Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Complex lasers with controllable coherence

A Publisher Correction to this article was published on 01 February 2019

This article has been updated

Abstract

Lasers have enabled scientific and technological progress, owing to their high brightness and high coherence. However, the high spatial coherence of laser illumination is not always desirable, because it can cause adverse artefacts such as speckle noise. To reduce spatial coherence, new laser cavity geometries and alternative feedback mechanisms have been developed. By tailoring the spatial and spectral properties of cavity resonances, the number of lasing modes, the emission profiles and the coherence properties can be controlled. In this Technical Review, we present an overview of such unconventional, complex lasers, with a focus on their spatial coherence properties. Laser coherence control not only provides an efficient means for eliminating coherent artefacts but also enables new applications in imaging and wavefront shaping.

Key points

  • High spatial coherence of laser emission, a common feature of conventional lasers, causes deleterious effects, including speckle noise and crosstalk, in applications such as full-field imaging, display, materials processing, photolithography, holography and optical trapping.

  • Fundamental changes in laser design or operation are more effective than schemes to reduce the spatial coherence outside of the laser cavity to achieve low or tunable spatial coherence.

  • Random lasers and wave-chaotic microcavity lasers support numerous lasing modes with distinct spatial profiles, producing emission of low spatial coherence suitable for speckle-free, full-field imaging and spatial coherence gating.

  • The number of modes and thus spatial coherence of degenerate cavity laser emission can be tuned with little change in power, allowing fast switching between speckle-free imaging and speckle-contrast imaging.

  • Wavefront shaping inside a degenerate cavity laser can generate propagation-invariant output beams or spin-dependent twisted light beams. The dynamic wavefront control can focus laser light through a random scattering medium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulations of speckle suppression with low spatial coherence or low temporal coherence.
Fig. 2: Degenerate cavity lasers with tunable spatial coherence.
Fig. 3: Fibre laser with low spatial coherence.
Fig. 4: Calculated resonant modes in 2D microcavities with regular or chaotic ray dynamics.
Fig. 5: Spatial coherence of random lasers.
Fig. 6: Full-field imaging through a scattering medium.
Fig. 7: Full-field interferometric confocal microscope.
Fig. 8: Laser wavefront shaping within a degenerate cavity laser.

Similar content being viewed by others

Change history

  • 01 February 2019

    This article has been corrected to rectify the display of equation 1.

References

  1. Chellappan, K. V., Erden, E. & Urey, H. Laser-based displays: a review. Appl. Opt. 49, F79–F98 (2010).

    Article  Google Scholar 

  2. Friberg, A. T. & Setala, T. Electromagnetic theory of optical coherence [Invited]. J. Opt. Soc. Am. A. 33, 2431–2442 (2016).

    Article  ADS  Google Scholar 

  3. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

  4. Dainty, J. C. Laser Speckle and Related Phenomena Vol. 9 (Springer Science & Business Media, 2013).

  5. Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).

  6. Webb, R. H. Confocal optical microscopy. Rep. Prog. Phys. 59, 427–471 (1996).

    Article  ADS  Google Scholar 

  7. Lowenthal, S. & Joyeux, D. Speckle removal by a slowly moving diffuser associated with a motionless diffuser. J. Opt. Soc. Am. 61, 847 (1971).

    Article  ADS  Google Scholar 

  8. Redding, B., Allen, G., Dufresne, E. R. & Cao, H. Low-loss high-speed speckle reduction using a colloidal dispersion. Appl. Opt. 52, 1168–1172 (2013).

    Article  ADS  Google Scholar 

  9. Akram, M. N., Tong, Z. M., Ouyang, G. M., Chen, X. Y. & Kartashov, V. Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror. Appl. Opt. 49, 3297–3304 (2010).

    Article  ADS  Google Scholar 

  10. Roelandt, S. et al. Human speckle perception threshold for still images from a laser projection system. Opt. Express 22, 23965–23979 (2014).

    Article  ADS  Google Scholar 

  11. Geri, G. A. & Williams, L. A. Perceptual assessment of laser-speckle contrast. J. Soc. Inf. Disp. 20, 22–27 (2012).

    Article  Google Scholar 

  12. Redding, B. et al. Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging. Opt. Lett. 40, 4607–4610 (2015).

    Article  ADS  Google Scholar 

  13. Arnaud, J. A. Degenerate optical cavities. Appl. Opt. 8, 189–196 (1969).

    Article  ADS  Google Scholar 

  14. Pole, R. Conjugate-concentric laser resonator. JOSA 55, 254–260 (1965).

    Article  ADS  Google Scholar 

  15. Nixon, M., Redding, B., Friesem, A. A., Cao, H. & Davidson, N. Efficient method for controlling the spatial coherence of a laser. Opt. Lett. 38, 3858–3861 (2013).

    Article  ADS  Google Scholar 

  16. Chriki, R. et al. Manipulating the spatial coherence of a laser source. Opt. Express 23, 12989–12997 (2015).

    Article  ADS  Google Scholar 

  17. Hartmann, S. & Elsäßer, W. A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging. Sci. Rep. 7, 41866 (2017).

    Article  ADS  Google Scholar 

  18. Stöckmann, H.-J. Quantum Chaos: An Introduction (Cambridge Univ. Press, 1999).

  19. Cao, H. & Wiersig, J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87, 61–111 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  20. Bunimovich, L. A. On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 65, 295–312 (1979).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Tureci, H. E., Schwefel, H. G. L., Jacquod, P. & Stone, A. D. Modes of wave-chaotic dielectric resonators. Progress. Opt. 47, 75–137 (2005).

    Article  ADS  Google Scholar 

  22. Redding, B. et al. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging. Proc. Natl. Acad. Sci. USA 112, 1304–1309 (2015).

    Article  ADS  Google Scholar 

  23. Heller, E. J. Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits. Phys. Rev. Lett. 53, 1515 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  24. Harayama, T. & Shinohara, S. Two-dimensional microcavity lasers. Laser Photonics Rev. 5, 247–271 (2011).

    Article  ADS  Google Scholar 

  25. Cao, H. Lasing in disordered media. Prog. Opt. 45, 317–370 (2003).

    Article  ADS  Google Scholar 

  26. Noginov, M. A. & Letokhov, V. S. Solid-State Random Lasers (Springer, 2005).

  27. Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008).

    Article  Google Scholar 

  28. Letokhov, V. S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. Jetp 26, 835 (1968).

    ADS  Google Scholar 

  29. Wiersma, D. S. & Lagendijk, A. Light diffusion with gain and random lasers. Phys. Rev. E 54, 4256–4265 (1996).

    Article  ADS  Google Scholar 

  30. Jiang, X. Y. & Soukoulis, C. M. Time dependent theory for random lasers. Phys. Rev. Lett. 85, 70–73 (2000).

    Article  ADS  Google Scholar 

  31. Burin, A. L., Ratner, M. A., Cao, H. & Chang, R. P. H. Model for a random laser. Phys. Rev. Lett. 87, 215503 (2001).

    Article  ADS  Google Scholar 

  32. Vanneste, C. & Sebbah, P. Selective excitation of localized modes in active random media. Phys. Rev. Lett. 87, 183903 (2001).

    Article  ADS  Google Scholar 

  33. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999).

    Article  ADS  Google Scholar 

  34. Cao, H. et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Appl. Phys. Lett. 73, 3656–3658 (1998).

    Article  ADS  Google Scholar 

  35. Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L. & Sauvain, E. Laser action in strongly scattering media. Nature 368, 436–438 (1994).

    Article  ADS  Google Scholar 

  36. Frolov, S. V., Vardeny, Z. V., Yoshino, K., Zakhidov, A. & Baughman, R. H. Stimulated emission in high-gain organic media. Phys. Rev. B 59, R5284–R5287 (1999).

    Article  ADS  Google Scholar 

  37. Turitsyn, S. K. et al. Random distributed feedback fibre lasers. Phys. Rep. 542, 133–193 (2014).

    Article  ADS  Google Scholar 

  38. Siddique, M., Yang, L., Wang, Q. Z. & Alfano, R. R. Mirrorless laser action from optically pumped dye-treated animal-tissues. Opt. Commun. 117, 475–479 (1995).

    Article  ADS  Google Scholar 

  39. Leong, E. S. P. & Yu, S. F. UV random lasing action in p-SiC(4H)/i-ZnO-SiO2 nanocomposite/n-ZnO: Al heterojunction diodes. Adv. Mater. 18, 1685 (2006).

    Article  Google Scholar 

  40. Hokr, B. H. et al. Bright emission from a random Raman laser. Nat. Commun. 5, 4356 (2014).

    Article  Google Scholar 

  41. Liang, H. K. et al. Electrically pumped mid-infrared random lasers. Adv. Mater. 25, 6859–6863 (2013).

    Article  Google Scholar 

  42. Schonhuber, S. et al. Random lasers for broadband directional emission. Optica 3, 1035–1038 (2016).

    Article  Google Scholar 

  43. Ling, Y. et al. Investigation of random lasers with resonant feedback. Phys. Rev. A. 64, 063808 (2001).

    Article  ADS  Google Scholar 

  44. Cao, H., Ling, Y., Xu, J. Y. & Burin, A. L. Probing localized states with spectrally resolved speckle techniques. Phys. Rev. E 66, 025601 (2002).

    Article  ADS  Google Scholar 

  45. El-Dardiry, R. G. S., Mosk, A. P., Muskens, O. L. & Lagendijk, A. Experimental studies on the mode structure of random lasers. Phys. Rev. A. 81, 043830 (2010).

    Article  ADS  Google Scholar 

  46. Vanneste, C., Sebbah, P. & Cao, H. Lasing with resonant feedback in weakly scattering random systems. Phys. Rev. Lett. 98, 143902 (2007).

    Article  ADS  Google Scholar 

  47. Gouedard, C., Husson, D., Sauteret, C., Auzel, F. & Migus, A. Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders. J. Opt. Soc. Am. B 10, 2358–2363 (1993).

    Article  ADS  Google Scholar 

  48. Redding, B., Choma, M. A. & Cao, H. Spatial coherence of random laser emission. Opt. Lett. 36, 3404–3406 (2011).

    Article  ADS  Google Scholar 

  49. Sale, T. E. Vertical Cavity Surface Emitting Lasers (Research Studies Press; Wiley, 1995).

  50. Huang, K. F., Chen, Y. F., Lai, H. C. & Lan, Y. P. Observation of the wave function of a quantum billiard from the transverse patterns of vertical cavity surface emitting lasers. Phys. Rev. Lett. 89, 224102 (2002).

    Article  ADS  Google Scholar 

  51. Gensty, T. et al. Wave chaos in real-world vertical-cavity surface-emitting lasers. Phys. Rev. Lett. 94, 233901 (2005).

    Article  ADS  Google Scholar 

  52. Peeters, M. et al. Spatial decoherence of pulsed broad-area vertical-cavity surface-emitting lasers. Opt. Express 13, 9337–9345 (2005).

    Article  ADS  Google Scholar 

  53. Mandre, S. K., Elsäßer, W., Fischer, I., Peeters, M. & Verschaffelt, G. Evolution from modal to spatially incoherent emission of a broad-area VCSEL. Opt. Express 16, 4452–4464 (2008).

    Article  ADS  Google Scholar 

  54. Craggs, G., Verschaffelt, G., Mandre, S. K., Thienpont, H. & Fischer, I. Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser. IEEE J. Sel. Top. Quant. 15, 555–562 (2009).

    Article  Google Scholar 

  55. Riechert, F. et al. Speckle characteristics of a broad-area VCSEL in the incoherent emission regime. Opt. Commun. 281, 4424–4431 (2008).

    Article  ADS  Google Scholar 

  56. Munro, E. A., Levy, H., Ringuette, D., O’Sullivan, T. D. & Levi, O. Multi-modality optical neural imaging using coherence control of VCSELs. Opt. Express 19, 10747–10761 (2011).

    Article  ADS  Google Scholar 

  57. Levy, H., Ringuette, D. & Levi, O. Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow. Biomed. Opt. Express 3, 777–791 (2012).

    Article  Google Scholar 

  58. Liew, S. F. et al. Intracavity frequency-doubled degenerate laser. Opt. Lett. 42, 411–414 (2017).

    Article  ADS  Google Scholar 

  59. Bachelard, N., Andreasen, J., Gigan, S. & Sebbah, P. Taming random lasers through active spatial control of the pump. Phys. Rev. Lett. 109, (2012).

  60. Liew, S. F., Ge, L., Redding, B., Solomon, G. S. & Cao, H. Pump-controlled modal interactions in microdisk lasers. Phys. Rev. A. 91, 043828 (2015).

    Article  ADS  Google Scholar 

  61. Cerjan, A. et al. Controlling mode competition by tailoring the spatial pump distribution in a laser: a resonance-based approach. Opt. Express 24, 26006–26015 (2016).

    Article  ADS  Google Scholar 

  62. Chriki, R. et al. Spatiotemporal supermodes: rapid reduction of spatial coherence in highly multimode lasers. Phys. Rev. A. 98, 023812 (2018).

    Article  ADS  Google Scholar 

  63. Dhalla, A. H., Migacz, J. V. & Izatt, J. A. Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources. Opt. Lett. 35, 2305–2307 (2010).

    Article  ADS  Google Scholar 

  64. Papagiakoumou, E. et al. Functional patterned multiphoton excitation deep inside scattering tissue. Nat. Photonics 7, 274–278 (2013).

    Article  ADS  Google Scholar 

  65. Redding, B., Choma, M. A. & Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photonics 6, 355–359 (2012).

    Article  ADS  Google Scholar 

  66. Hokr, B. H. et al. A narrow-band speckle-free light source via random Raman lasing. J. Mod. Opt. 63, 46–49 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Haeusler, G. in Encyclopedia of Modern Optics Vol. 1 (eds Guenther, R. D., Steel, D. G. & Bayvel, L. P.) 114–123 (Elsevier, 2004).

  68. Mermillod-Blondin, A., Mentzel, H. & Rosenfeld, A. Time-resolved microscopy with random lasers. Opt. Lett. 38, 4112–4115 (2013).

    Article  ADS  Google Scholar 

  69. Corle, T. R. & Kino, G. S. Confocal Scanning Optical Microscopy and Related Imaging Systems (Acad. Press, 1996).

  70. Petran, M., Hadravsky, M., Egger, M. D. & Galambos, R. Tandem-scanning reflected-light microscope. J. Opt. Soc. Am. 58, 661 (1968).

    Article  ADS  Google Scholar 

  71. Somekh, M. G., See, C. W. & Goh, J. Wide field amplitude and phase confocal microscope with speckle illumination. Opt. Commun. 174, 75–80 (2000).

    Article  ADS  Google Scholar 

  72. Redding, B., Bromberg, Y., Choma, M. A. & Cao, H. Full-field interferometric confocal microscopy using a VCSEL array. Opt. Lett. 39, 4446–4449 (2014).

    Article  ADS  Google Scholar 

  73. Liu, C. G., Cao, H. & Choma, M. A. Coherent artifact suppression in line-field reflection confocal microscopy using a low spatial coherence light source. Opt. Lett. 41, 4775–4778 (2016).

    Article  ADS  Google Scholar 

  74. Sencan, I. et al. Ultrahigh-speed, phase-sensitive full-field interferometric confocal microscopy for quantitative microscale physiology. Biomed. Opt. Express 7, 4674–4684 (2016).

    Article  Google Scholar 

  75. Boas, D. A. & Dunn, A. K. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15, 011109 (2010).

    Article  ADS  Google Scholar 

  76. Knitter, S. et al. Coherence switching of a degenerate VECSEL for multimodality imaging. Optica 3, 403–406 (2016).

    Article  Google Scholar 

  77. Dickey, F. M. & Holswade, S. C. Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).

  78. Turunen, J., Vasara, A. & Friberg, A. T. Propagation invariance and self-imaging in variable-coherence optics. J. Opt. Soc. Am. A 8, 282–289 (1991).

    Article  ADS  Google Scholar 

  79. Chriki, R. et al. Rapid and efficient formation of propagation invariant shaped laser beams. Opt. Express 26, 4431–4439 (2018).

    Article  ADS  Google Scholar 

  80. Chriki, R. et al. Spin-controlled twisted laser beams: intra-cavity multi-tasking geometric phase metasurfaces. Opt. Express 26, 905–916 (2018).

    Article  ADS  Google Scholar 

  81. Nixon, M. et al. Real-time wavefront shaping through scattering media by all-optical feedback. Nat. Photonics 7, 919–924 (2013).

    Article  ADS  Google Scholar 

  82. Bittner, S. et al. Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities. Science 361, 1225 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  83. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Spatiotemporal mode-locking in multimode fiber lasers. Science 358, 94–97 (2017).

    Article  ADS  Google Scholar 

  84. Andreasen, J. et al. Partially pumped random lasers. Int. J. Mod. Phys. B 28, (2014).

  85. Bachelard, N., Gigan, S., Noblin, X. & Sebbah, P. Adaptive pumping for spectral control of random lasers. Nat. Phys. 10, 426–431 (2014).

    Article  Google Scholar 

  86. Liew, S. F., Redding, B., Ge, L., Solomon, G. S. & Cao, H. Active control of emission directionality of semiconductor microdisk lasers. Appl. Phys. Lett. 104, (2014).

  87. Hisch, T., Liertzer, M., Pogany, D., Mintert, F. & Rotter, S. Pump-controlled directional light emission from random lasers. Phys. Rev. Lett. 111, 023902 (2013).

  88. Feng, L., Wong, Z. J., Ma, R. M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    Article  ADS  Google Scholar 

  89. Hodaei, H., Miri, M. A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).

    Article  ADS  Google Scholar 

  90. Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012).

  91. Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

    Article  ADS  Google Scholar 

  92. Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013).

  93. Tradonsky, C. et al. Rapid phase retrieval by lasing. Preprint at https://arxiv.org/abs/1805.10967 (2018).

    ADS  Google Scholar 

  94. McMahon, P. L. et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  95. Siegman, A. E. Lasers (Univ. Sci. Books, 1986).

Download references

Acknowledgements

H.C., R.C., A.F. and N.D. acknowledge funding by the United States–Israel Binational Science Foundation (BSF) under grant no. 2015509. R.C., A.F. and N.D. were supported by the Israel Science Foundation (ISF) by grant no. 1881/17. H.C. and S.B. acknowledge support by the US Office of Naval Research (ONR) via grant no. N00014–13–1–0649. H.C. was supported by the US Air Force Office of Scientific Research under grant no. FA9550–16–1–0416.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Hui Cao or Nir Davidson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Chriki, R., Bittner, S. et al. Complex lasers with controllable coherence. Nat Rev Phys 1, 156–168 (2019). https://doi.org/10.1038/s42254-018-0010-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-018-0010-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing