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The concept of synthetic dimensions works particularly well in atomic physics, quantum optics, and
photonics, where the internal degrees of freedom (Zeeman sublevels of the ground state, metastable
excited states, or motional states for atoms, and angular momentum states or transverse modes for
photons) provide the synthetic space. In this Perspective article we report on recent progress on
studies of synthetic dimensions, mostly, but not only, based on the research realized around the
Barcelona groups (ICFO,UAB), Donostia (DIPC), Poznan (UAM), Kraków (UJ), andAllahabad (HRI).We
describe our attempts to design quantum simulators with synthetic dimensions, to mimic curved
spaces, artificial gauge fields, lattice gauge theories, twistronics, quantum random walks, and more.

The use of internal atomic states as an effective synthetic dimension is an
idea introduced in 20111 that gained quite a popularity and maturity in the
last years. This is one of the main motivation of this Perspective article,
which obviously has elements of review, but mostly cover the material
related to the works of the Quantum Optics Theory and Quantum Gas
Experiments groups at ICFO, but also other groups in Barcelona (UAB),
Donostia (DIPC), Poznań (UAM), Kraków (UJ), and Allahabad (HRI).
Synthetic dimensions have already been reported in several reviews, such as
the recent Quick Study in Physics Today by K. Hazzard and B. Gadway2,
who write: "Objects move through three dimensions in space. But a wide
range of experiments that manipulate atoms, molecules, and light can engi-
neer artificial matter in ways that break even that basic law of nature.” The
concept of synthetic dimension which underlies these experiments goes
back to a “trivial”, yet very deep observation by Boada et al.: The dimension
of a lattice depends on its connectivity1. Therefore, by designing the con-
nectivity appropriately, 4D physics can be implemented in a 3D lattice.
More generally, the internal states of particles involved in the dynamic on a
D-dimensional latticemay be used to increase the dimension. This idea was
fully developed in the seminal Letter3, where it was shown that the basic idea
of synthetic dimensions naturally allows the introduction of artificial gauge
field, corresponding to complex phase factors on the synthetic bonds (see
ref. 4 for a review). Such synthetic dimensions provide powerful access to
different aspects of interacting quantum matter, ranging from fields as

diverse as quantum gravity, solid-state physics, particle physics, etc. Reali-
zations of synthetic dimensions can be obtained in various platforms, from
cold atoms in optical lattices1,5 through photonic systems6, Rydberg atoms7,
and more.

The key features of synthetic dimension platforms depend on the
concrete platform and are discussed in the following subsections. Here we
stress three general aspects:
• Synthetic dimension platforms provide the only way to study systems

with dimensions going beyond D > 3.
• Synthetic dimension platforms allow frequently in an “easy” and

“experimenter friendly” way to increase dimension from D to D+ 1,
and in thisway “change the rules of the game”. Observation of IQHE in
synthetic ladders, discussed in this Perspective, provided a paradigm
example.

• Perhaps a little speculatively we envisage great opportunities for syn-
thetic dimension platforms for simulating fractal dimensions, which
otherwise is possible, but very limited8–11.

This Perspective article is organized as follows: After a short “Intro-
duction”, we present the “Original motivation: Quantum simulations of
artificial space-times”; in the next three sections we comment on “Synthetic
gauge field in synthetic dimension”, “Quantum simulators of Lattice Gauge
Theories”, and utilization of synthetic dimensions for “Twistronics”. Next,
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we covermore “exotic” approaches to synthetic dimensions: those based on
“Quantum Random Walks”, and “Time Crystal Platform for Quantum
Simulations”, followed by the discussion of the experimental perspective on
quantum simulators utilizing synthetic dimensions. Finally, in the last
section we present conclusions and outlook for future research direction for
synthetic dimension in quantum simulators.

Original motivation: quantum simulations of artificial
spacetimes
Ultracold atom in optical lattices are marvelous quantum simulators of
condensed matter models in almost arbitrary 1D, 2D, and 3D geometries.
However, optical lattices are generically straight and with open boundary
conditions. Similar limitations apply to photonic simulators in waveguides
and resonator arrays. In quantum field theory, we are also interested in
curved spacetimes, spacetimes of higher dimensions, and of non-trivial
topology to implement generalized boundary conditions. Thus, how tomeet
the quest for artificial spacetimes?

In fact, for realizing latticemodels living in curved spacetime,wedonot
need to bend the lattice. It suffices to spatially modulate the tunneling1: in a
model realizing Dirac fermions it causes a position-dependent Fermi
velocity that corresponds to themotion in a curved spacetime called optical.
Such a family of spacetimes includes the one seenby an accelerated observer
described by the Rindler metric. Dirac fermions in the positive (negative)
wedge of the Rindler metric have a Fermi velocity that grows (decreases)
linearly in the direction of the acceleration. The surface orthogonal to the
acceleration with zero Fermi velocity is the event horizon that separates the
two wedges that are causally disconnected. A unique feature of artificially
realized spacetimes is that they allow for quantum quenches of spacetime
itself. By a sudden change from the ordinary Minkowski metric seen by an
observer at rest in flat spacetime to the Rindler metric of an accelerated
observer, one can simulate the celebrated Unruh effect for free12 and
interacting13 fermions: the vacuum (Dirac sea) appears to the accelerated
observer as a thermal state, with a temperature proportional to the proper
acceleration, that is, inversely proportional to the distance from the horizon
and to the local Fermi velocity. In fact, as originally noted by Takagi, in two
spatial dimensions, one can observe an apparent inversion of statistics, with
thermal excitations following a Bose-Einstein distribution.

Similarly, we can overcome the limitations on the dimensionality and
the boundary conditions by considering the coherent couplings between
properly chosen internal degrees of freedoms. Such couplings can not only
provide additional neighbor where tunneling, thus provide extra
dimensions5. By removing the identification between tunneling and spatial
displacement they allow for lattices with periodic and twisted boundary
conditions14, in a word for artificial spacetimes of non-trivial topology. This
capability, together with the ability of suddenly quenching the geometry
from the one of the torus to a Klein bottle, for instance, by a sudden change
of the internal states’ couplings, opens the possibility to statically and

dynamically probing the effect of spacetime topology on many-body
quantum phases. While simulating lattices of arbitrary dimensions and
topology would be in principle possible also in real spaces, for instance, by
mapping them to one-dimensional chains (cf. ref. 15 and discussion below),
synthetic dimensions allow to do it without introducing cumbersome long-
range tunnelings.

Synthetic gauge field in synthetic dimensions
The ideabehind synthetic dimensions is touse an internal degreeof freedom
of a system, e.g. the electronic level of atoms, in order tomimic an additional
external degree of freedom5. With this degree of freedom typically being a
discrete one, the natural setting of the synthetic dimension is within a lattice
system. The kinetic terms in a lattice are hopping processes, often limited to
nearest-neighbor processes, and hence the kinetic term in the synthetic
dimension can be achieved by an optical coupling between different energy
levels.Quite naturally, the optical coupling comes alongwith a tunable space
dependency, such as a position-dependent phase factor or coupling inten-
sity. For the hopping along the synthetic dimension this translates into a
Peierls phase, e.g. a syntheticmagnetic flux. In the original proposal, ref. 3, it
has been suggested to build in this way a Hofstadter-like model out of a 1D
chain using the three hyperfine ground states of 87Rb for a compact second
dimension, see Fig. 1a. The compactness of the dimension produces sharp
edges along the synthetic dimension which facilitate the detection of chiral
edge states, one of the characteristic features of such a model. The proposal
has then been realized in refs. 16 and 17, the latter one using the I = 5/2
nuclear spin manifold of fermionic 173Yb, thus allowing for up to a six-leg
ladder in the synthetic dimension.

The analogy between internal degrees of freedom and a synthetic
spatial dimension which holds well on the single-particle level is, at least to
some extent, spoiled in interacting systems. For instance, contact interac-
tions in real space may translate into “long-range” interactions within the
synthetic dimension, that is, interactions without any spatial decay. There
are ways of overcoming this limitation, although they require relatively
complicated engineering of interactions18. However, the special structure of
interactionsmight also bewelcomed as a feature of the synthetic dimension.
As an example, we refer to the case of a synthetic bilayer, obtained from the
optical coupling of two Landau levels in graphene19, which differs from real
bilayer graphene by a modified interaction potential. It has been shown in
ref. 20 that, at filling 2/3, the modified pseudopotentials support non-
Abelian phases with Fibonacci anyons, rather than an Abelian Laughlin-
state which would be supported by the single-layer system.

The concept of synthetic dimensions3,5,21–23 is very general, and internal
atomic or electronic states are not the only candidates for simulating syn-
thetic spatial degrees of freedom. For instance, in long-ranged systems with
connectivity between spatially separated constituents, the connectivity
graph can be viewed as a nearest-neighbormodel embedded in some higher
dimension. As a simplest example, consider a spin chain with nearest- and

Fig. 1 | Chains with synthetic gauge fields and synthetic dimension. a In a optical
1D chain lattice, three atomic hyperfine levels are coupled through Raman beams
with Rabi frequencyΩ0 and spatially varying phase xγ. This artificial hopping in the
synthetic dimension together with the real-space hopping tmimics theHamiltonian
of a compact 2D square lattice with synthetic magnetic fluxes, in close analogy to the
Hofstadter model. Figure taken from ref. 3 with permission of the American

Physical Society. b A 1D system with next-nearest-neighbor hopping J can be
mapped onto a two-leg ladder. Spatially varying hopping phases (in blue), which can
be implemented through Floquet engineering, generate synthetic magnetic fluxes.
The additional phase θ provides a cyclic Hamiltonian parameter which can be used
to substitute momentum along a second dimension. Figure taken from ref. 15 with
permission of the American Physical Society.
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next-nearest-neighbor interactions. By interpreting even andodd sites of the
chain as two legs of a two-leg-ladder, the chain ismappedonto a ladder, e.g.,
a structure which is beyond 1D, with couplings only between nearest
neighbors. One can then apply Floquet engineeringmethods to compensate
for the potentially undesired spatial decay of longer-range interactions. By
appropriately adjusting the Floquet engineering protocol, one can also
thread syntheticfluxes through the synthetic plaquettes of the ladder15,24,25 by
equipping some couplings with spatially dependent phase factors, see
Fig. 1b. Suitable systems to realize such a scheme are, for instance, trapped
ions which are often limited to 1D, but offer long-range couplings and
individual addressability to realize the described scheme. The synthetic flux
provides a tool to realize synthetic topology26,27: to study fractal energy
spectra similar to the Hofstadter butterfly and topological features such as
chiral states and Chern numbers. In this context, a cyclic Hamiltonian
parameter such as constant hoppingphase θ [seeFig. 1(b)]might provide an
analog for the momentum in the second dimension.

Quantum simulators of Lattice Gauge Theories
At its core, particle physics forms the foundation of our comprehension of
the fundamentalworkings of theuniverse, explaininghowmatter and forces
interact via gauge degrees of freedom. Quantum simulators are a natural
tool to simulate fundamental interaction beyond classical capabilities28. To
simulate the interaction of fundamental forces, Lattice Gauge Theories
(LGT) describe models where a matter degree of freedom is coupled to a
gauge field. For example, a Hamiltonian defined on a lattice where the
hopping of the matter from one site to the next one is mediated by a gauge
field. In this scenario, it is thus convenient to use the synthetic dimensions as
a degree of freedom where either the gauge or the matter field can be
encoded, and many proposals have been formulated to pursue this
approach29.

TheSchwingermodel represented inFig. 2a is an illustrative exampleof
the mapping between the matter and gauge degrees of freedom to internal
states of an atomic species in an optical lattice30. It describes the interactions
betweenmassive fermionic particles, ψ̂j, living in site j of a 1D lattice (matter
degree of freedom), which are influenced by a U(1) gauge field described by
the electric field, Û j;jþ1, placed at the bonds. Despite the apparent simplicity
of this 1+1 dimensional model of quantum electrodynamcis, it has a non-
perturbatively generatedmass gap and shares some features with Quantum
Chromodynamics (QCD), such as confinement and chiral symmetry
breaking, and has been adopted as a benchmark model where to explore
LGT techniques.

As an extension of this minimal model, ref. 31 studies invariant LGTs
in2+1dimensions,whereoneobserves a spontaneousbreakingof the gauge
symmetry, as well as charge confinement. Different experimental platforms
have addressed these simplified models. For example, long-range Rydberg
interactions can be used to ensure theGauss law of the theory32, or helpwith
the simulation of non-abelian theories33. In the latter case, the synthetic
dimension is not only in the internal state, but also onwhere the excitation is
in the superlattice. Experimentally, a simplified bosonic version with Z2
gauge fields has also been implemented using two atomic species in a one-
dimensional optical lattice34. Following Sec. 3, other possibilities consists in
realizing exotic geometries throughRaman-assisted tunnelings35,to leverege
on different hyperfine levels of the gasses to onsure the dynamics is

constrained to the gauge invariant sector36, and ref. 37 further shows how to
encode the symmetries in a tensor-network architecture.

LGTs can also offer deep connections with topology, as it can be
illustrated with the Creutz-ladder model38 depicted in Fig. 2b. There, fer-
mionic atoms are trapped in a 1D optical lattice and two internal atomic
states, ↓, ↑, are seen as an orthogonal spatial degree of freedom. This results
into an effective two-leg ladderHamiltonianwith crossed linkswhere atoms
can tunnel along thehorizontal (th), vertical (tv), anddiagonal directions (td).
Using assisted tunneling, one can obtain complex coefficients of the form
~th ¼ e± iθth, which translate into anetflux2θwhena fermionhops arounda
square unit cell. Interestingly, for a configuration with θ = π/2 and null
vertical tunneling, tv = 0, th = td, the twopossiblepaths an electron can follow
tomove two sites (depicted in yellow and blue) interfere destructively. In the
dispersion relation for noninteracting particles, thismanifests as gapped flat
bands with an associated vanishing group velocity. Therefore, if any
transport occurs in a systemwith such a geometric frustration, that must be
related to interactions among the fermionic particles. Furthermore, these
flat bands can also sustainmanynontrivial effects, including topological and
chiral states. Different experimental schemes have been proposed to engi-
neer the needed effective tunnelings of the Creutz-ladder model using 1D
atomic chains and one additional synthetic dimension39, including Raman-
assisted tunneling40 or Floquet engineering through shaken lattices41,42.
Focusing on LGTs, the interplay between spinless fermions interacting with
a dynamicalZ2 gauge fields in a Creutz-ladder geometry also represents a
minimal model for gauge theories, manifesting characteristic features such
as deconfinement and topological order43.

Twistronics
In recent years,Moirématerials have emerged as anewplatform for strongly
correlated phenomena. Thesematerials consist of stacked layers coupled via
van derWaals forces where periodicitymismatch or twisting (i.e., rotational
misalignment) between layers leads to long wavelength Moiré patterns in
real space resulting under certain conditions in significant renormalization
of parent bandstructures. In the paradigmatic example of graphene bilayers,
twistingwas theoretically predicted to lead to a strong reductionof theFermi
velocity44,45 resulting in almost flat bands at low energies at special so-called
magic angles46. The kinetic energy scales are thus effectively quenched and
interaction effects can become dominant and support the emergence of
new correlated ground states at partial filling. These expectations were
spectacularly confirmed experimentally in magic angle twisted bilayer
graphene revealing superconducting domes, correlated insulating states as
well as strange metallic behaviour - properties absent in the underlying
monolayers - triggering the intense new research field of twist-induced
electronic phenomena (or twistronics) and more generally Moiré super-
lattice structures47,48.

The novel control over material properties via Moiré pattern engi-
neering comes with certain challenges. In the context of bilayer graphene,
for instance, very small magic angles of the order of θ ~ 1∘ were predicted.
Such small angles in layered systems are experimentally challenging to
stabilize and maintain homogeneously over extended spatial regions.
Moreover, fundamentally, they lead to very large unit cells containing
thousands of monolayer atoms each rendering microscopic first principles
studies and theoretical understandingof the emergingphysics difficult. Such

Fig. 2 | The lattice Schwinger and the model the Creutz-ladder model.
a Schwinger model in 1+ 1 dimension. The lattice comprises vertices containing
matter particles (red and green) connected by links carrying the associated gauge
field (blue for positive and yellow for negative values). The Fermionic particles Ψ̂i

that can hope from one site to the other, with a hopping strength mediated by the
gauge field Û i;iþ1, with an energy contribution in the Hamiltonian given by

Ψ̂iÛ i;iþ1Ψ̂
y
iþ1. The energy density of the electromagnetic field is given by the square

of the Electric field. b Two-leg ladder associated with the Creutz-ladder model.
Without vertical tunneling (tv), the two-site paths depicted in yellow and blue can
interfere constructively or destructively depending on the choice of horizontal and
diagonal tunneling terms (th and td, respectively).
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considerations have strongly motivated the theoretical design of highly
controllable cold atom-based quantum simulators of twistronic or Moiré
materials.

As already mentioned, cold atoms trapped in optical lattices are highy
versatile platforms for the realization of a plethora of models of interest in
condensedmatter physics, including graphene-like systems49. The possibilities
of creating various lattice geometries, and the choice of particle statistics50

contribute to the variety of many-body problems that can be simulated with
cold atoms (see e.g. ref. 51 for a proposal of coupling a graphene-like layer to a
non-matching square lattice substrate). Most importantly, the physical
parameters of such lattice systems can be tuned well beyond regimes
attainable in the solid state. In particular, in the context of Moiré physics, the
interlayer coupling strength can be crucially tuned to high values which can
lead to larger magic angles and consequently small Moiré unit cells. This
feature may in principle simplify theoretical modelling and help unveil the
mechanisms behind various physical properties of Moiré systems.

The mapping of two (or more) long-lived internal degrees of trapped
cold atoms into the layer degree of freedom is ideally suited for quantum
simulation of twistronics or Moiré physics. The basic challenge here is how
to implement the twist using the idea of synthetic dimensions. Twodifferent
approaches have been put forward. In the spirit of physical twisting in
materials, a schemewhere two internal states are subjected independently to
two state-dependent optical lattice potentials rotated by an angle with
respect to each other was introduced in ref. 52. The respective atomic
excitations can then hop within each lattice layer, while effective interlayer
hopping is induced and controlled via Raman coupling of the two internal
states. Magic angle phenomena were predicted for such synthetic systems
upto twist angle θ ~ 6o52,53. The first proof-of-principle experimental reali-
zation of this twisted synthetic system has been recently achieved54 with

bosonic atoms, demonstrating (i) the emergence of a Moiré supercell, and
(ii) the tunability of the effective interlayer coupling.

A different scheme for simulating twistronics intriguingly without a
physical twist was introduced in ref. 55 (see Fig. 3). This scheme builds on
the idea that physical twisting of two layers fundamentally leads to, and
therefore canbemimickedby, spatialmodulationof interlayer couplingon a
lattice (note also alternate proposals focussing on inducing magic
angle phenomena in layered systems with quasiperiodic potentials56–58).
Considering two internal states (labelling two synthetic layers) of an
appropriately chosen atomic species trapped by a single two-dimensional
optical lattice potential, it was shown that such spatially dependent inter-
layer hoppings can be directly imprinted on the lattice via specifically
designed spatial control of Raman coupling55. While this scheme is quite
general, it in particular allows the creationofMoiré systemswith a small unit
cell where the control of the strength, phase, and periodicity of the Raman
coupling leads to abroad rangeof band structures includingquasi-flat bands
with tunable widths for special magic values of periodicity. The periodic
modulation shown in Fig 3 supports, e.g., topological effects such as the
anomalous quantum Hall effect via the control of hopping parameters59 as
well as interaction effects such as flatband superconductivity60.

The theoretical and experimental results so far foreshadow many
possibilities of cold atom-based twistronics. On one hand, it is natural to
foresee that synthentic dimensions can be used to simulate mutlilayer
twistronics where more than two internal layers are utlized and offer the
intriguing possiblity of observing and uncovering interaction and topolo-
gical effects for boson, fermion and spin systems. From a fundamental
perspective, the absence of electron-phonon coupling in cold atom systems
could e.g. shed light on the relative importance of such coupling in phe-
nomena observed in Moiré materials.
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Fig. 3 | Twistronics without a twist: the case of a synthetic bilayer. a A suitable
two-dimensional Fermi gas (e.g. 87Sr) with four distinct magnetic sub-levels chosen
from the ground state manifold labelled by a pair of two-valued quantum numbers
{σ,m} is trapped in a single layer state independent optical lattice, chosen here as a
square lattice. This system forms a synthetic bilayer if one of the quantum numbers,
say,m = ± 1/2 is identifiedwith the layer degree of freedom. The fermion spin degree
of freedom within a synthetic layer is given by σ = ↑, ↓. Each fermion species can
tunnel between sites of the optical lattice with hopping parameter t. Additional
Raman coupling Ω0 can be utilized to induce transitions between m =+ 1/2 and
m =− 1/2 states effectively introducing (in general, tunable complex valued)
interlayer hopping between the synthetic layers. An appropriate scheme utilzing a

spatial lightmodulator can be used to engineer spatiallymodulated Raman coupling
Ω(x, y) leading to systems withMoiré unit cell patterns. Panel b shows the synthetic
bilayer obtained with Ωðx; yÞ ¼ Ω0 1� αð1þ cosð2πx=lxÞ cosð2πy=lyÞÞ

h i
, where lx

and ly represent the periodicities along the x and y axes, respectively. c Tunable
quasi-flat bands and Dirac cone spectra appear for special choices of periodicities.
Shown here are bandstructures for (lx, ly) = (4, 4). Upper plot represents the negative
part of the spectrum along the high symmetry points (we omit the postive part
which is symmetric with respect to E = 0) for Ω0α = 2t, while lower plot depicts
strong bands flattening atΩ0α = 20t. Figure adapted from ref. 55 with permission of
the American Physical Society.
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Quantum random walks
Quantumwalks (QWs) are deterministic quantum counterparts to classical
random walks, where a particle (quantum walker) performs discrete steps
conditioned by the instantaneous configuration of its spin-like degree of
freedom.Awalkerwith a binary “spin”degree of freedomengages in a series
of unitary operations to determine its movement between neighboring
lattice sites. The quantum evolution is realized through the repeated
application of a unitary operation that defines each step the walker per-
forms. Quantum walks provide a versatile platform for studying dynamics
within a wide spectrum of topological phases, and it has been demonstrated
that QWs can encompass all feasible symmetry-protected topological
phases observed in non-interacting fermions within one or two spatial
dimensions (1D or 2D)61,62.

In63,64, the authors proposed and experimentally validated amethod for
discerning topological characteristics within the bulk of one-dimensional
chiral systems via the introduced concept of the mean chiral displacement,
anobservable that rapidly converges to avalueproportional to theZakphase
during the system’s free evolution. The measurement of the Zak phase in a
photonic quantum walk employing twisted photons is achieved by obser-
ving the mean chiral displacement (MCD) within its bulk. The MCD is a
potent tool for probing the topology of chiral 1D systems whose initial state
is connected to a localized state through a unitary and translation-invariant
transformation. Consequently, MCD serves as a topological indicator in
experiments involving abrupt transitions between different topological
phases in the study of topological systems undergoing dynamic phase
changes and out-of-equilibrium dynamics65–67.

Finally, photonic simulationof a two-dimensional quantumwalk68was
proposed. In this scenario, the positions of the walkers are encoded in the
transverse wavevector components of a single light beam. The desired
dynamics is achieved through a sequence of liquid-crystal devices, which
impart polarization-dependent transverse kicks to the photons in the beam.
This engineered quantum walk realizes a periodically-driven Chern insu-
lator, and its topological features are probed by detecting the anomalous
displacement of the photonic wavepacket under the influence of a constant
force. This compact and versatile platform offers promising opportunities
for simulating two-dimensional quantum dynamics and topological
systems.

Time crystal platform for quantum simulations
During the space crystal formation, the continuous space translational
symmetry is spontaneously brokendue to themany-body interactions and a
regular distribution of atoms emerges. As such, space crystals are char-
acterized by a discrete space translation symmetry. The condensed matter
crystalline structures reveal many different phases of matter ranging from
band and Mott insulators to topological phases, which can be studied in
standard quantum simulators. Recently, a new paradigm appeared to
simulate exotic phases of matter in the time domain69–72, allowing studies of
condensedmatter physics in time crystalline structures - the novel platform
for quantum simulations.

The idea of quantum time crystals was introduced byWilczek in 2012,
ref. 73. However, it was later proven that for a wide class of systems with a
two-body finite range of interactions, spontaneous breaking of time trans-
lational symmetry, i.e., the formation of time crystals, is impossible in the
ground state74–77. Nevertheless, his idea led to the discovery of discrete time
crystals (DTC) and the beginning of solid-state physics in the time
domain78–82.

DTCs are time-periodic phases ofmatter that spontaneously break the
discrete time-translation symmetry t→ t+ T down to t→ t+ nT for some
integer n > 178–80,83–85. Research on time crystals led to the creation of a new
platform of quantum simulators, where time can be used, analogous to
artificial dimensions, to studymultidimensional structures (for an extensive
introduction to the field, we refer to refs. 86–90). The time-crystalline
structures open a new research direction in the field of quantum simulators
of topological matter91, allowing simulation of paradigmatic topological
models like the Su-Schrieffer-Heeger model or Bose-Haldane model,

realized in the time domain, with the bulk-edge correspondence related to
the edge localized in time. In particular, the quasienergy spectrum of a
resonantly driven optical lattice may be interpreted as that of a crystal-like
structure with the time playing the role of an additional coordinate92. With
this analogy, authors studied adiabatic variation of the driving protocol and
demonstrated that it leads to a change of system dynamics that is a mani-
festation of the Thouless pumping in the temporal dimension. Moreover,
topological effects emerging due to nontrivial time lattice geometry have
been studied in ref. 93, where the authors showed that inseparable two-
dimensional time lattices with the Möbius strip geometry could be realized
for ultracold atoms bouncing between two periodically oscillating mirrors.
On such aMöbius strip, a Lieb latticemodel with a flat band can be realized.

Time crystals also offer a platform for simulating higher-dimensional
topological models in the time domain via periodically ordered physical
structures, where time is the additional coordinate. The time-crystalline
approach involves a driving signal of a certain frequency to create a
repeating pattern ofmotion at a commensurate frequency that persists over
time. Many condensed matter phenomena were thus reenacted in the time
domain, and the possibility to engage both temporal and spatial dimensions
at the same time was established, thus doubling the number of available
dimensions. Combining time and space crystalline structures makes it
possible to realize a 6-dimensional time-space crystals for a resonantly
driven 3-dimensional94, allowing observation of a 6-dimensional quantum
Hall effect. Next, the proposal for a 8-dimensional system95 utilizes only two
physical spatial dimensions. The topological nature of the attained time-
space crystalline structure is evident by considering adiabatic state pumping
along temporal and spatial crystalline directions. Interpreting the two
adiabatic phases as crystalmomenta of simulated extra dimensions, authors
showed that non-vanishing second Chern numbers of the effective
4-dimensional lattice characterize the energy bands of the system. The
N-dimensional crystalline structure simulator can be realized considering
the system of N-bouncing particles on an oscillating mirror. For a specific
mirror oscillation frequency, the system can behave like an N-dimensional
fictitious particle moving in an N-dimensional crystalline structure96.

Experimental perspectives
Since the first original proposals1,97, synthetic dimensions have been
experimentally realizedusing abroad rangeof degrees of freedom. In atomic
systems, these include sublevels of the atomic ground state (with experi-
ments exploiting rubidium16, ytterbium17, and dysprosium98 atoms), ground
and metastable “clock” states99,100, momentum states101,102, Rydberg
states103,104, and harmonic trap states105. Moreover, synthetic dimensions
have also been implemented in photonic systems, exploiting degrees of
freedom such as angular momentum modes63 or time bin modes106.

Focusing on the atomic platforms, and more specifically on the use of
atomic internal states, the synthetic dimension approach has provided
access to new classes of experiments that were either not possible using
conventional real-space realizations, or for which the experimental com-
plexitywasmuchhigher. Following the original proposal discussed in Sec. 3,
a prime example is the implementation of strong synthetic magnetic fields
for the atoms, both in the lattice (realizing the celebrated Hofstadter
model)16,17 and in the continuum98. In both cases, a key advantage of syn-
thetic dimensions is that the system has sharp boundaries along the syn-
thetic dimension, enabling the direct visualization of the skipping orbits
associated to the topologically protected chiral edge states. Moreover, by
coupling the synthetic dimensions in a cyclicmanner, systemswith periodic
boundary conditions can be engineered. Achieving this situation in real-
space realizationswould be extremely hard, if not impossible. This has led to
the realization of syntheticHall cylinders107–109, where Laughlin’s topological
charge pump thought experiment was recently investigated experimentally,
proving the nontrivial topology of quantum Hall insulators. Another
exciting research direction, which closely follows the original motivation of
the synthetic dimension approach (see Sec. 1), is the realization of atomic
systems in more than three spatial dimensions. Extra dimensions are
encoded in the additional degrees of freedom, enabling for instance the
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investigation of four-dimensional quantum Hall systems110. The major
drawback of synthetic dimensional systems is their small size along the
synthetic dimension, which is typically limited to only 2 or 3 sites. However,
this limitationhasbeenmostly overcome in the caseof dysprosium, since for
this lanthanide atom as many as 17 internal atomic states have been
exploited to engineer a synthetic quantum Hall system98.

All the experiments discussed above focus on non-interacting physics.
However, in atomic systems synthetic dimensions offer a promising route
towards the realization of strongly-correlated systems. On the one hand, the
energy splitting of the internal atomic levels can naturally be made much
larger than all the other energy scales of the system, thus avoiding the
heating problems associated to Floquet engineering approaches often used
to implement artificial gauge fields111. On the other hand, the optical power
required to optically couple the atomic internal states remains low, keeping
the heating associated with inelastic photon scattering to acceptable levels.
Hence, exploiting synthetic dimensions to investigate the rich many-body
physics of quantumHall systems seemswithin experimental reach, as recent
measurements of the Hall response of strongly interacting synthetic ytter-
bium ladders demonstrate112. This regime has remained until now out of
reach of real-space implementations.

The investigation of strongly interacting systems using synthetic
atomic dimensions will certainly experience rapid development in the
coming years. Promising research directions are the investigation of the
many-body phase diagram of interacting Hofstadter ladder systems, where
the ground state and quench dynamics of the system seem within experi-
mental reach113 and even magnetic frustration in an effective triangular
geometry could be investigated114,115. In synthetic dimensional systemsusing
atomic internal states, the interactions along the synthetic dimension
acquire a peculiar long-range character. While this is normally seen as a
nuisance and a limitation of synthetic dimensional approaches, leading to
the development of schemes to cancel them18, it could also by leveraged as a
resource. For instance, building on previous work in the continuum116,117,
synthetic dimension interactions could be exploited to realize one-
dimensional anyon Hubbard models. Another advantage of synthetic
dimensions is that the tunneling along the synthetic dimension can bemade
spatially periodic. As discussed in Sec. 5, this idea could be exploited to
engineer bilayer systems with tunable supercells, providing access to twis-
tronic physics in atomic physics platforms in an experimentally-friendly
manner60. Finally, by extending the control over the synthetic tunneling to
each individual synthetic site, completely new classes of experiments
become possible, such as the engineering of the entanglement Hamiltonian
of a quantum Hall system118, or the simulation of infinite-size many-body
systems in finite-size quantum simulators119.

Outlook
This Perspective article comprehensively illustrates the profound sig-
nificance of synthetic dimensions in contemporary quantum research. We
have summarized the remarkable potential of employing synthetic
dimensions in quantum simulators, enabling the faithful simulation of
exotic space-time phenomena and facilitating the investigation of artificial
gauge fields and lattice gauge theories within the ultra-cold quantum gases
in optical lattices. Furthermore, synthetic dimensions permit the emulation
of “twistronics without a twist,” offering a novel approach to research of
strongly correlated materials. Moreover, the employment of quantum
random walks within the synthetic dimensions framework opens avenues
for studying a broad spectrumof symmetry-protected topological phases, as
observed in photonic systems in one or two spatial dimensions. Finally,
discrete time crystals have emerged as a ground-breaking platform for
quantumsimulation.Discrete-time crystals enable the investigationof high-
dimensional topological models by introducing time as an additional arti-
ficial dimension. This discourse underscores the noteworthy progressmade
in recent years in the experimental realization and application of synthetic
dimensions, thereby underlying its growing prominence and relevance
within the quantum research landscape.

Pioneering developments, like the ones reviewed in this article, have
equippedquantumsimulation systemswith the synthetic dimension toolkit.
In the future, this new technology will allow us to tackle deep scientific
questions related to the role of geometry anddimensionality inNature. Such
questions occur across various length and energy scales, and quantum
simulators with synthetic dimensions will provide a unique laboratory
system to address them. This may include the laboratory exploration of
cosmological models, novel tests for the standard model, discovery of new
materials with functionalities on demand.

Here we list specific outlooks for each of the sections:
• Quantum simulations of artificial spacetimes. In recent years, most of

the efforts concentrated on studies dynamical gauge field, dynamical
lattices, and the genuine Lattice Gauge Theories, as reviewed
recently120.We expect that techniques of synthetic dimensionswill play
a particularly important role in these developments, both for analog
and digital quantum simulators.

• Synthetic gauge fields in synthetic dimension and quantum simulators
of Lattice Gauge Theories. In recent years, most of the efforts con-
centrated on studies dynamical gauge field, dynamical lattices, and the
genuine LatticeGaugeTheories, as reviewed recently120.We expect that
techniques of synthetic dimensions will play a particularly important
role in these developments, both for analog and digital quantum
simulators.

• Twistronics. Twistronics is without any doubt one of the most dyna-
mically developing areas of condensed matter physics (for a recent
review see ref. 121). In the contexts of realisationswith ultracold atoms,
the twomost urgent lines of research concern possible simplification of
the experimental schemes, and generalizations to 3-layer systems.

• Quantum randomwalks.Most of the challenges concern experimental
realizations: extension of a number of “controlled” steps, especially in
2D. Recently, e.g. interesting connections between quantum random
walks and quantum chaos theory were proposed122 - they call for more
theoretical and experimental studies.

• Time Crystal Platform for Quantum Simulations. Perhaps the most
interesting perspective for future theoretical and experimental studies
of time crystals concern applications in quantum metrology123.

• Experimental perspectives. Finally, it must be stressed that, although
theoretical studies and predictions are necessary, the most important
progress in the area of synthetic dimension is related to experimental
achievements. It is thus extremely important that theorists guide and
encourage experimentalists to do novel, innovative experiments.
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