Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Concept and realization of Kitaev quantum spin liquids

Abstract

The Kitaev model is an exactly solvable S = 1/2 spin model on a 2D honeycomb lattice, in which the spins fractionalize into Majorana fermions and form a topological quantum spin liquid (QSL) in the ground state. Several complex iridium oxides, as well as α-RuCl3, are magnetic insulators with a honeycomb structure, and it was noticed that they accommodate essential ingredients of the Kitaev model owing to the interplay of electron correlation and spin–orbit coupling. This has led to a race to realize the Kitaev QSL and detect signatures of Majorana fermions. We summarize the theoretical background of the Kitaev QSL ground state and its realization using spin–orbital entangled Jeff = 1/2 moments. We provide an overview of candidate materials and their electronic and magnetic properties, including Na2IrO3, α-Li2IrO3, β-Li2IrO3, γ-Li2IrO3, α-RuCl3 and H3LiIr2O6. Finally, we discuss experiments showing that H3LiIr2O6 and α-RuCl3 in an applied magnetic field exhibit signatures of the QSL state and that α-RuCl3 has unusual magnetic excitations and thermal transport properties consistent with spin fractionalization.

Key points

  • The quantum spin liquid is an exotic state of matter in which interacting spins avoid symmetry-breaking phase transitions and form a ground state exhibiting long-range entanglement and topological order.

  • In the exactly soluble Kitaev model, anisotropic spin-pair interactions on different honeycomb lattice bonds conflict, producing strong frustration and a spin-liquid ground state.

  • In some transition-metal-based Mott insulators, unquenched orbital moments and spin–orbit entangled wavefunctions can result in a low-energy Hamiltonian with bond-dependent interactions similar to the Kitaev model.

  • Quantum spin liquid behaviour was recently discovered in the hydrogenated iridate H3LiIr2O6, and signatures of the spin fractionalization and Majorana fermions predicted by the Kitaev model have been detected in α-RuCl3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Kitaev model.
Fig. 2: Local electronic states of octahedrally coordinated Ir4+ and Ru3+ ions and material realization of the Kitaev model.
Fig. 3: Kitaev candidate materials.
Fig. 4: Magnetic ordering in Kitaev candidate materials.
Fig. 5: Magnetic-field-induced paramagnetism and quantum spin liquid behaviour in Kitaev candidate materials.
Fig. 6: Signatures of fractional excitations and non-Kitaev interactions.
Fig. 7: Response functions in extended Kitaev models.

Similar content being viewed by others

References

  1. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    ADS  Google Scholar 

  2. Savary, L. & Balents, L. Quantum spin liquids. Rep. Prog. Phys. 80, 016502 (2017).

    ADS  Google Scholar 

  3. Knolle, J. & Moessner, R. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. https://doi.org/10.1146/annurev-conmatphys-031218-013401 (2019).

  4. Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

    Google Scholar 

  5. Huse, D. A. & Elser, V. Simple variational wave functions for two-dimensional Heisenberg spin-1/2 antiferromagnets. Phys. Rev. Lett. 60, 2531 (1988).

    ADS  Google Scholar 

  6. Capriotti, L., Trumper, A. E. & Sorella, S. Long-range Néel order in the triangular Heisenberg model. Phys. Rev. Lett. 82, 3899 (1999).

    ADS  Google Scholar 

  7. Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).

    ADS  Google Scholar 

  8. Morita, H., Watanabe, S. & Imada, M. Nonmagnetic insulating states near the Mott transitions on lattices with geometrical frustration and implications for κ-(ET)2Cu2(CN)3. J. Phys. Soc. Jpn. 71, 2109–2112 (2002).

    ADS  Google Scholar 

  9. Zhu, Z. & White, S. R. Spin liquid phase of the S = 1/2 J1-J2 Heisenberg model on the triangular lattice. Phys. Rev. B 92, 041105 (2015).

    ADS  Google Scholar 

  10. Hu, W.-J., Gong, S.-S., Zhu, W. & Sheng, D. N. Competing spin-liquid states in the spin-1/2 Heisenberg model on the triangular lattice. Phys. Rev. B 92, 140403 (2015).

    ADS  Google Scholar 

  11. Faddeev, L. D. & Takhtajan, L. A. What is the spin of a spin wave? Phys. Lett. A85, 375–377 (1981).

    ADS  MathSciNet  Google Scholar 

  12. Ioffe, L. & Larkin, A. Gapless fermions and gauge fields in dielectrics. Phys. Rev. B 39, 8988 (1989).

    ADS  Google Scholar 

  13. Nagaosa, N. & Lee, P. A. Normal-state properties of the uniform resonating-valence-bond state. Phys. Rev. Lett. 39, 2450 (1990).

    ADS  Google Scholar 

  14. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

    ADS  Google Scholar 

  15. Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2. Phys. Rev. B 77, 104413 (2008).

    ADS  Google Scholar 

  16. Olariu, A. et al. 17O NMR study of the intrinsic magnetic susceptibility and spin dynamics of the quantum kagome antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 100, 087202 (2008).

    ADS  Google Scholar 

  17. Yamashita, S., Yamamoto, T., Nakazawa, Y., Tamura, M. & Kato, R. Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements. Nat. Commun. 2, 275 (2011).

    ADS  Google Scholar 

  18. Yamashita, M. et al. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science 328, 1246–1248 (2010).

    ADS  Google Scholar 

  19. Han, T. –H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

    ADS  Google Scholar 

  20. Fu, M., Imai, T., Han., T.-H. & Lee, Y. S. Evidence for a gapped spin-liquid ground state in a kagome antiferromagnet. Science 350, 655–658 (2015).

    ADS  Google Scholar 

  21. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  22. Kim, B. J. et al. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

    ADS  Google Scholar 

  23. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    ADS  Google Scholar 

  24. Baskaran, G., Sen, D. & Shankar, R. Spin-S Kitaev model: classical ground states, order from disorder, and exact correlation functions. Phys. Rev. B 78, 115116 (2008).

    ADS  Google Scholar 

  25. Rousochatzakis, I., Sizyuk, Y. & Perkins, N. B. Quantum spin liquid in the semiclassical regime. Nat. Commun. 9, 1575 (2018).

    ADS  Google Scholar 

  26. Lecheminant, P., Bernu, B., Lhuillier, C., Pierre, L. & Sindzingre, P. Order versus disorder in the quantum Heisenberg antiferromagnet on the kagomé lattice using exact spectra analysis. Phys. Rev. B 56, 2521 (1997).

    ADS  Google Scholar 

  27. Moessner, R. & Chalker, J. T. Properties of a classical spin liquid: the Heisenberg pyrochlore antiferromagnet. Phys. Rev. Lett. 80, 2929 (1998).

    ADS  Google Scholar 

  28. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    ADS  Google Scholar 

  29. Knolle, J., Kovrizhin, D. L., Chalker, J. T. & Moessner, R. Dynamics of a two-dimensional quantum spin liquid: Signature of emergent Majorana fermions and fluxes. Phys. Rev. Lett. 112, 207203 (2014).

    ADS  Google Scholar 

  30. Knolle, J., Chern, G. W., Kovrizhin, D. L., Moessner, R. & Perkins, N. B. Raman scattering signature of Kitaev spin liquid in A2IrO3 iridates with A = Na or Li. Phys. Rev. Lett. 113, 187201 (2014).

    ADS  Google Scholar 

  31. Nasu, J., Knolle, J., Kovrizhin, D. L., Motome, Y. & Moessner, R. Fermionic response from fractionalization in an insulating two-dimensional magnet. Nat. Phys. 12, 912–915 (2016).

    Google Scholar 

  32. Nasu, J., Udagawa, M. & Motome, Y. Thermal fractionalization of quantum spins in a Kitaev model: temperature-linear specific heat and coherent transport of Majorana fermions. Phys. Rev. B 92, 115122 (2015).

    ADS  Google Scholar 

  33. Nasu, J., Yoshitake, J. & Motome, Y. Thermal transport in the Kitaev model. Phys. Rev. Lett. 119, 127204 (2017).

    ADS  Google Scholar 

  34. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    ADS  Google Scholar 

  35. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions. (Clarendon Press: Oxford, 1970.

    Google Scholar 

  36. Kim, B. J. et al. Novel J eff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008).

    ADS  Google Scholar 

  37. Khaliullin, G. Orbital order and fluctuations in Mott insulators. Prog. Theor. Phys. Suppl. 160, 155–202 (2005).

    ADS  MATH  Google Scholar 

  38. Fujiyama, S. et al. Two-dimensional Heisenberg behavior of J eff = 1/2 isospins in the paramagnetic state of the spin-orbital Mott insulator Sr2IrO4. Phys. Rev. Lett. 108, 247212 (2012).

    ADS  Google Scholar 

  39. Kim, J. et al. Magnetic excitation spectra of Sr2IrO4 probed by resonant inelastic x-ray scattering: establishing links to cuprate superconductors. Phys. Rev. Lett. 108, 177003 (2012).

    ADS  Google Scholar 

  40. Singh, Y. & Gegenwart, P. Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material Na2IrO3. Phys. Rev. B 82, 064412 (2010).

    ADS  Google Scholar 

  41. O’Malley, M. J., Verweij, H. & Woodward, P. M. Structure and properties of ordered Li2IrO3 and Li2PtO3. J. Solid State Chem. 181, 1803–1809 (2008).

    ADS  Google Scholar 

  42. Abramchuk, M. et al. Cu2IrO3: a new magnetically frustrated honeycomb iridate. J. Am. Chem. Soc. 139, 15371–15376 (2017).

    Google Scholar 

  43. Kobayashi, H., Tabuchi, M., Shikano, M., Kageyama, H. & Kanno, R. Structure, and magnetic and electrochemical properties of layered oxides, Li2IrO3. J. Mater. Chem. 13, 957–962 (2003).

    Google Scholar 

  44. Singh, Y. et al. Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3. Phys. Rev. Lett. 108, 127203 (2012).

    ADS  Google Scholar 

  45. O’Malley, M. J., Woodward, P. M. & Verweij, H. Production and isolation of pH sensing materials by carbonate melt oxidation of iridium and platinum. J. Mater. Chem. 22, 7782–7790 (2012).

    Google Scholar 

  46. Kitagawa, K. et al. A spin-orbital-entangled quantum liquid on a honeycomb lattice. Nature 554, 341 (2018).

    ADS  Google Scholar 

  47. Bette, S. et al. Solution of the heavily stacking faulted crystal structure of the honeycomb iridate H3LiIr2O6. Dalton Trans. 46, 15216–15227 (2017).

    Google Scholar 

  48. Todorova, V., Leineweber, A., Kienle, L., Duppel, V. & Jansen, M. On AgRhO2, and the new quaternary delafossites AgLi1/3M2/3O2 syntheses and analyses of real structures. J. Solid State Chem. 184, 1112–1119 (2011).

    ADS  Google Scholar 

  49. Roudebush, J. H., Ross, K. A. & Cava, R. J. Iridium containing honeycomb delafossites by topotactic cation exchange. Dalton Trans. 45, 8783–8789 (2016).

    Google Scholar 

  50. Plumb, K. W. et al. α-RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112(R) (2014).

    ADS  Google Scholar 

  51. Cao, H. B. et al. Low-temperature crystal and magnetic structure of α-RuCl3. Phys. Rev. B 93, 134423 (2016).

    ADS  Google Scholar 

  52. Takayama, T. et al. Hyperhoneycomb iridate β-Li2IrO3 as a platform for Kitaev magnetism. Phys. Rev. Lett. 114, 077202 (2015).

    ADS  Google Scholar 

  53. Modic, K. A. et al. Realization of a three-dimensional spin-anisotropic harmonic honeycomb iridate. Nat. Commun. 5, 4023 (2014).

    Google Scholar 

  54. Mandal, S. & Surendran, N. Exactly solvable Kitaev model in three dimensions. Phys. Rev. B 79, 024426 (2009).

    ADS  Google Scholar 

  55. Choi, S. K. et al. Spin waves and revised crystal structure of honeycomb iridate Na2IrO3. Phys. Rev. Lett. 108, 127204 (2012).

    ADS  Google Scholar 

  56. Freund, F. et al. Single crystal growth from separated educts and its application to lithium transition-metal oxides. Sci. Rep. 6, 35362 (2016).

    ADS  Google Scholar 

  57. Kubota, Y., Tanaka, H., Ono, T., Narumi, Y. & Kindo, K. Successive magnetic phase transitions in α−RuCl3: XY-like frustrated magnet on the honeycomb lattice. Phys. Rev. B 91, 094422 (2015).

    ADS  Google Scholar 

  58. Johnson, R. D. et al. Monoclinic crystal structure of α-RuCl3 and the zigzag antiferromagnetic ground state. Phys. Rev. B 92, 235119 (2015).

    ADS  Google Scholar 

  59. Comin, R. et al. Na2IrO3 as a novel relativistic Mott insulator with a 340-meV gap. Phys. Rev. Lett. 109, 266406 (2012).

    ADS  Google Scholar 

  60. Winter, S. M. et al. Models and materials for generalized Kitaev magnetism. J. Phys. Condens. Matter 29, 493002 (2017).

    Google Scholar 

  61. Sandilands, L. J. et al. Optical probe of Heisenberg-Kitaev magnetism in α-RuCl3. Phys. Rev. B 94, 195156 (2016).

    ADS  Google Scholar 

  62. Gretarsson, H. et al. Crystal-field splitting and correlation effect on the electronic structure of A2IrO3. Phys. Rev. Lett. 110, 076402 (2013).

    ADS  Google Scholar 

  63. Takayama, T. et al. Pressure-induced collapse of spin-orbital Mott state in the hyperhoneycomb iridate β-Li2IrO3. Preprint at arXiv https://arxiv.org/abs/1808.05494 (2018).

  64. Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).

    ADS  Google Scholar 

  65. Agrestini, S. et al. Electronically highly cubic conditions for Ru in α-RuCl3. Phys. Rev. B 96, 161107(R) (2017).

    ADS  Google Scholar 

  66. Yoshitake, J., Nasu, J. & Motome, Y. Fractional spin fluctuations as a precursor of quantum spin liquids: Majorana dynamical mean-field study for the Kitaev model. Phys. Rev. Lett. 117, 157203 (2016).

    ADS  Google Scholar 

  67. Lampen-Kelley, P. et al. Anisotropic susceptibilities in the honeycomb Kitaev system α-RuCl3. Phys. Rev. B 98, 100403(R) (2018).

    ADS  Google Scholar 

  68. Liu, X. et al. Long-range magnetic ordering in Na2IrO3. Phys. Rev. B 83, 220403(R) (2011).

    ADS  Google Scholar 

  69. Ye, F. et al. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: a neutron and x-ray diffraction investigation of single-crystal Na2IrO3. Phys. Rev. B 85, 180403(R) (2012).

    ADS  Google Scholar 

  70. Sears, J. A. et al. Magnetic order in α-RuCl3: a honeycomb-lattice quantum magnet with strong spin-orbit coupling. Phys. Rev. B 91, 144420 (2015).

    ADS  Google Scholar 

  71. Williams, S. C. et al. Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb α-Li2IrO3. Phys. Rev. B 93, 195158 (2016).

    ADS  Google Scholar 

  72. Biffin, A. et al. Unconventional magnetic order on the hyperhoneycomb Kitaev lattice in β-Li2IrO3: full solution via magnetic resonant x-ray diffraction. Phys. Rev. B 90, 205116 (2014).

    ADS  Google Scholar 

  73. Biffin, A. et al. Noncoplanar and counterrotating incommensurate magnetic order stabilized by Kitaev interactions in γ-Li2IrO3. Phys. Rev. Lett. 113, 197201 (2014).

    ADS  Google Scholar 

  74. Lee, E. K. H. & Kim, Y. B. Theory of magnetic phase diagrams in hyperhoneycomb and harmonic-honeycomb iridates. Phys. Rev. B 91, 064407 (2015).

    ADS  Google Scholar 

  75. Chun, S. H. et al. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3. Nat. Phys. 11, 462–466 (2015).

    Google Scholar 

  76. Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055–1059 (2017).

    ADS  Google Scholar 

  77. Chaloupka, J., Jackeli, G. & Khaliullin, G. Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. Phys. Rev. Lett. 105, 027204 (2010).

    ADS  Google Scholar 

  78. Rau, J. G., Lee, E. K. H. & Kee, H. Y. Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys. Rev. Lett. 112, 077204 (2014).

    ADS  Google Scholar 

  79. Katukuri, V. M. et al. Kitaev interactions between j = 1/2 moments in honeycomb Na2IrO3 are large and ferromagnetic: insights from ab initio quantum chemistry calculations. New. J. Phys. 16, 013056 (2014).

    ADS  Google Scholar 

  80. Yamaji, Y., Nomura, Y., Kurita, M., Arita, R. & Imada, M. First-principles study of the honeycomb-lattice iridates Na2IrO3 in the presence of strong spin-orbit interaction and electron correlations. Phys. Rev. Lett. 113, 107201 (2014).

    ADS  Google Scholar 

  81. Winter, S. M., Li, Y., Jeschke, H. O. & Valenti, R. Challenges in design of Kitaev materials: magnetic interactions from competing energy scales. Phys. Rev. B 93, 214431 (2016).

    ADS  Google Scholar 

  82. Kimchi, I. & You, Y. Z. Kitaev-Heisenberg- J2- J3 model for the iridates A2IrO3. Phys. Rev. B 84, 180407(R) (2011).

    ADS  Google Scholar 

  83. Foyevtsova, K. et al. Ab initio analysis of the tight-binding parameters and magnetic interactions in Na2IrO3. Phys. Rev. B 88, 035107 (2013).

    ADS  Google Scholar 

  84. Rousochatzakis, I., Reuther, J., Thomale, R., Rachel, S. & Perkins, N. B. Phase diagram and quantum order by disorder in the Kitaev K 1K 2 honeycomb magnet. Phys. Rev. X 5, 041035 (2015).

    Google Scholar 

  85. Kimchi, I., Coldea, R. & Vishwanath, A. Unified theory of spiral magnetism in the harmonic-honeycomb iridates α, β, and γ Li2IrO3. Phys. Rev. B 91, 245134 (2015).

    ADS  Google Scholar 

  86. Lee, E. K.-H., Rau, J. G. & Kim, Y.-B. Two iridates, two models, and two approaches: a comparative study on magnetism in three-dimensional honeycomb materials. Phys. Rev. B 93, 184420 (2016).

    ADS  Google Scholar 

  87. Yadav, R. et al. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3. Sci. Rep. 6, 37925 (2016).

    ADS  Google Scholar 

  88. Sears, J. A., Zhao, Y., Xu, Z., Lynn, J. W. & Kim, Y. J. Phase diagram of α-RuCl3 in an in-plane magnetic field. Phys. Rev. B 95, 180411(R) (2017).

    ADS  Google Scholar 

  89. Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

    ADS  Google Scholar 

  90. Baek, S. –H. et al. Evidence for a field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 037201 (2017).

    ADS  Google Scholar 

  91. Wang, Z. et al. Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 227202 (2017).

    ADS  Google Scholar 

  92. Banerjee, A. et al. Excitations in the field-induced quantum spin liquid state of α-RuCl3. npj Quantum Mater. 3, 8 (2018).

    ADS  Google Scholar 

  93. Ruiz, A. et al. Correlated states in β-Li2IrO3 driven by applied magnetic fields. Nat. Commun. 8, 961 (2017).

    ADS  Google Scholar 

  94. Modic, K. A. et al. Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates. Nat. Commun. 8, 180 (2017).

    ADS  Google Scholar 

  95. Hermann, V. et al. Competition between spin-orbit coupling, magnetism, and dimerization in the honeycomb iridates: α-Li2IrO3 under pressure. Phys. Rev. B 97, 020104(R) (2018).

    ADS  Google Scholar 

  96. Clancy, J. P. et al. Pressure-driven collapse of the relativistic electronic ground state in a honeycomb iridate. npj Quantum Mater. 3, 35 (2018).

    ADS  Google Scholar 

  97. Bastien, G. et al. Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α-RuCl3. Phys. Rev. B 97, 241108(R) (2018).

    ADS  Google Scholar 

  98. Biesner, T. et al. Detuning the honeycomb of α−RuCl3: pressure-dependent optical studies reveal broken symmetry. Phys. Rev. B 97, 220401(R) (2018).

    ADS  Google Scholar 

  99. Veiga, L. S. I. et al. Pressure tuning of bond-directional exchange interactions and magnetic frustration in the hyperhoneycomb iridate β-Li2IrO3. Phys. Rev. B 96, 140402(R) (2018).

    Google Scholar 

  100. Miura, Y., Yasui, Y., Sato, M., Igawa, N. & Kakurai, K. New-type phase transition of Li2RuO3 with honeycomb structure. J. Phys. Soc. Jpn. 76, 033705 (2007).

    ADS  Google Scholar 

  101. Kimchi, I., Sheckelton, J. P., McQueen, T. M. & Lee, P. A. Scaling and data collapse from local moments in frustrated disordered quantum spin systems. Nat. Commun. 9, 4367 (2018).

    ADS  Google Scholar 

  102. Slagle, K., Choi, W., Chern, L. E. & Kim, Y. B. Theory of a quantum spin liquid in the hydrogen-intercalated honeycomb iridate H3LiIr2O6. Phys. Rev. B 97, 115159 (2018).

    ADS  Google Scholar 

  103. Song, X. Y., You, Y. Z. & Balents, L. Low-energy spin dynamics of the honeycomb spin liquid beyond the Kitaev limit. Phys. Rev. Lett. 117, 037209 (2016).

    ADS  Google Scholar 

  104. Yadav, R. et al. Strong effect of hydrogen order on magnetic Kitaev interactions in H3LiIr2O6. Phys. Rev. Lett. 121, 197203 (2018).

    ADS  Google Scholar 

  105. Li, Y., Winter, S. M. & Valentí, R. Role of hydrogen in the spin-orbital-entangled quantum liquid candidate H3LiIr2O6. Phys. Rev. Lett. 121, 247202 (2018).

    ADS  Google Scholar 

  106. Do, S.-H. et al. Majorana fermions in the Kitaev quantum spin system α-RuCl3. Nat. Phys. 13, 1079 (2017).

    Google Scholar 

  107. Ran, K. et al. Spin-wave excitations evidencing the Kitaev interaction in single crystalline α-RuCl3. Phys. Rev. Lett. 118, 107203 (2017).

    ADS  Google Scholar 

  108. Sandilands, L. J. et al. Scattering continuum and possible fractionalized excitations in α-RuCl3. Phys. Rev. Lett. 114, 147201 (2015).

    ADS  Google Scholar 

  109. Glamazda, A. et al. Raman spectroscopic signature of fractionalized excitations in the harmonic-honeycomb iridates β and γ-Li2IrO3. Nat. Commun. 7, 12286 (2016).

    ADS  Google Scholar 

  110. Ponomaryov, A. N. et al. Unconventional spin dynamics in the honeycomb-lattice material α-RuCl3: high-field electron spin resonance studies. Phys. Rev. B 96, 241107(R) (2017).

    ADS  Google Scholar 

  111. Zheng, J. et al. Gapless spin excitations in the field-induced quantum spin liquid phase of RuCl3. Phys. Rev. Lett. 119, 227208 (2017).

    ADS  Google Scholar 

  112. Janša, N. et al. Observation of two types of fractional excitation in the Kitaev honeycomb magnet. Nat. Phys. 14, 786 (2018).

    Google Scholar 

  113. Little, A. et al. Antiferromagnetic resonance and terahertz continuum in α-RuCl3. Phys. Rev. Lett. 119, 227201 (2017).

    ADS  Google Scholar 

  114. Shi, L. Y. et al. Field induced magnon excitation and in gap absorption of Kitaev candidate α-RuCl3. Phys. Rev. B 98, 094414 (2018).

    ADS  Google Scholar 

  115. Wu, L. et al. Field evolution of magnons in α-RuCl3 by high-resolution polarized terahertz spectroscopy. Phys. Rev. B 98, 094425 (2018).

    ADS  Google Scholar 

  116. Chaloupka, J., Jackeli, G. & Khaliullin, G. Zigzag magnetic order in the iridium oxide Na2IrO3. Phys. Rev. Lett. 110, 097204 (2013).

    ADS  Google Scholar 

  117. Winter, S. M. et al. Probing α−RuCl3 beyond magnetic order: effects of temperature and magnetic field. Phys. Rev. Lett. 120, 077203 (2018).

    ADS  Google Scholar 

  118. Lovesey, S. W Theory of Neutron Scattering from Condensed Matter Vol. 2 (Clarendon Press, Oxford, 1984).

    Google Scholar 

  119. Shultz, H. J. Dynamics of coupled quantum spin chains. Phys. Rev. Lett. 77, 2790 (1986).

    ADS  Google Scholar 

  120. Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nat. Mater. 4, 329 (2005).

    ADS  Google Scholar 

  121. Knolle, J., Bhattacharjee, S. & Moessner, R. Dynamics of a quantum spin liquid beyond integrability: the Kitaev-Heisenberg-model in an augmented parton mean-field theory. Phys. Rev. B 97, 134432 (2018).

    ADS  Google Scholar 

  122. Suzuki, T. & Suga, S. Effective model with strong Kitaev interactions for α-RuCl3. Phys. Rev. B 97, 134424 (2018).

    ADS  Google Scholar 

  123. Winter, S. M. et al. Breakdown of magnons in a strongly spin-orbital coupled magnet. Nat. Commun. 8, 1152 (2017).

    ADS  Google Scholar 

  124. Hermanns, M., Kimchi, I. & Knolle, J. Physics of the Kitaev model: fractionalization, dynamical correlations, and material connections. Annu. Rev. Condens. Matter Phys. 9, 17–33 (2018).

    ADS  Google Scholar 

  125. Kasahara, Y. et al. Unusual thermal Hall effect in a Kitaev spin liquid candidate α−RuCl3. Phys. Rev. Lett. 120, 217205 (2018).

    ADS  Google Scholar 

  126. Rau, J. G., Lee, E. K. H. & Kee, H. Y. Spin-orbit physics giving rise to novel phases in correlated systems: iridates and related materials. Annu. Rev. Condens. Matter Phys. 7, 195–221 (2016).

    ADS  Google Scholar 

  127. Jiang, H. C., Gu, Z. C., Qi, X. L. & Trebst, S. Possible proximity of the Mott insulating iridate Na2IrO3 to a topological phase: phase diagram of the Heisenberg-Kitaev model in a magnetic field. Phys. Rev. B 83, 245104 (2011).

    ADS  Google Scholar 

  128. Gohlke, M., Verresen, R., Moessner, R. & Pollmann, F. Dynamics of the Kitaev-Heisenberg model. Phys. Rev. Lett. 119, 157203 (2017).

    ADS  Google Scholar 

  129. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Google Scholar 

  130. Park, S.-Y. et al., Emergence of the isotropic Kitaev honeycomb lattice with two-dimensional Ising universality in α-RuCl3. Preprint at arXiv https://arxiv.org/abs/1609.05690 (2016).

Download references

Acknowledgements

The authors thank A. Smerald for his critical reading of this manuscript. H.T., T.T. and G.J. acknowledge support from the Alexander von Humboldt Foundation. The authors thank A. Banerjee, K. Kitagawa and Y. Matsuda for providing figures. H.T. was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (17H01140, JP15H05852, JP15K21717). S.E.N. was supported by the US Department of Energy, Basic Energy Sciences, Scientific User Facilities Division.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of this manuscript.

Corresponding authors

Correspondence to Hidenori Takagi, Tomohiro Takayama, George Jackeli, Giniyat Khaliullin or Stephen E. Nagler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takagi, H., Takayama, T., Jackeli, G. et al. Concept and realization of Kitaev quantum spin liquids. Nat Rev Phys 1, 264–280 (2019). https://doi.org/10.1038/s42254-019-0038-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0038-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing