dynamics in liquid water. Phys. Rev. Lett. 76, 928–931 (1996).

    Article  ADS  Google Scholar 

  41. Shi, R. & Tanaka, H. Distinct signature of local tetrahedral ordering in the scattering function of covalent liquids and glasses. Sci. Adv. 5, eaav3194 (2019).

    Article  Google Scholar 

  42. Sharma, R., Chakraborty, S. N. & Chakravarty, C. Entropy, diffusivity, and structural order in liquids with waterlike anomalies. J. Chem. Phys. 125, 204501 (2006).

    Article  ADS  Google Scholar 

  43. Nayar, D. & Chakravarty, C. Water and water-like liquids: relationships between structure, entropy and mobility. Phys. Chem. Chem. Phys. 15, 14162–14177 (2013).

    Article  Google Scholar 

  44. Ghrist, R. Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. 45, 61–75 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  45. Bauer, U., Kerber, M. & Reininghaus, J. PHAT (persistent homology algorithm toolbox), v1.5. Bitbucket https://bitbucket.org/phat-code/phat (2018).

  46. Nakamura, T., Hiraoka, Y., Hirata, A., Escolar, E. G. & Nishiura, Y. Persistent homology and many-body atomic structure for medium-range order in the glass. Nanotechnology 26, 304001 (2015).

    Article  Google Scholar 

  47. Hiraoka, Y. et al. Hierarchical structures of amorphous solids characterized by persistent homology. Proc. Natl Acad. Sci. USA 113, 7035–7040 (2016).

    Article  Google Scholar 

  48. Gallet, G. A. & Pietrucci, F. Structural cluster analysis of chemical reactions in solution. J. Chem. Phys. 139, 074101 (2013).

    Article  ADS  Google Scholar 

  49. Pipolo, S. et al. Navigating at will on the water phase diagram. Phys. Rev. Lett. 119, 245701 (2017).

    Article  ADS  Google Scholar 

  50. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article  ADS  Google Scholar 

  51. Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    Article  ADS  Google Scholar 

  52. Martelli, F., Ko, H.-Y., Oğuz, E. C. & Car, R. Local-order metric for condensed-phase environments. Phys. Rev. B 97, 064105 (2018).

    Article  ADS  Google Scholar 

  53. Martelli, F., Giovambattista, N., Torquato, S. & Car, R. Searching for crystal-ice domains in amorphous ices. Phys. Rev. Mater. 2, 075601 (2018).

    Article  Google Scholar 

  54. Larsen, P. M., Schmidt, S. & Schiøtz, J. Robust structural identification via polyhedral template matching. Model. Simul. Mater. Sci. Eng 24, 055007 (2016).

    Article  ADS  Google Scholar 

  55. Salzmann, C. G., Kohl, I., Loerting, T., Mayer, E. & Hallbrucker, A. Pure ices IV and XII from high-density amorphous ice. Can. J. Phys. 81, 25–32 (2003).

    Article  ADS  Google Scholar 

  56. Salzmann, C. G., Mayer, E. & Hallbrucker, A. Effect of heating rate and pressure on the crystallization kinetics of high-density amorphous ice on isobaric heating between 0.2 and 1.9 GPa. Phys. Chem. Chem. Phys. 6, 5156–5165 (2004).

    Article  Google Scholar 

  57. Fang, X. et al. Spatially resolved distribution function and the medium-range order in metallic liquid and glass. Sci. Rep. 1, 194 (2011).

    Article  Google Scholar 

  58. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  ADS  Google Scholar 

  59. Geiger, P. & Dellago, C. Neural networks for local structure detection in polymorphic systems. J. Chem. Phys. 139, 164105 (2013).

    Article  ADS  Google Scholar 

  60. Reinhart, W. F., Long, A. W., Howard, M. P., Ferguson, A. L. & Panagiotopoulos, A. Z. Machine learning for autonomous crystal structure identification. Soft Matter 13, 4733–4745 (2017).

    Article  ADS  Google Scholar 

  61. Reinhart, W. F. & Panagiotopoulos, A. Z. Automated crystal characterization with a fast neighborhood graph analysis method. Soft matter 14, 6083–6089 (2018).

    Article  ADS  Google Scholar 

  62. Spellings, M. & Glotzer, S. C. Machine learning for crystal identification and discovery. AIChE J. 64, 2198–2206 (2018).

    Article  Google Scholar 

  63. Engel, E. A., Anelli, A., Ceriotti, M., Pickard, C. J. & Needs, R. J. Mapping uncharted territory in ice from zeolite networks to ice structures. Nat. Commun. 9, 2173 (2018).

    Article  ADS  Google Scholar 

  64. Tanaka, H. Simple physical model of liquid water. J. Chem. Phys. 112, 799–809 (2000).

    Article  ADS  Google Scholar 

  65. Gallo, P. et al. Water: a tale of two liquids. Chem. Rev. 116, 7463–7500 (2016).

    Article  Google Scholar 

  66. Tanaka, H. Two-order-parameter description of liquids: critical phenomena and phase separation of supercooled liquids. J. Phys. Condens. Matter 11, L159–L168 (1999).

    Article  ADS  Google Scholar 

  67. Tanaka, H. General view of a liquid-liquid phase transition. Physi Rev. E 62, 6968–6976 (2000).

    Article  ADS  Google Scholar 

  68. Tanaka, H. Simple physical explanation of the unusual thermodynamic behavior of liquid water. Phys. Rev. Lett. 80, 5750–5753 (1998).

    Article  ADS  Google Scholar 

  69. Tanaka, H. A new scenario of the apparent fragile-to-strong transition in tetrahedral liquids: water as an example. J. Phys. Condens. Matter 15, L703–L711 (2003).

    Article  ADS  Google Scholar 

  70. Palmer, J. C., Poole, P. H., Sciortino, F. & Debenedetti, P. G. Advances in computational studies of the liquid–liquid transition in water and water-like models. Chem. Rev. 118, 9129–9151 (2018).

    Article  Google Scholar 

  71. Okabe, A. Spatial Tessellations — Concepts and Applications of Voronoi Diagrams (John Wiley & Sons, 1992).

  72. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    Article  ADS  Google Scholar 

  73. Rycroft, C. H. Voro++: a three-dimensional Voronoi cell library in C++. Chaos 19, 041111 (2009).

    Article  ADS  Google Scholar 

  74. Faken, D. & Jónsson, H. Systematic analysis of local atomic structure combined with 3d computer graphics. Comput. Mater. Sci. 2, 279–286 (1994).

    Article  Google Scholar 

  75. Honeycutt, J. D. & Andersen, H. C. Molecular dynamics study of melting and freezing of small lennard-jones clusters. J. Phys. Chem. 91, 4950–4963 (1987).

    Article  Google Scholar 

  76. Williams, S. R. Topological classification of clusters in condensed phases. Preprint at arXiv https://arxiv.org/abs/0705.0203?context=cond-mat (2007).

  77. Wales, D. J. & Doye, J. P. Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).

    Article  Google Scholar 

  78. Wales, D. J. GMIN a program for finding global minima and calculating thermodynamic properties from basin-sampling. GMIN http://www-wales.ch.cam.ac.uk/GMIN/ (2018).

  79. Malins, A., Williams, S. R., Eggers, J. & Royall, C. P. Identification of structure in condensed matter with the topological cluster classification. J. Chem. Phys. 139, 234506 (2013).

    Article  ADS  Google Scholar 

  80. Malins, A., Williams, S. R., Eggers, J. & Royall, C. P. Identification of structure in condensed matter with the topological cluster classification. J. Chem. Phys. 139, 234506 (2013).

    Article  ADS  Google Scholar 

  81. Hallett, J. E., Turci, F. & Royall, C. P. Local structure in deeply supercooled liquids exhibits growing lengthscales and dynamical correlations. Nat. Commun. 9, 3272 (2018).

    Article  ADS  Google Scholar 

  82. Kawasaki, T., Araki, T. & Tanaka, H. Correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids. Phys. Rev. Lett. 99, 215701 (2007).

    Article  ADS  Google Scholar 

  83. Tanaka, H., Kawasaki, T., Shintani, H. & Watanabe, K. Critical-like behaviour of glass-forming liquids. Nat. Mater. 9, 324–331 (2010).

    Article  ADS  Google Scholar 

  84. Kawasaki, T. & Tanaka, H. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation. J. Phys. Condens. Matter 22, 232102 (2010).

    Article  ADS  Google Scholar 

  85. Kawasaki, T. & Tanaka, H. Structural evolution in the aging process of supercooled colloidal liquids. Phys. Rev. E 89, 062315 (2014).

    Article  ADS  Google Scholar 

  86. Schröder-Turk, G. E. et al. Disordered spherical bead packs are anisotropic. EPL 90, 34001 (2010).

    Article  ADS  Google Scholar 

  87. Kapfer, S. C., Mickel, W., Mecke, K. & Schröder-Turk, G. E. Jammed spheres: minkowski tensors reveal onset of local crystallinity. Phys. Rev. E 85, 030301 (2012).

    Article  ADS  Google Scholar 

  88. Mickel, W., Kapfer, S. C., Schröder-Turk, G. E. & Mecke, K. Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. J. Chem. Phys. 138, 044501 (2013).

    Article  ADS  Google Scholar 

  89. Arai, S. & Tanaka, H. Surface-assisted single-crystal formation of charged colloids. Nat. Phys. 13, 503–509 (2017).

    Article  Google Scholar 

  90. Tong, H. & Tanaka, H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys. Rev. X 8, 011041 (2018).

    Google Scholar 

  91. Nelson, D. R. Defects and Geometry in Condensed Matter Physics (Cambridge Univ. Press, 2002).

  92. Gellatly, B. J. & Finney, J. L. Characterisation of models of multicomponent amorphous metals: the radical alternative to the voronoi polyhedron. J. Non-Cryst. Solids 50, 313–329 (1982).

    Article  ADS  Google Scholar 

  93. Anikeenko, A. V. & Medvedev, N. N. Polytetrahedral nature of the dense disordered packings of hard spheres. Phys. Rev. Lett. 98, 235504 (2007).

    Article  ADS  Google Scholar 

  94. Xia, C. et al. The structural origin of the hard-sphere glass transition in granular packing. Nat. Commun. 6, 8409 (2015).

    Article  Google Scholar 

  95. Nelson, D. R. & Spaepen, F. in Solid State Physics, vol. 42, 1–90 (Elsevier, 1989).

  96. Cao, Y. et al. Structural and topological nature of plasticity in sheared granular materials. Nat. Commun. 9, 2911 (2018).

    Article  ADS  Google Scholar 

  97. Reichert, H. et al. Observation of five-fold local symmetry in liquid lead. Nature 408, 839–841 (2000).

    Article  ADS  Google Scholar 

  98. Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).

    Article  ADS  Google Scholar 

  99. Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995).

    Article  ADS  Google Scholar 

  100. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  ADS  Google Scholar 

  101. Sastry, S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409, 164–167 (2001).

    Article  ADS  Google Scholar 

  102. Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).

    Article  Google Scholar 

  103. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    Article  ADS  Google Scholar 

  104. Kirkpatrick, T., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989).

    Article  ADS  Google Scholar 

  105. Sciortino, F., Kob, W. & Tartaglia, P. Inherent structure entropy of supercooled liquids. Phys. Rev. Lett. 83, 3214–3217 (1999).

    Article  ADS  Google Scholar 

  106. Berthier, L. et al. Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling. Proc. Natl Acad. Sci. USA 114, 11356–11361 (2017).

    Article  ADS  Google Scholar 

  107. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).

    Article  ADS  Google Scholar 

  108. Nettleton, R. & Green, M. Expression in terms of molecular distribution functions for the entropy density in an infinite system. J. Chem. Phys. 29, 1365–1370 (1958).

    Article  ADS  Google Scholar 

  109. Baranyai, A. & Evans, D. J. Direct entropy calculation from computer simulation of liquids. Phys. Rev. A 40, 3817–3822 (1989).

    Article  ADS  Google Scholar 

  110. Mountain, R. D. & Raveché, H. J. Entropy and molecular correlation functions in open systems. ii two-and three-body correlations. J. Chem. Phys. 55, 2250–2255 (1971).

    Article  ADS  Google Scholar 

  111. Banerjee, A., Sengupta, S., Sastry, S. & Bhattacharyya, S. M. Role of structure and entropy in determining differences in dynamics for glass formers with different interaction potentials. Phys. Rev. Lett. 113, 225701 (2014).

    Article  ADS  Google Scholar 

  112. Raveché, H. J. Entropy and molecular correlation functions in open systems. I. Derivation. J. Chem. Phys. 55, 2242–2250 (1971).

    Article  ADS  Google Scholar 

  113. Leocmach, M., Russo, J. & Tanaka, H. Importance of many-body correlations in glass transition: an example from polydisperse hard spheres. J. Chem. Phys. 138, 12A536 (2013).

    Article  Google Scholar 

  114. Piaggi, P. M. & Parrinello, M. Entropy based fingerprint for local crystalline order. J. Chem. Phys. 147, 114112 (2017).

    Article  ADS  Google Scholar 

  115. Tong, H. & Xu, N. Order parameter for structural heterogeneity in disordered solids. Phys. Rev. E 90, 010401 (2014).

    Article  ADS  Google Scholar 

  116. Yang, X., Liu, R., Yang, M., Wang, W.-H. & Chen, K. Structures of local rearrangements in soft colloidal glasses. Phys. Rev. Lett. 116, 238003 (2016).

    Article  ADS  Google Scholar 

  117. Zheng, Z. et al. Structural signatures of dynamic heterogeneities in monolayers of colloidal ellipsoids. Nat. Commun. 5, 3829 (2014).

    Article  Google Scholar 

  118. Lubchenko, V. & Wolynes, P. G. Theory of structural glasses and supercooled liquids. Annu. Rev. Phys. Chem. 58, 235–266 (2007).

    Article  ADS  Google Scholar 

  119. Kirkpatrick, T. & Thirumalai, D. Colloquium: random first order transition theory concepts in biology and physics. Rev. Mod. Phys. 87, 183–209 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  120. Bouchaud, J.-P. & Biroli, G. On the adam-gibbs-kirkpatrick-thirumalai-wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004).

    Article  ADS  Google Scholar 

  121. Montanari, A. & Semerjian, G. Rigorous inequalities between length and time scales in glassy systems. J. Stat. Phys. 125, 23–54 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. Franz, S. & Montanari, A. Analytic determination of dynamical and mosaic length scales in a kac glass model. J. Phys. A Math. Theor. 40, F251 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. Cavagna, A., Grigera, T. S. & Verrocchio, P. Mosaic multistate scenario versus one-state description of supercooled liquids. Phys. Rev. Lett. 98, 187801 (2007).

    Article  ADS  Google Scholar 

  124. Biroli, G., Bouchaud, J. P., Cavagna, A., Grigera, T. S. & Verrocchio, P. Thermodynamic signature of growing amorphous order in glass-forming liquids. Nat. Phys. 4, 771–775 (2008).

    Article  Google Scholar 

  125. Grigera, T. S. & Parisi, G. Fast monte carlo algorithm for supercooled soft spheres. Phys. Rev. E 63, 045102 (2001).

    Article  ADS  Google Scholar 

  126. Hocky, G. M., Markland, T. E. & Reichman, D. R. Growing point-to-set length scale correlates with growing relaxation times in model supercooled liquids. Phys. Rev. Lett. 108, 225506 (2012).

    Article  ADS  Google Scholar 

  127. Ozawa, M., Kob, W., Ikeda, A. & Miyazaki, K. Equilibrium phase diagram of a randomly pinned glass-former. Proc. Natl Acad. Sci. USA 112, 6914–6919 (2015).

    Article  ADS  Google Scholar 

  128. Kob, W., Roldán-Vargas, S. & Berthier, L. Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids. Nat. Phys. 8, 164–167 (2012).

    Article  Google Scholar 

  129. Berthier, L. & Kob, W. Static point-to-set correlations in glass-forming liquids. Phys. Rev. E 85, 011102 (2012).

    Article  ADS  Google Scholar 

  130. Kim, K. Effects of pinned particles on the structural relaxation of supercooled liquids. EPL 61, 790–795 (2003).

    Article  ADS  Google Scholar 

  131. Charbonneau, B., Charbonneau, P. & Tarjus, G. Geometrical frustration and static correlations in a simple glass former. Phys. Rev. Lett. 108, 035701 (2012).

    Article  ADS  Google Scholar 

  132. Charbonneau, P. & Tarjus, G. Decorrelation of the static and dynamic length scales in hard-sphere glass formers. Phys. Rev. E 87, 042305 (2013).

    Article  ADS  Google Scholar 

  133. Cammarota, C., Gradenigo, G. & Biroli, G. Confinement as a tool to probe amorphous order. Phys. Rev. Lett. 111, 107801 (2013).

    Article  ADS  Google Scholar 

  134. Russo, J. & Tanaka, H. Assessing the role of static length scales behind glassy dynamics in polydisperse hard disks. Proc. Natl Acad. Sci. USA 112, 6920–6924 (2015).

    Article  ADS  Google Scholar 

  135. Yaida, S., Berthier, L., Charbonneau, P. & Tarjus, G. Point-to-set lengths, local structure, and glassiness. Phys. Rev. E 94, 032605 (2016).

    Article  ADS  Google Scholar 

  136. Tah, I., Sengupta, S., Sastry, S., Dasgupta, C. & Karmakar, S. Glass transition in supercooled liquids with medium-range crystalline order. Phys. Rev. Lett. 121, 085703 (2018).

    Article  ADS  Google Scholar 

  137. Karmakar, S., Dasgupta, C. & Sastry, S. Length scales in glass-forming liquids and related systems: a review. Rep. Prog. Phys. 79, 016601 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  138. Royall, C. P. & Williams, S. R. The role of local structure in dynamical arrest. Phys. Rep. 560, 1–75 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  139. Royall, C. P., Turci, F., Tatsumi, S., Russo, J. & Robinson, J. The race to the bottom: approaching the ideal glass? J. Phys. Condens. Matter 30, 363001 (2018).

    Article  Google Scholar 

  140. Kurchan, J. & Levine, D. Order in glassy systems. J. Phys. A Math. Theor. 44, 035001 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  141. Sausset, F. & Levine, D. Characterizing order in amorphous systems. Phys. Rev. Lett. 107, 045501 (2011).

    Article  ADS  Google Scholar 

  142. Dunleavy, A. J., Wiesner, K. & Royall, C. P. Using mutual information to measure order in model glass formers. Phys. Rev. E 86, 041505 (2012).

    Article  ADS  Google Scholar 

  143. Jack, R. L., Dunleavy, A. J. & Royall, C. P. Information-theoretic measurements of coupling between structure and dynamics in glass formers. Phys. Rev. Lett. 113, 095703 (2014).

    Article  ADS  Google Scholar 

  144. Widmer-Cooper, A., Perry, H., Harrowell, P. & Reichman, D. R. Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nat. Phys. 4, 711–715 (2008).

    Article  Google Scholar 

  145. Manning, M. L. & Liu, A. J. Vibrational modes identify soft spots in a sheared disordered packing. Phys. Rev. Lett. 107, 108302 (2011).

    Article  ADS  Google Scholar 

  146. Chen, K. et al. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses. Phys. Rev. Lett. 107, 108301 (2011).

    Article  ADS  Google Scholar 

  147. Ghosh, A., Chikkadi, V., Schall, P. & Bonn, D. Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass. Phys. Rev. Lett. 107, 188303 (2011).

    Article  ADS  Google Scholar 

  148. Brito, C. & Wyart, M. Heterogeneous dynamics, marginal stability and soft modes in hard sphere glasses. J. Stat. Mech. Theory Exp. 2007, L08003 (2007).

    Article  Google Scholar 

  149. Schoenholz, S. S., Liu, A. J., Riggleman, R. A. & Rottler, J. Understanding plastic deformation in thermal glasses from single-soft-spot dynamics. Phys. Rev. X 4, 031014 (2014).

    Google Scholar 

  150. Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).

    Article  ADS  Google Scholar 

  151. Xu, N., Vitelli, V., Liu, A. J. & Nagel, S. R. Anharmonic and quasi-localized vibrations in jammed solids–modes for mechanical failure. EPL 90, 56001 (2010).

    Article  ADS  Google Scholar 

  152. Henkes, S., Brito, C. & Dauchot, O. Extracting vibrational modes from fluctuations: a pedagogical discussion. Soft Matter 8, 6092–6109 (2012).

    Article  ADS  Google Scholar 

  153. Yang, X., Tong, H., Wang, W.-H. & Chen, K. Emergence and percolation of rigid domains during colloidal glass transition. Preprint at arXiv https://arxiv.org/abs/1710.08154 (2019).

  154. Cubuk, E. D. et al. Identifying structural flow defects in disordered solids using machine-learning methods. Phys. Rev. Lett. 114, 108001 (2015).

    Article  ADS  Google Scholar 

  155. Cubuk, E. et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033–1037 (2017).

    Article  ADS  Google Scholar 

  156. Schoenholz, S. S., Cubuk, E. D., Sussman, D. M., Kaxiras, E. & Liu, A. J. A structural approach to relaxation in glassy liquids. Nat. Phys. 12, 469–471 (2016).

    Article  Google Scholar 

  157. Schoenholz, S. S., Cubuk, E. D., Kaxiras, E. & Liu, A. J. Relationship between local structure and relaxation in out-of-equilibrium glassy systems. Proc. Natl Acad. Sci. USA 114, 263–267 (2017).

    Article  ADS  Google Scholar 

  158. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn 20, 273–297 (1995).

    MATH  Google Scholar 

  159. Starr, F. W., Sastry, S., Douglas, J. F. & Glotzer, S. C. What do we learn from the local geometry of glass-forming liquids? Phys. Rev. Lett. 89, 125501 (2002).

    Article  ADS  Google Scholar 

  160. Cohen, M. H. & Grest, G. S. Liquid-glass transition, a free-volume approach. Phys. Rev. B 20, 1077–1098 (1979).

    Article  ADS  Google Scholar 

  161. Yoshimoto, K., Jain, T. S., Van Workum, K., Nealey, P. F. & de Pablo, J. J. Mechanical heterogeneities in model polymer glasses at small length scales. Phys. Rev. Lett. 93, 175501 (2004).

    Article  ADS  Google Scholar 

  162. Mizuno, H., Mossa, S. & Barrat, J.-L. Measuring spatial distribution of the local elastic modulus in glasses. Phys. Rev. E 87, 042306 (2013).

    Article  ADS  Google Scholar 

  163. Matharoo, G. S., Razul, M. S. G. & Poole, P. H. Structural and dynamical heterogeneity in a glass-forming liquid. Phys. Rev. E 74, 050502 (2006).

    Article  ADS  Google Scholar 

  164. La Nave, E., Sastry, S. & Sciortino, F. Relation between local diffusivity and local inherent structures in the kob-andersen lennard-jones model. Phys. Rev. E 74, 050501 (2006).

    Article  Google Scholar 

  165. Zylberg, J., Lerner, E., Bar-Sinai, Y. & Bouchbinder, E. Local thermal energy as a structural indicator in glasses. Proc. Natl Acad. Sci. USA 114, 7289–7294 (2017).

    Article  ADS  Google Scholar 

  166. Peng, H., Li, M. & Wang, W. Structural signature of plastic deformation in metallic glasses. Phys. Rev. Lett. 106, 135503 (2011).

    Article  ADS  Google Scholar 

  167. Hu, Y., Li, F., Li, M., Bai, H. & Wang, W. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids. Nat. Commun. 6, 8310 (2015).

    Article  ADS  Google Scholar 

  168. Sciortino, F. & Kob, W. Debye-waller factor of liquid silica: theory and simulation. Phys. Rev. Lett. 86, 648–651 (2001).

    Article  ADS  Google Scholar 

  169. Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett. 96, 185701 (2006).

    Article  ADS  Google Scholar 

  170. Mosayebi, M., Ilg, P., Widmer-Cooper, A. & Del Gado, E. Soft modes and nonaffine rearrangements in the inherent structures of supercooled liquids. Phys. Rev. Lett. 112, 105503 (2014).

    Article  ADS  Google Scholar 

  171. Karmakar, S., Dasgupta, C. & Sastry, S. Growing length and time scales in glass-forming liquids. Proc. Natl Acad. Sci. USA 106, 3675–3679 (2009).

    Article  ADS  Google Scholar 

  172. Hu, Y.-C. et al. Configuration correlation governs slow dynamics of supercooled metallic liquids. Proc. Natl Acad. Sci. USA 115, 6375–6380 (2018).

    Article  ADS  Google Scholar 

  173. Tsuzuki, H., Branicio, P. S. & Rino, J. P. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput. Phys. Commun. 177, 518–523 (2007).

    Article  ADS  Google Scholar 

  174. Tong, H., Tan, P. & Xu, N. From crystals to disordered crystals: a hidden order-disorder transition. Sci. Rep. 5, 15378 (2015).

    Article  ADS  Google Scholar 

  175. Milkus, R. & Zaccone, A. Local inversion-symmetry breaking controls the boson peak in glasses and crystals. Phys. Rev. B 93, 094204 (2016).

    Article  ADS  Google Scholar 

  176. Leocmach, M. & Tanaka, H. Roles of icosahedral and crystal-like order in the hard spheres glass transition. Nat. Commun. 3, 974 (2012).

    Article  ADS  Google Scholar 

  177. Ganapathi, D., Nagamanasa, H. H., Sood, A. K. & Ganapathi, R. Measurement of growing surface tension of amorphous-amorphous interfaces on approaching the colloidal glass transition. Nat. Commun. 9, 397 (2018).

    Article  ADS  Google Scholar 

  178. Ghosh, A., Chikkadi, V. K., Schall, P., Kurchan, J. & Bonn, D. Density of states of colloidal glasses. Phys. Rev. Lett. 104, 248305 (2010).

    Article  ADS  Google Scholar 

  179. Ediger, M. & Harrowell, P. Perspective: supercooled liquids and glasses. J. Chem. Phys. 137, 080901 (2012).

    Article  ADS  Google Scholar 

  180. Biroli, G., Karmakar, S. & Procaccia, I. Comparison of static length scales characterizing the glass transition. Phys. Rev. Lett. 111, 165701 (2013).

    Article  ADS  Google Scholar 

  181. Watanabe, K., Kawasaki, T. & Tanaka, H. Structural origin of enhanced slow dynamics near a wall in glass-forming systems. Nat. Mater. 10, 512–520 (2011).

    Article  ADS  Google Scholar 

  182. Kawasaki, T. & Tanaka, H. Formation of a crystal nucleus from liquid. Proc. Natl Acad. Sci. USA 107, 14036–14041 (2010).

    Article  ADS  Google Scholar 

  183. Tan, P., Xu, N. & Xu, L. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nat. Phys. 10, 73–79 (2014).

    Article  Google Scholar 

  184. Russo, J. & Tanaka, H. Crystal nucleation as the ordering of multiple order parameters. J. Chem. Phys. 145, 211801 (2016).

    Article  ADS  Google Scholar 

  185. Russo, J., Romano, F. & Tanaka, H. Glass forming ability in systems with competing orderings. Phys. Rev. X 8, 021040 (2018).

    Google Scholar 

  186. Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P. & Zamponi, F. Glass and jamming transitions: from exact results to finite-dimensional descriptions. Ann. Rev. Condens. Matter Phys. 8, 265–288 (2017).

    Article  ADS  Google Scholar 

  187. Raiteri, P., Laio, A. & Parrinello, M. Correlations among hydrogen bonds in liquid water. Phys. Rev. Lett. 93, 087801 (2004).

    Article  ADS  Google Scholar 

  188. Sharma, M., Resta, R. & Car, R. Intermolecular dynamical charge fluctuations in water: a signature of the h-bond network. Phys. Rev. Lett. 95, 187401 (2005).

    Article  ADS  Google Scholar 

  189. Matsumoto, M. Relevance of hydrogen bond definitions in liquid water. J. Chem. Phys. 126, 054503 (2007).

    Article  ADS  Google Scholar 

  190. Kumar, R., Schmidt, J. & Skinner, J. Hydrogen bonding definitions and dynamics in liquid water. J. Chem. Phys. 126, 05B611 (2007).

    Google Scholar 

  191. Stillinger, F. H. & Rahman, A. Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60, 1545–1557 (1974).

    Article  ADS  Google Scholar 

  192. Stillinger, F. H. Water revisited. Science 209, 451–457 (1980).

    Article  ADS  Google Scholar 

  193. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  ADS  Google Scholar 

  194. Sciortino, F. & Fornili, S. Hydrogen bond cooperativity in simulated water: time dependence analysis of pair interactions. J. Chem. Phys. 90, 2786–2792 (1989).

    Article  ADS  Google Scholar 

  195. Hsu, C. & Rahman, A. Interaction potentials and their effect on crystal nucleation and symmetry. J. Chem. Phys. 71, 4974–4986 (1979).

    Article  ADS  Google Scholar 

  196. Swope, W. C. & Andersen, H. C. 106-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid. Phys. Rev. B 41, 7042–7054 (1990).

    Article  ADS  Google Scholar 

  197. Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20, 045021 (2012).

    Article  ADS  Google Scholar 

  198. Brostow, W., Dussault, J.-P. & Fox, B. L. Construction of voronoi polyhedra. J. Comput. Phys. 29, 81–92 (1978).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  199. Lazar, E. A., Han, J. & Srolovitz, D. J. Topological framework for local structure analysis in condensed matter. Proc. Natl Acad. Sci. USA 112, E5769–E5776 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  200. van Meel, J. A., Filion, L., Valeriani, C. & Frenkel, D. A parameter-free, solid-angle based, nearest-neighbor algorithm. J. Chem. Phys. 136, 234107 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Grants-in-Aid for Specially Promoted Research (grant no. JP25000002) and Scientific Research (A) (18H03675) from the Japan Society for the Promotion of Science (JSPS). J.R. acknowledges support from the European Research Council Grant DLV-759187 and the Royal Society University Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this Review.

Corresponding authors

Correspondence to Hajime Tanaka, Hua Tong, Rui Shi or John Russo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Structure factor

The two-point correlation function of the Fourier component of the microscopic density.

Radial distribution function

The two-point correlation function of variation of density as a function of distance from a reference particle.

Directional bondings

The bondings between atoms with preferred symmetry and directions.

Second coordination shell

The spherical shell formed by neighbours at a distance between the first and second minima of the radial distribution function from the central molecule, ion or atom.

Rosenfeld relation

The scaling relation between diffusion constant and excess entropy presented by Yaakov Rosenfeld in 1977.

Disclinations

In the description of the melting of 2D crystals, disclinations are elemental topological defects (particles with five or seven neighbours).

Dislocations

Topological defects that consist of pairs of disclinations.

Kauzmann temperature

The temperature at which the extrapolated entropy of the glass becomes smaller than that of the crystal and therefore an ideal glass transition is hypothesized; originated by Walter Kauzmann in 1948.

Extensive

Refers to the relation that a quantity scales proportional to the system size.

Subextensive

Refers to the relation that a quantity scales slower than the system size.

Isoconfigurational ensemble

An ensemble of trajectories that are run from an identical configuration of particles with random initial momenta sampled from the equilibrium Boltzmann distribution.

Dynamic propensity

The mean displacement of individual particles averaged over the isoconfigurational ensemble at the structural relaxation time, describing the tendency of particles’ movement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, H., Tong, H., Shi, R. et al. Revealing key structural features hidden in liquids and glasses. Nat Rev Phys 1, 333–348 (2019). https://doi.org/10.1038/s42254-019-0053-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0053-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing